JPH0621090A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0621090A
JPH0621090A JP17423592A JP17423592A JPH0621090A JP H0621090 A JPH0621090 A JP H0621090A JP 17423592 A JP17423592 A JP 17423592A JP 17423592 A JP17423592 A JP 17423592A JP H0621090 A JPH0621090 A JP H0621090A
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
gate
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17423592A
Other languages
Japanese (ja)
Inventor
Hironori Tsukamoto
弘範 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17423592A priority Critical patent/JPH0621090A/en
Publication of JPH0621090A publication Critical patent/JPH0621090A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance photoelectron resistance for a transistor or the like and provide a manufacturing method for a semiconductor device which has enhanced gate with stand voltage. CONSTITUTION:This manufacturing method comprises a process which forms a device isolation area 15 on a silicon board 11, a process which forms a gate oxide film 16 between the device isolation areas and a heat treatment process which heat-treats the surface of the silicon board 11 and the gate oxide film 16 by pulse-lasering from above the device isolation areas and the gate oxide film 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特にトランジスタの製造プロセスにおけるゲー
ト酸化膜の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a gate oxide film in a transistor manufacturing process.

【0002】[0002]

【従来の技術】半導体装置の集積化が進むにつれて例え
ばMOSトランジスタのゲート長が短くなり、ゲート酸
化膜厚も薄膜化の傾向にある。
2. Description of the Related Art As the integration of semiconductor devices progresses, for example, the gate length of MOS transistors becomes shorter, and the gate oxide film thickness tends to become thinner.

【0003】図3にnMOS FET(電界効果トラン
ジスタ)の構造断面図の一例を示す。
FIG. 3 shows an example of a sectional view of the structure of an nMOS FET (field effect transistor).

【0004】図3において、1はP型シリコン(Si)
基板、2a,2bはn型のそれぞれソース領域、ドレイ
ン領域、3はゲート酸化膜、4はチャネルストップ領
域、5はLOCOS酸化膜(SiO2)、7はポリシリ
コン(poly−Si)ゲート電極、8はPSG膜、9
はアルミニウム配線である。
In FIG. 3, reference numeral 1 is P-type silicon (Si).
Substrates 2a and 2b are n-type source regions and drain regions, 3 is a gate oxide film, 4 is a channel stop region, 5 is a LOCOS oxide film (SiO 2 ), 7 is a polysilicon (poly-Si) gate electrode, 8 is a PSG film, 9
Is aluminum wiring.

【0005】このように図3に示した構造のnMOS
FETではソース電極とドレイン電極との間に印加され
る電圧とゲート電圧による電界がドレイン領域2b側の
poly−Siゲート電極7直下、すなわち図3のA部
に集中する。
As described above, the nMOS having the structure shown in FIG.
In the FET, the electric field generated by the gate voltage and the voltage applied between the source electrode and the drain electrode is concentrated directly under the poly-Si gate electrode 7 on the drain region 2b side, that is, in the portion A of FIG.

【0006】[0006]

【発明が解決しようとする課題】そのように電界集中が
起きるとチャネルを流れる電子の運動エネルギーが大き
くなり、ゲート酸化膜に電子(ホットエレクトロン)が
直接飛び込んでゲート酸化膜中にトラップを形成した
り、ゲート酸化膜(SiO2)/Si基板界面に界面準
位をつくる確率が大きくなり、短時間の使用によりトラ
ンジスタの電流駆動能力が低下する、いわゆる寿命が短
くなる問題があった。
When such electric field concentration occurs, the kinetic energy of electrons flowing through the channel increases, and electrons (hot electrons) directly enter the gate oxide film to form traps in the gate oxide film. In addition, there is a problem that the probability of forming an interface state at the interface of the gate oxide film (SiO 2 ) / Si substrate is increased and the current driving capability of the transistor is reduced by using it for a short time, that is, the life is shortened.

【0007】現在、このトランジスタ短寿命化の原因の
一つとしてゲート酸化膜3とSi基板1間に発生してい
る応力(メカニカルストレス)が知られている。
At present, a stress (mechanical stress) generated between the gate oxide film 3 and the Si substrate 1 is known as one of the causes for shortening the life of the transistor.

【0008】そこでその応力を低減するために、従来、
NH3やN2Oガス中でゲート酸化膜3をアニールし窒化
する方法が行われており、その結果ホットエレクトロン
耐性が向上することが知られている。
Therefore, in order to reduce the stress,
It is known that the gate oxide film 3 is annealed and nitrided in NH 3 or N 2 O gas, and as a result, hot electron resistance is improved.

