JPH0621340A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0621340A
JPH0621340A JP5061960A JP6196093A JPH0621340A JP H0621340 A JPH0621340 A JP H0621340A JP 5061960 A JP5061960 A JP 5061960A JP 6196093 A JP6196093 A JP 6196093A JP H0621340 A JPH0621340 A JP H0621340A
Authority
JP
Japan
Prior art keywords
layer
pattern
forming
poly
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5061960A
Other languages
Japanese (ja)
Other versions
JP2500288B2 (en
Inventor
Akira Uchiyama
章 内山
Toshiyuki Iwabuchi
俊之 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP61288913A priority Critical patent/JPS63142665A/en
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5061960A priority patent/JP2500288B2/en
Publication of JPH0621340A publication Critical patent/JPH0621340A/en
Application granted granted Critical
Publication of JP2500288B2 publication Critical patent/JP2500288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor device with a high integration degree and a large capacity in an easy process. CONSTITUTION:A basic pattern 2 is formed on a substrate 1. A semi-insulating or a conductive layer 3 is formed on the whole surface thereof. An electrode pattern (sidewall) 3 is formed on the side surface of the basic pattern 2 with anisotropic etching. The basic pattern is removed to form a dielectric layer 6 for a capacitor on the whole surface thereof. The one side electrode of the capacitor is formed on the dielectic layer 6. A very fine pattern may be easily obtained by performing the patterning of a sidewall.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高集積度の電気的信号
蓄積部を有する半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a highly integrated electric signal storage section.

【0002】[0002]

【従来の技術】従来、高集積メモリセルの構造として
は、文献「電子材料、1985年6月号、41〜46
頁」に記載されているように、トレンチ(溝掘り)型や
3次元積み上げ型があった。これらは、集積度向上に伴
うセル占有面積の減少によってキャパシタの容量が減少
することを避けるために、Si基板に溝を掘り、等価的
に面積が増大したその溝の内面をキャパシタの容量部
(電気的信号蓄積層)として用いたり、段差の側壁、湾
曲による容量増大部を電気的信号蓄積層に利用するもの
である。
2. Description of the Related Art Conventionally, as a structure of a highly integrated memory cell, reference has been made to "Electronic Materials, June 1985, 41-46.
As described in “Page”, there were a trench type and a three-dimensional stacked type. In order to avoid the reduction of the capacitance of the capacitor due to the reduction of the cell occupying area with the improvement of the integration degree, these trenches are formed in the Si substrate, and the inner surface of the trench whose equivalent area is increased is equivalent to the capacitor portion ( It is also used as an electrical signal storage layer, or the side wall of a step or a capacitance increasing portion due to bending is used as an electrical signal storage layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の電気的信号蓄積部を有する半導体装置では、
再現性よく深い溝を掘ることは非常に難しく、トレンチ
型半導体装置においても溝内部は丸みを有し、深いとこ
ろでは細くなってしまう。また、積み上げ型半導体装置
においては、その容量増大は微々たるものである。この
ように、従来の技術は製造上難易度の高いプロセスを有
する、あるいは大幅な容量増大が期待できないという問
題があった。本発明の目的は、簡易なプロセスで高集
積、大容量の半導体装置を製造する方法を提供すること
にある。
However, in the semiconductor device having such a conventional electric signal storage section,
It is very difficult to dig a deep groove with good reproducibility, and even in a trench type semiconductor device, the inside of the groove has a roundness and becomes thin at a deep place. In addition, in the stacked semiconductor device, the increase in capacity is insignificant. As described above, the conventional technology has a problem that it has a process that is difficult to manufacture or that a large capacity increase cannot be expected. An object of the present invention is to provide a method of manufacturing a highly integrated and large capacity semiconductor device by a simple process.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解決するために、基板上に第1層の基礎パターンを形成
し、全面に半絶縁性または導電性の第2層を形成し、こ
の第2層を異方性エッチング法を用いて垂直エッチング
することにより、基礎パターンの側面に第2層の電極パ
ターン(側壁)を形成した後、基礎パターンを除去する
ことを特徴とする。すなわち、側壁による基板表面の凹
凸を、容量部面積の増大の手段とするものである。
In order to solve the above problems, the present invention forms a basic pattern of a first layer on a substrate and forms a semi-insulating or conductive second layer on the entire surface. The second layer is vertically etched using an anisotropic etching method to form an electrode pattern (side wall) of the second layer on the side surface of the basic pattern, and then the basic pattern is removed. That is, the unevenness of the substrate surface due to the side wall is used as a means for increasing the area of the capacitance portion.

