JPH06210476A - Laser beam machining device - Google Patents

Laser beam machining device

Info

Publication number
JPH06210476A
JPH06210476A JP5022066A JP2206693A JPH06210476A JP H06210476 A JPH06210476 A JP H06210476A JP 5022066 A JP5022066 A JP 5022066A JP 2206693 A JP2206693 A JP 2206693A JP H06210476 A JPH06210476 A JP H06210476A
Authority
JP
Japan
Prior art keywords
signal
workpiece
control device
detection signal
capacitance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5022066A
Other languages
Japanese (ja)
Other versions
JP2743752B2 (en
Inventor
Kenji Hata
憲志 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Kogyo Co Ltd filed Critical Shibuya Kogyo Co Ltd
Priority to JP5022066A priority Critical patent/JP2743752B2/en
Publication of JPH06210476A publication Critical patent/JPH06210476A/en
Application granted granted Critical
Publication of JP2743752B2 publication Critical patent/JP2743752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To hold a distance between an object to be worked and a laser beam machining head constant during a laser beam machining, and to prevent a defect caused by working by allowing a signal adder circuit to add an opposite phase signal to a detected signal, and allowing a control device to control the operation of an elevating/lowering mechanism based on a resultant signal. CONSTITUTION:An operating part 7A calculates a detected signal by a capacitance sensor 9 influenced by plasma generated on an object 2 to be worked, and transfers the detected signal to a signal generator 7B. The signal generator 7B generates an opposite phase signal to the detected signal to input it into a signal adder circuit 7C. A control device 7 controls the operation of an elevating/lowering mechanism 6 to adjust the height position of a working head 3 according to a resultant signal obtained by the signal adder circuit 7C. Consequently, even in the case of an object 2 to be worked generating plasma, a distance between an object 2 to be worked and the laser beam machining head 3 can be held constant during a laser beam machining, and a satisfactory laser beam machining can be performed without a defect caused by working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明はレーザ加工装置に関し、
より詳しくは被加工物と加工ヘッドとの間の距離を検出
する静電容量センサを備えたレーザ加工装置の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing apparatus,
More specifically, the present invention relates to improvement of a laser processing apparatus including a capacitance sensor that detects a distance between a workpiece and a processing head.

【従来の技術】従来、レーザ加工装置として、レーザ光
線を被加工物に照射する加工ヘッドと、上記加工ヘッド
を昇降させる昇降機構と、上記昇降機構の作動を制御す
る制御装置と、被加工物と加工ヘッドとの間の距離を検
出して、その検出信号を上記制御装置に入力する静電容
量センサとを備え、被加工物と加工ヘッドとの間の距離
を所定の間隔に維持して被加工物に所要のレーザ加工を
施すようにしたものは知られている。
2. Description of the Related Art Conventionally, as a laser machining apparatus, a machining head for irradiating a workpiece with a laser beam, an elevating mechanism for elevating the machining head, a controller for controlling the operation of the elevating mechanism, and a workpiece. And a machining head are detected, and a capacitance sensor that inputs the detection signal to the control device is provided, and the distance between the workpiece and the machining head is maintained at a predetermined interval. It is known that a workpiece is subjected to required laser processing.

【発明が解決しようとする課題】しかるに、上述した従
来のレーザ加工装置において、例えばアルミニウムやス
テンレスを無酸素状態で加工する場合に被加工物の加工
部分にプラズマが発生し、そのプラズマによって上記静
電容量センサによる検出信号が不正確になる。より詳細
には、レーザ光線がパルスレーザである場合には、上記
静電容量センサによる検出信号もレーザ光線のパルスの
周期に対応した波形の周期的な信号となる。このよう
に、従来の装置では、被加工物の加工部分に発生するプ
ラズマによって静電容量センサが悪影響を受け、静電容
量センサの検出信号を基に制御装置によって昇降機構の
作動を制御すると、被加工物と加工ヘッドとの間の距離
を所定の間隔に維持することができず、したがって、被
加工物に加工不良が生じるという欠点があった。
However, in the above-mentioned conventional laser processing apparatus, when aluminum or stainless steel is processed in an oxygen-free state, plasma is generated in the processed portion of the workpiece, and the plasma causes the above-mentioned static electricity. The detection signal by the capacitance sensor becomes inaccurate. More specifically, when the laser beam is a pulse laser, the detection signal by the capacitance sensor is also a periodic signal having a waveform corresponding to the pulse period of the laser beam. As described above, in the conventional device, the electrostatic capacitance sensor is adversely affected by the plasma generated in the processed portion of the workpiece, and when the operation of the lifting mechanism is controlled by the control device based on the detection signal of the electrostatic capacitance sensor, There is a drawback in that the distance between the work piece and the working head cannot be maintained at a predetermined interval, so that the work piece suffers a processing failure.