【0009】しかしながら、上述した窒化アニールでは
NH3ガスを用いると窒化濃度が高くなり過ぎてSi基
板1の表面があれたり、一方N2Oガスを用いると窒化
と同時に酸化反応も進むため、ゲート酸化膜3の厚さも
厚くなり高集積化に反する問題を招いた。
However, in the above-mentioned nitriding anneal, when NH 3 gas is used, the nitriding concentration becomes too high and the surface of the Si substrate 1 is warped, and when N 2 O gas is used, the oxidation reaction proceeds simultaneously with the nitriding. The thickness of the oxide film 3 is also increased, which causes a problem against high integration.

【0010】そこで本発明は、トランジスタ等のホット
エレクトロン耐性を向上させると共にゲート耐圧を向上
させた半導体装置の製造方法を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a method of manufacturing a semiconductor device having improved resistance to hot electrons such as a transistor and improved gate breakdown voltage.

【0011】[0011]

【課題を解決するための手段】上記課題は本発明によれ
ば、シリコン基板上に素子分離領域を形成する工程、前
記素子分離領域間にゲート酸化膜を形成する工程、前記
素子分離領域及びゲート酸化膜上方からパルスレーザを
照射して前記シリコン基板表面とゲート酸化膜を熱処理
する工程、を含むことを特徴とする半導体装置の製造方
法によって解決される。
According to the present invention, there are provided the above-mentioned objects, a step of forming an element isolation region on a silicon substrate, a step of forming a gate oxide film between the element isolation regions, the element isolation region and a gate. The method for manufacturing a semiconductor device includes the step of irradiating a pulse laser from above the oxide film to heat treat the surface of the silicon substrate and the gate oxide film.

【0012】[0012]

【作用】本発明によれば、図2に示すようにP型のシリ
コン(Si)基板11上に形成したゲート酸化膜16上
方からXeCl等を用いたパルスレーザで照射している
ので、短波長(XeCl:308nm)で照射時に大き
なパワー密度(107W/cm2)を有し、しかも短い照
射時間(10〜60nsec)なのでゲート酸化膜16
は透過するがSi基板11のごく表面だけで照射エネル
ギーが吸収され、Siの最表面(10〜20nm)を数
100nsecの短時間だけ溶融する。
According to the present invention, as shown in FIG. 2, since the pulse laser using XeCl or the like is irradiated from above the gate oxide film 16 formed on the P-type silicon (Si) substrate 11, short wavelength light is emitted. (XeCl: 308 nm) has a large power density (10 7 W / cm 2 ) at the time of irradiation and a short irradiation time (10 to 60 nsec), so that the gate oxide film 16
However, the irradiation energy is absorbed only on the very surface of the Si substrate 11, and the outermost surface (10 to 20 nm) of Si is melted for a short time of several 100 nsec.

【0013】このようにパルスレーザ照射ではSiO2
/Si界面のみを短時間で融点まで加熱できるので、パ
ルスレーザ照射はSiO2/Si界面の応力を緩和でき
る。
Thus, in the pulse laser irradiation, SiO 2
Since only the / Si interface can be heated to the melting point in a short time, pulse laser irradiation can relax the stress at the SiO 2 / Si interface.

【0014】また本発明によるレーザ照射によってSi
基板表面(ゲート酸化膜との界面)が平坦性よく改質さ
れるため電界集中が緩和されゲート耐圧の向上にも寄与
する。
Further, by laser irradiation according to the present invention, Si
Since the surface of the substrate (interface with the gate oxide film) is modified with good flatness, concentration of electric field is alleviated, which contributes to improvement of gate breakdown voltage.

【0015】従ってまたLOCOS酸化膜15のペリフ
ェリー(周囲)リークをも低減できる。
Therefore, the peripheral (surrounding) leak of the LOCOS oxide film 15 can also be reduced.

【0016】なお、従来の炉アニールやRTA(Rapid
Thermal Anneal)法はSi基板全体を加熱することにな
り、融点以下の加熱の場合でも基板内に転位欠陥や反り
が発生しやすいが、本発明ではそのような不具合は生じ
ない。
Conventional furnace annealing and RTA (Rapid
In the thermal annealing method, the entire Si substrate is heated, and dislocation defects and warpage are likely to occur in the substrate even when the temperature is below the melting point, but such defects do not occur in the present invention.