【0005】[0005]

【作用】本発明によれば、以上のように側壁のパターニ
ングを行うことにより、微細なパターンが容易に得ら
れ、その凹凸を利用して容量の大きな半導体装置を得る
ことができる。
According to the present invention, a fine pattern can be easily obtained by patterning the side wall as described above, and a semiconductor device having a large capacitance can be obtained by utilizing the unevenness.

【0006】[0006]

【実施例】図1は本発明の第1の実施例の示す工程断面
図である。まず、図1(a)に示すように、Si基板1
上に全面に化学気相成長法(CVD法)等の手段を用い
て、シリコン酸化膜(SiO2)を0.4μm程度の厚
さに積層する。そして、通常行われているホトリソグラ
フィおよびエッチングにより基礎パターンとしてのSi
2パターン2を形成する。その後、図1(b)に示す
ように、CVD法等の手段を用いて全面にpoly S
i膜3を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process sectional view showing a first embodiment of the present invention. First, as shown in FIG. 1A, the Si substrate 1
A silicon oxide film (SiO 2 ) having a thickness of about 0.4 μm is laminated on the entire surface by means such as chemical vapor deposition (CVD). Then, Si as a basic pattern is formed by photolithography and etching which are usually performed.
O 2 pattern 2 is formed. After that, as shown in FIG. 1B, a poly S is formed on the entire surface by using a method such as a CVD method.
The i film 3 is formed.

【0007】次に、図1(c)に示すように、poly
Si膜3の上面より、反応性イオンエッチング(RI
E)等の異方性エッチングを用いて、poly Si膜
3をエッチングする。これにより、SiO2パターン2
の側面にのみpoly Si膜が残り、poly Si
側壁30が形成される。
Next, as shown in FIG. 1 (c), poly
From the upper surface of the Si film 3, reactive ion etching (RI
The poly Si film 3 is etched using anisotropic etching such as E). As a result, the SiO 2 pattern 2
Of the poly Si film remains only on the side surface of the
The side wall 30 is formed.

【0008】次に、図1(d)に示すように、フッ酸
(HF)等を用いて基礎パターンであるSiO2パター
ン2を除去する。これにより、Si基板1上に電極パタ
ーンであるpoly Si側壁30が形成される。この
poly Si側壁30とSi基板1による凹凸を、電
気的信号蓄積部の表面積増大に用いるのである。
Next, as shown in FIG. 1D, the SiO 2 pattern 2 which is the basic pattern is removed by using hydrofluoric acid (HF) or the like. As a result, the poly Si side wall 30 as the electrode pattern is formed on the Si substrate 1. The unevenness formed by the poly Si side wall 30 and the Si substrate 1 is used to increase the surface area of the electrical signal storage portion.

【0009】次に、図1(e)に示すように、Si基板
1およびpoly Si側壁30の上に、全面にキャパ
シタの誘電体層6を形成する。誘電体層6は、例えば熱
酸化によるSiO2膜、CVDによるSiO2膜または
Si34膜、あるいは、これらを組み合わせた積層膜で
もよい。また、誘電体となり得る材質で、所望の容量値
が得られるものであればよい。
Next, as shown in FIG. 1E, a dielectric layer 6 of a capacitor is formed on the entire surface of the Si substrate 1 and the poly Si side wall 30. The dielectric layer 6 may be, for example, a SiO 2 film formed by thermal oxidation, a SiO 2 film or a Si 3 N 4 film formed by CVD, or a laminated film formed by combining these. Further, any material that can serve as a dielectric may be used as long as it can obtain a desired capacitance value.