【課題を解決するための手段】上述した事情に鑑み、本
発明は、レーザ光線を被加工物に照射する加工ヘッド
と、上記加工ヘッドを昇降させる昇降機構と、上記昇降
機構の作動を制御する制御装置と、被加工物と加工ヘッ
ドとの間の距離を検出して、その検出信号を上記制御装
置に入力する静電容量センサとを備え、被加工物と加工
ヘッドとの間の距離を所定の間隔に維持して被加工物に
所要のレーザ加工を施すようにしたレーザ加工装置にお
いて、レーザ加工を施す際にプラズマが発生する被加工
物の材質、板厚ごとに、上記静電容量センサから制御装
置に入力される検出信号を演算する演算部を上記制御装
置に設けるとともに、上記演算部によって演算して求め
た検出信号をもとに該検出信号とは逆位相の信号を発生
させ、実際に被加工物に対してレーザ加工が開始されて
静電容量センサから制御装置に検出信号が入力された
ら、該検出信号に上記逆位相となる信号を加算する信号
加算回路を制御装置に設け、制御装置は、上記信号加算
回路によって加算した結果得られる合成の信号に基づい
て上記昇降機構の作動を制御する様に構成したものであ
る。また、第2の発明は、レーザ光線を被加工物に照射
する加工ヘッドと、上記加工ヘッドを昇降させる昇降機
構と、上記昇降機構の作動を制御する制御装置と、被加
工物と加工ヘッドとの間の距離を検出して、その検出信
号を上記制御装置に入力する静電容量センサとを備え、
被加工物と加工ヘッドとの間の距離を所定の間隔に維持
して被加工物に所要のレーザ加工を施すようにしたレー
ザ加工装置において、レーザ加工を施す際にプラズマが
発生する被加工物の材質、板厚ごとに、上記静電容量セ
ンサから制御装置に入力される検出信号を求めてそれら
を予め制御装置に記憶するとともに、レーザ加工を施す
際に被加工物の材質、板厚が制御装置に入力されたら、
上記予め記憶した検出信号の中から該入力された被加工
物の材質、板厚に対応する検出信号を選択し、該選択し
た検出信号をもとにそれとは逆位相の信号を発生させ、
実際に被加工物に対してレーザ加工が開始されて静電容
量センサから制御装置に検出信号が入力されたら、該検
出信号に上記逆位相となる信号を加算する信号加算回路
を制御装置に設け、制御装置は、上記信号加算回路によ
って加算した結果得られる合成の信号に基づいて上記昇
降機構の作動を制御する様に構成したものである。
In view of the above-mentioned circumstances, the present invention controls a working head for irradiating a workpiece with a laser beam, a lifting mechanism for lifting the working head, and an operation of the lifting mechanism. A control device and a capacitance sensor that detects the distance between the workpiece and the processing head and inputs the detection signal to the control device are provided to measure the distance between the workpiece and the processing head. In a laser processing apparatus that performs a required laser processing on a work piece while maintaining a predetermined interval, the electrostatic capacitance for each material and plate thickness of the work piece in which plasma is generated when performing the laser processing. The control device is provided with a calculation unit for calculating a detection signal input from the sensor to the control device, and a signal having a phase opposite to the detection signal is generated based on the detection signal calculated by the calculation unit. Actually processed When laser processing is started for the detection signal is input to the control device from the capacitance sensor, the control device is provided with a signal addition circuit that adds a signal having the opposite phase to the detection signal. The operation of the elevating mechanism is controlled based on a combined signal obtained as a result of addition by the signal adding circuit. A second invention provides a machining head for irradiating a workpiece with a laser beam, an elevating mechanism for elevating the machining head, a controller for controlling the operation of the elevating mechanism, the workpiece and the machining head. And a capacitance sensor for detecting the distance between them and inputting the detection signal to the control device,
In a laser processing apparatus configured to perform a required laser processing on a workpiece while maintaining a distance between the workpiece and a processing head at a predetermined interval, a workpiece in which plasma is generated during laser processing For each material and plate thickness of the above, the detection signal input to the control device from the capacitance sensor is obtained and stored in the control device in advance. Once entered into the controller,
From the pre-stored detection signals, select the detection signal corresponding to the material of the workpiece to be input, the plate thickness, and generate a signal of the opposite phase based on the selected detection signal,
When laser processing is actually started on the workpiece and a detection signal is input from the capacitance sensor to the control device, the control device is provided with a signal addition circuit that adds the signal having the opposite phase to the detection signal. The control device is configured to control the operation of the lifting mechanism based on a combined signal obtained as a result of addition by the signal addition circuit.