【0017】本発明でパルスレーザとして塩化キセノン
(XeCl),フッ化アルゴン(ArF),フッ化クリ
プトン(KrF),フッ化キセノン(XeF)等が用い
られる。
In the present invention, xenon chloride (XeCl), argon fluoride (ArF), krypton fluoride (KrF), xenon fluoride (XeF) or the like is used as the pulse laser.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1及び図2は、本発明の一実施例を説明
するための工程断面図である。
1 and 2 are process sectional views for explaining one embodiment of the present invention.

【0020】まず、図1(a)に示すように、P型のシ
リコン(Si)基板11上に熱酸化膜12を形成し、そ
の上に図1(b)に示すように選択的にシリコン窒化膜
(Si34)パターン13を形成する。
First, as shown in FIG. 1 (a), a thermal oxide film 12 is formed on a P-type silicon (Si) substrate 11, and silicon is selectively formed thereon as shown in FIG. 1 (b). A nitride film (Si 3 N 4 ) pattern 13 is formed.

【0021】次に、図1(c)に示すように、ボロンイ
オン(B+)をイオン注入してチャネルストップ領域1
4を形成する。
Next, as shown in FIG. 1C, boron ions (B + ) are ion-implanted to form the channel stop region 1.
4 is formed.

【0022】次に図1(d)に示すように、シリコン窒
化膜パターン13をマスクとして熱酸化して素子分離膜
としてのLOCOS酸化膜15を形成する。このときシ
リコン窒化膜パターン13上にも薄い酸化膜15aが形
成される。
Next, as shown in FIG. 1D, thermal oxidation is performed using the silicon nitride film pattern 13 as a mask to form a LOCOS oxide film 15 as an element isolation film. At this time, a thin oxide film 15a is also formed on the silicon nitride film pattern 13.

【0023】その後、図2(a)に示すように、LOC
OS酸化膜15間の酸化膜12、窒化膜13を選択的に
除去した後、図2(b)に示すように再度熱酸化によ
り、ゲート酸化膜16を形成する。
After that, as shown in FIG.
After selectively removing the oxide film 12 and the nitride film 13 between the OS oxide films 15, the gate oxide film 16 is formed by thermal oxidation again as shown in FIG. 2B.

【0024】その後、図2(c)に示すように、ゲート
酸化膜16上方からXeClを用いたパルスレーザを照
射した。
Then, as shown in FIG. 2C, a pulse laser using XeCl was irradiated from above the gate oxide film 16.

【0025】XeClのパルスレーザは、照射時のパワ
ー密度が約107W/cm2で、照射時間が10〜60n
secと短く、Si基板11の最表面10〜20nmを
数100nsecの時間だけで溶融した。
The XeCl pulsed laser has a power density at the time of irradiation of about 10 7 W / cm 2 and an irradiation time of 10 to 60 n.
It was as short as sec, and the outermost surface 10 to 20 nm of the Si substrate 11 was melted only for a time of several 100 nsec.

【0026】このXeClを用いたパルスレーザのエネ
ルギー密度は600〜1200mJ/cm2程度が好ま
しい。600mJ/cm2未満のエネルギー密度ではレ
ーザアニールの効果がなく、一方1200mJ/cm2
を越えたエネルギー密度ではP型Si基板11の表面が
粗大化する欠点を有する。
The energy density of the pulse laser using this XeCl is preferably about 600 to 1200 mJ / cm 2 . No effect of laser annealing with an energy density of less than 600 mJ / cm 2, whereas 1200 mJ / cm 2
If the energy density exceeds, the surface of the P-type Si substrate 11 becomes coarse.

【0027】上記の如くパルスレーザを照射した後、従
来と同様の工程により例えば図3に示した構造のnMO
S FET等を製造することができる。
After irradiating the pulse laser as described above, the nMO having the structure shown in FIG.
SFET etc. can be manufactured.

【0028】[0028]

【発明の効果】以上説明した様に本発明によれば、Si
2/Siの界面の応力が緩和されるため、トランジス
タ等の半導体装置のホットエレクトロン耐性を向上でき
ると共に、LOCOSのペリフェリリークを低減するこ
とができる。
As described above, according to the present invention, Si
Since the stress at the interface of O 2 / Si is relieved, the hot electron resistance of the semiconductor device such as a transistor can be improved and the peripheral leak of LOCOS can be reduced.