【0010】この誘電体層6の上にキャパシタの一方の
電極7を、例えば低抵抗のn+poly Siや金属等
で形成する。ここで、電極7に対するもう一方の電極と
しては、poly Si側壁30のみ用いる方法、ある
いはpoly Si側壁30とSi基板1との両方を用
いる方法が考えられる。そして、それに応じてpoly
Si側壁30、Si基板1を低抵抗化する必要があ
る。その方法としては、例えば、誘電体層6の形成前ま
たは形成後に、インプラや熱拡散等でP、As等の不純
物を導入する。また、予め基板1に不純物を導入してお
き、この基板1上に不純物を含んだpoly Si側壁
30を形成するようにしてもよい。
On the dielectric layer 6, one electrode 7 of the capacitor is formed of, for example, low resistance n + poly Si or metal. Here, as the other electrode with respect to the electrode 7, a method of using only the poly Si side wall 30 or a method of using both the poly Si side wall 30 and the Si substrate 1 can be considered. And poly accordingly
It is necessary to reduce the resistance of the Si side wall 30 and the Si substrate 1. As a method thereof, for example, before or after forming the dielectric layer 6, impurities such as P and As are introduced by implantation, thermal diffusion or the like. Alternatively, impurities may be introduced into the substrate 1 in advance, and the poly Si side wall 30 containing the impurities may be formed on the substrate 1.

【0011】一方の電極としてSi基板1、poly
Si側壁30を用いたが、これらを金属を含む基板の上
に金属を含む材質からなる側壁を形成する構造として
も、同様のプロセスが可能であり同様の効果が期待でき
る。また、以上述べた材料の種々の組み合わせでも同様
である。
As one electrode, the Si substrate 1, poly
Although the Si side wall 30 is used, the same process can be performed and the same effect can be expected even if the side wall made of a material containing metal is formed on the substrate containing metal. The same applies to various combinations of the materials described above.

【0012】図2は本発明の第2の実施例を示す工程断
面図である。第2の実施例の工程は、第1の実施例と途
中まで(図1(a)〜(c))同じである。まず、第1
の実施例と同様に、図1(a)〜(c)までの工程を経
て、Si基板上にpoly Si側壁30を形成する。
2A to 2D are process sectional views showing a second embodiment of the present invention. The process of the second embodiment is the same as that of the first embodiment (FIGS. 1A to 1C). First, the first
In the same manner as in Example 1, the poly Si side wall 30 is formed on the Si substrate through the steps of FIGS. 1A to 1C.

【0013】次に、図2(a)に示すように、例えばC
VD法によりSiO2膜4を全面に形成する。その後、
図2(b)に示すように、異方性エッチングによりSi
2膜4をエッチングして、poly Si側壁30の
側面にスペースパターンとしてのSiO2側壁40を形
成する。
Next, as shown in FIG. 2A, for example, C
The SiO 2 film 4 is formed on the entire surface by the VD method. afterwards,
As shown in FIG. 2 (b), Si is formed by anisotropic etching.
The O 2 film 4 is etched to form a SiO 2 side wall 40 as a space pattern on the side surface of the poly Si side wall 30.

【0014】次に、図2(c)に示すように、全面にp
oly Si膜5を積層する。その後、図2(d)に示
すように、異方性エッチングによりpoly Si膜5
をエッチングして、SiO2側壁40の側面にpoly
Si側壁50を形成する。このようにして、所望の数
のpoly Si側壁とSiO2側壁を形成する。
Next, as shown in FIG. 2C, p is formed on the entire surface.
The poly Si film 5 is laminated. After that, as shown in FIG. 2D, the poly Si film 5 is anisotropically etched.
Is etched to form a poly on the side surface of the SiO 2 side wall 40.
The Si sidewall 50 is formed. In this way, a desired number of poly Si sidewalls and SiO 2 sidewalls are formed.

【0015】次に、図2(e)に示すように、フッ酸等
によりスペースパターンであるSiO2側壁40を除去
する。これにより、Si基板1上に電極パターンである
poly Si側壁30,50が形成される。このpo
ly Si側壁30,50とSi基板1による凹凸を、
電気的信号蓄積部の表面積増大に用いるのである。
Next, as shown in FIG. 2 (e), the SiO 2 sidewall 40, which is a space pattern, is removed with hydrofluoric acid or the like. As a result, the poly Si side walls 30 and 50, which are electrode patterns, are formed on the Si substrate 1. This po
The unevenness formed by the ly Si side walls 30 and 50 and the Si substrate 1,
It is used to increase the surface area of the electrical signal storage section.

【0016】次に、図2(f)に示すように、Si基板
1、poly Si側壁30,50の上に全面にキャパ
シタの誘電体層6を形成する。この誘電体層6の上にキ
ャパシタの一方の電極7を、例えば低抵抗のn+pol
y Siや金属等で形成する。ここで、電極7に対する
もう一方の電極としては、poly Si側壁30,5
0のみ用いる方法、あるいはpoly Si側壁30,
50とSi基板1との両方を用いる方法が考えられる。
そして、それに応じてpoly Si側壁30,50、
Si基板1を低抵抗化する必要がある。
Next, as shown in FIG. 2F, a dielectric layer 6 of a capacitor is formed on the entire surface of the Si substrate 1 and the poly Si sidewalls 30 and 50. One electrode 7 of the capacitor is formed on the dielectric layer 6, for example, n + pol having a low resistance.
It is formed of y Si or metal. Here, as the other electrode with respect to the electrode 7, the poly Si sidewalls 30 and 5 are used.
0 only, or the poly Si sidewall 30,
A method using both 50 and the Si substrate 1 can be considered.
Then, accordingly, the poly Si side walls 30, 50,
It is necessary to reduce the resistance of the Si substrate 1.

【0017】図3は、第2の実施例において形成された
poly Si側壁を示す斜視図である。図3のA−A
に沿った断面が図2(e)に相当する。図3において、
poly Si側壁5−1,5−2が図2(e)の側壁
50に対応し、poly Si側壁3−1が側壁30に
対応する。
FIG. 3 is a perspective view showing a poly Si side wall formed in the second embodiment. AA of FIG.
A cross section along the line corresponds to FIG. In FIG.
The poly Si side walls 5-1 and 5-2 correspond to the side wall 50 in FIG. 2E, and the poly Si side wall 3-1 corresponds to the side wall 30.

【0018】以上のように、本発明の実施例によれば、
従来の技術的に難易度の高いトレンチ構造や、あまり容
量の増大が期待できない積み上げ方式によるメモリキャ
パシタの欠点を解決することができる。すなわち、側壁
によるパターニングを行うことにより、従来のホトリソ
手法では不可能な0.2μm幅程度の微細なパターンを
容易に得ることができる。これにより、その側壁による
凹凸を利用して、電気的信号蓄積部の容量を増大させる
ことができる。
As described above, according to the embodiment of the present invention,
It is possible to solve the drawbacks of the conventional trench structure, which has a high degree of technical difficulty, and the stacked type memory capacitor, which is not expected to increase the capacitance so much. That is, by performing patterning on the side wall, it is possible to easily obtain a fine pattern having a width of about 0.2 μm, which is impossible by the conventional photolithography method. This makes it possible to increase the capacitance of the electrical signal storage unit by utilizing the unevenness formed by the side wall.

【0019】例えば、キャパシタ(電気的信号蓄積部)
面内全域に本手法を用いて側壁による凹凸を作れば、側
壁の高さと幅を等しくしても表面積は約2倍になり、容
量も2倍になる。さらに高くすれば容量はより大きくな
る。実験では高さが0.4μmで幅0.25μmが得ら
れており、この場合は約2.6倍の容量になる。側壁の
高さと幅の関係は成膜やエッチングの条件によるので、
これらの条件により、さらに容量の大きな電気的信号蓄
積部を得ることができる。
For example, a capacitor (electrical signal storage unit)
If unevenness is formed by the side wall on the entire surface by using this method, even if the height and width of the side wall are made equal, the surface area is approximately doubled and the capacity is also doubled. The higher the capacity, the larger the capacity. In the experiment, the height is 0.4 μm and the width is 0.25 μm, and in this case, the capacity is about 2.6 times. The relationship between the height and width of the side wall depends on the conditions of film formation and etching.
Under these conditions, it is possible to obtain an electric signal storage unit having a larger capacity.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
側壁によるパターニングを行うことにより、微細なパタ
ーンを容易に得ることができる。そして、その凹凸を利
用して電気的信号蓄積部を形成しているので、高集積度
で大容量の半導体装置を得ることができる。
As described above, according to the present invention,
By patterning the side wall, a fine pattern can be easily obtained. Further, since the electrical signal storage portion is formed by utilizing the unevenness, a semiconductor device with high integration and large capacity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す工程断面図であ
る。
FIG. 1 is a process sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す工程断面図であ
る。
FIG. 2 is a process sectional view showing a second embodiment of the present invention.