【0029】しかも本発明のレーザ照射による熱処理
(アニール)は、従来の炉アニールやRTAと比較して
プロセスを簡略化することができる。
Moreover, the heat treatment (annealing) by laser irradiation of the present invention can simplify the process as compared with the conventional furnace annealing and RTA.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための前半工程断
面図である。
FIG. 1 is a first-half process sectional view for explaining an embodiment of the present invention.

【図2】本発明の一実施例を説明するための後半工程断
面図である。
FIG. 2 is a sectional view of a second half process for explaining an embodiment of the present invention.

【図3】従来技術を説明するためのnMOS FETの
構造断面図を示す。
FIG. 3 is a structural cross-sectional view of an nMOS FET for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1,11 P型シリコン(Si)基板 2a ソース領域 2b ドレイン領域 3,13 ゲート酸化膜 4,14 チャネルストップ領域 5,15 LOCOS酸化膜 7 ポリシリコン(poly−Si)ゲート電極 8 PSG膜 12 熱酸化膜 16 シリコン窒化膜パターン 1,11 P-type silicon (Si) substrate 2a Source region 2b Drain region 3,13 Gate oxide film 4,14 Channel stop region 5,15 LOCOS oxide film 7 Polysilicon (poly-Si) gate electrode 8 PSG film 12 Thermal oxidation Film 16 Silicon nitride film pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に素子分離領域を形成す
る工程、 前記素子分離領域間にゲート酸化膜を形成する工程、 前記素子分離領域及びゲート酸化膜上方からパルスレー
ザを照射して前記シリコン基板表面とゲート酸化膜を熱
処理する工程、 を含むことを特徴とする半導体装置の製造方法。
1. A step of forming an element isolation region on a silicon substrate, a step of forming a gate oxide film between the element isolation regions, and a pulse laser irradiation from above the element isolation region and the gate oxide film to the silicon substrate. And a step of heat treating the surface and the gate oxide film.
JP17423592A 1992-07-01 1992-07-01 Manufacture of semiconductor device Pending JPH0621090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17423592A JPH0621090A (en) 1992-07-01 1992-07-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17423592A JPH0621090A (en) 1992-07-01 1992-07-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0621090A true JPH0621090A (en) 1994-01-28

Family

ID=15975086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17423592A Pending JPH0621090A (en) 1992-07-01 1992-07-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0621090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056558A (en) * 1999-06-24 2010-03-11 Alcatel-Lucent Usa Inc Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056558A (en) * 1999-06-24 2010-03-11 Alcatel-Lucent Usa Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US7608492B2 (en) Method for manufacturing semiconductor device and heat treatment method
JP3211394B2 (en) Method for manufacturing semiconductor device
JP3277533B2 (en) Method for manufacturing semiconductor device
JP2008277696A (en) Method of manufacturing semiconductor device
JP2005072045A (en) Semiconductor device and manufacturing method thereof
JP2005167005A (en) Heat treatment method of semiconductor substrate, manufacturing method of semiconductor device and heat treatment device
JPH06333823A (en) Manufacture of polycrystalline silicon film, manufacture of thin film transistor and remote plasma device
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JPH0621090A (en) Manufacture of semiconductor device
JP3374455B2 (en) Method for manufacturing thin film transistor
JPH0677155A (en) Heat treatment method for semiconductor substrate
JP2002246329A (en) Formation method for very shallow p-n junction of semiconductor substrate
JP3185386B2 (en) Method for manufacturing semiconductor device
JPH0766152A (en) Fabrication of semiconductor device
JP2759411B2 (en) Semiconductor device and manufacturing method thereof
JP2945032B2 (en) Manufacturing method of thin film transistor
JP3033579B2 (en) Manufacturing method of thin film transistor
JP2821628B2 (en) Method for manufacturing semiconductor device
JPH05299434A (en) Manufacture of semiconductor device
JP5103695B2 (en) Method for manufacturing field-effect semiconductor device
JPH0521463A (en) Manufacture of thin film transistor
JP2663523B2 (en) Method of forming semiconductor oxide thin film
JP3493160B2 (en) Method for manufacturing semiconductor device
JPH08250749A (en) Manufacture of thin film transistor and production device thereof
JP2776838B2 (en) Method for manufacturing semiconductor device