【図3】第2に実施例で形成されたpoly Si側壁
の斜視図である。
FIG. 3 is a perspective view of a poly Si side wall formed in a second example.

【符号の説明】[Explanation of symbols]

1 Si基板 2 SiO2パターン 3 poly Si膜 4 SiO2膜 5 poly Si膜 6 誘電体層 7 電極 30 poly Si側壁 40 SiO2側壁 50 poly Si側壁1 Si substrate 2 SiO 2 pattern 3 poly Si film 4 SiO 2 film 5 poly Si film 6 dielectric layer 7 electrode 30 poly Si side wall 40 SiO 2 side wall 50 poly Si side wall

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に第1層の基礎パターンを形成す
る工程と、 全面に半絶縁性または導電性の第2層を形成する工程
と、 前記第2層を異方性エッチング法を用いて垂直エッチン
グすることにより、前記基礎パターンの側面に前記第2
層の電極パターンを形成する工程と、 前記基礎パターンを除去する工程と、 全面にキャパシタの誘電体層を形成する工程と、 前記誘電体層上に前記キャパシタの一方の電極を形成す
る工程と を有することを特徴とする半導体装置の製造方法。
1. A step of forming a basic pattern of a first layer on a substrate, a step of forming a semi-insulating or conductive second layer on the entire surface, and an anisotropic etching method for forming the second layer. Vertical etching is performed on the side surface of the basic pattern so that the second
A step of forming an electrode pattern of a layer, a step of removing the basic pattern, a step of forming a dielectric layer of a capacitor on the entire surface, and a step of forming one electrode of the capacitor on the dielectric layer. A method of manufacturing a semiconductor device, comprising:
【請求項2】 基板上に第1層の基礎パターンを形成す
る第1工程と、 全面に半絶縁性または導電性の第2層を形成する第2工
程と、 前記第2層を異方性エッチング法を用いて垂直エッチン
グすることにより、前記基礎パターンの側面に前記第2
層の電極パターンを形成する第3工程と、 前記基礎パターンを除去する第4工程と、 全面にスペースパターンを形成するための第3層を積層
する第5工程と、 前記第3層を異方性エッチング法を用いて垂直エッチン
グすることにより、前記電極パターンの両側面に前記第
3層のスペースパターンを形成する第6工程と、 全面に半絶縁性または導電性の第4層を積層する第7工
程と、 前記第4層を異方性エッチング法を用いて垂直エッチン
グすることにより、前記スペースパターンの側面に前記
第4層の電極パターンを形成する第8工程と、 前記スペースパターンを除去する第9工程と、 全面にキャパシタの誘電体層を形成する第10工程と、 前記誘電体層上に前記キャパシタの一方の電極を形成す
る第11工程とを有し、 前記第5工程から第8工程を1回またはそれ以上繰り返
すことを特徴とする半導体装置の製造方法。
2. A first step of forming a basic pattern of a first layer on a substrate, a second step of forming a semi-insulating or conductive second layer on the entire surface, and anisotropy of the second layer. By performing vertical etching using an etching method, the second pattern is formed on the side surface of the basic pattern.
A third step of forming a layer electrode pattern, a fourth step of removing the basic pattern, a fifth step of laminating a third layer for forming a space pattern on the entire surface, and an anisotropic method of forming the third layer A sixth step of forming a space pattern of the third layer on both side surfaces of the electrode pattern by vertical etching using a conductive etching method; and a fourth step of laminating a semi-insulating or conductive fourth layer on the entire surface. 7 steps, 8th step of forming the electrode pattern of the 4th layer on the side surface of the space pattern by vertically etching the 4th layer using an anisotropic etching method, and removing the space pattern. A ninth step, a tenth step of forming a capacitor dielectric layer on the entire surface, and an eleventh step of forming one electrode of the capacitor on the dielectric layer; and the fifth step. The method of manufacturing a semiconductor device characterized by repeating et eighth step one or more times.
JP5061960A 1986-12-05 1993-03-22 Method for manufacturing semiconductor device Expired - Lifetime JP2500288B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61288913A JPS63142665A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device
JP5061960A JP2500288B2 (en) 1986-12-05 1993-03-22 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61288913A JPS63142665A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device
JP5061960A JP2500288B2 (en) 1986-12-05 1993-03-22 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61288913A Division JPS63142665A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0621340A true JPH0621340A (en) 1994-01-28
JP2500288B2 JP2500288B2 (en) 1996-05-29

Family

ID=26403042

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61288913A Granted JPS63142665A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device
JP5061960A Expired - Lifetime JP2500288B2 (en) 1986-12-05 1993-03-22 Method for manufacturing semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP61288913A Granted JPS63142665A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (2) JPS63142665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065395A (en) * 1999-04-02 2000-11-15 김영환 Method for forming a single Electron Transistor
KR100412140B1 (en) * 2001-12-28 2003-12-31 주식회사 하이닉스반도체 Method for fabricating semiconductor device
US6964899B2 (en) 2003-04-07 2005-11-15 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2010511306A (en) * 2006-11-29 2010-04-08 マイクロン テクノロジー, インク. Method for reducing the critical dimension of a semiconductor device and semiconductor device having a reduced critical dimension that is partially fabricated

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221659A (en) * 1987-03-10 1988-09-14 Nec Kyushu Ltd Semiconductor memory device
JPS6474752A (en) * 1987-09-17 1989-03-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748237A (en) * 1980-09-05 1982-03-19 Nec Corp Manufacture of 2n doubling pattern
JPS60245264A (en) * 1984-05-21 1985-12-05 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748237A (en) * 1980-09-05 1982-03-19 Nec Corp Manufacture of 2n doubling pattern
JPS60245264A (en) * 1984-05-21 1985-12-05 Toshiba Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065395A (en) * 1999-04-02 2000-11-15 김영환 Method for forming a single Electron Transistor
KR100412140B1 (en) * 2001-12-28 2003-12-31 주식회사 하이닉스반도체 Method for fabricating semiconductor device
US6964899B2 (en) 2003-04-07 2005-11-15 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2010511306A (en) * 2006-11-29 2010-04-08 マイクロン テクノロジー, インク. Method for reducing the critical dimension of a semiconductor device and semiconductor device having a reduced critical dimension that is partially fabricated
US8338304B2 (en) 2006-11-29 2012-12-25 Micron Technology, Inc. Methods to reduce the critical dimension of semiconductor devices and related semiconductor devices
US8836083B2 (en) 2006-11-29 2014-09-16 Micron Technology, Inc. Methods to reduce the critical dimension of semiconductor devices and related semiconductor devices

Also Published As

Publication number Publication date
JPS63142665A (en) 1988-06-15
JPH0579181B2 (en) 1993-11-01
JP2500288B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
EP0348046B1 (en) Method of producing a semiconductor device
JP3501297B2 (en) Method for manufacturing semiconductor memory device
US6784069B1 (en) Permeable capacitor electrode
JP2500288B2 (en) Method for manufacturing semiconductor device
US5907774A (en) Corrugated post capacitor and method of fabricating using selective silicon deposition
US5753962A (en) Texturized polycrystalline silicon to aid field oxide formation
US4656054A (en) Method of manufacturing a semiconductor device involving a capacitor
US5028980A (en) Trench capacitor with expanded area
US6015988A (en) Microstructure and methods for fabricating such structure
KR960001331B1 (en) Semiconductor memory device and the manufacturing method
KR0179556B1 (en) Method for manufacturing semiconductor capacitor
JPH08125142A (en) Fabrication of semiconductor device
JP2578808B2 (en) Manufacturing method of trench type capacitor
EP0810653B1 (en) DRAM and method of fabricating a DRAM with increased capacity
KR0130439B1 (en) Capacitor forming method of semiconductor memory device
JPH0369162A (en) Manufacture of semiconductor device
JPH04264766A (en) Manufacture of semiconductor device
JPH01283860A (en) Manufacture of semiconductor device
KR960000370B1 (en) Contact hole structure and forming method thereof
JPH0529541A (en) Manufacture of semiconductor device
KR100384793B1 (en) Method for manufacturing capacitor
KR910006742B1 (en) Sharp trench edge removing method in semiconductor device manufacturing
JPS60115254A (en) Semiconductor device and manufacture thereof
JP2694777B2 (en) Method for manufacturing semiconductor device
JPH0463471A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term