【作用】このような構成によれば、レーザ加工中にプラ
ズマが発生する被加工物をレーザ加工する際には、プラ
ズマによって静電容量センサの検出信号が不正確であっ
ても、制御装置は、上記信号加算回路によって加算した
結果得られる合成した信号に基づいて昇降機構の作動を
制御する。これにより、被加工物の加工部分に発生する
プラズマの影響を受けることなく、被加工物と加工ヘッ
ドとの距離を所定の間隔に維持してレーザ加工を施すこ
とができる。したがって、プラズマが発生する被加工物
であっても加工不良を生じることなく良好なレーザ加工
を施すことができる。
According to this structure, when laser-machining a workpiece in which plasma is generated during laser machining, even if the detection signal of the capacitance sensor is inaccurate due to plasma, the control device is The operation of the lifting mechanism is controlled based on the combined signal obtained as a result of addition by the signal adding circuit. Thus, laser processing can be performed while maintaining the distance between the workpiece and the processing head at a predetermined interval without being affected by the plasma generated in the processed portion of the workpiece. Therefore, it is possible to perform good laser processing without causing processing defects even on a workpiece in which plasma is generated.

【実施例】以下図示実施例について本発明を説明する
と、図1において、1は被加工物2を載置してXY方向
に移動可能な加工テーブルであり、この加工テーブル1
の上方位置には被加工物2にレーザ光線Lを照射する加
工ヘッド3を設けている。加工ヘッド3は図示しない支
持フレームに設けたモータ4とねじ軸5からなる昇降機
構6によって昇降されるようになっており、それによっ
て加工ヘッド3の下端部と被加工物2との間の距離を調
整できるようになっている。上記加工テーブルをXY方
向に移動させる図示しない駆動源および上記昇降機構6
を構成するモータ4は、制御装置7によって作動を制御
されるとともに、レーザ光線Lを放射するレーザ発振器
8も制御装置7によって作動を制御されるようになって
いる。上記加工ヘッド3の下端部には、従来公知の静電
容量センサ9を設けてあり、この静電容量センサ9は加
工テーブル1上に載置した被加工物2と加工ヘッド3の
下端部との間の距離を検出し、検出した距離を信号に変
換して上記制御装置7に入力するようになっている。上
記制御装置7には、被加工物2の材質、板厚、レーザ加
工の種類等の加工条件に応じて最適なレーザ光線Lの出
力およびパルスの周期、加工テーブルのXY方向におけ
る移動速度、さらに被加工物2と加工ヘッド3の下端部
との間の距離等のデータが予め記憶されている。そし
て、上述した構成において、被加工物2に切断等のレー
ザ加工を施す際に、被加工物2の材質、板厚、レーザ加
工の種類等の加工条件が決定されて、それらが制御装置
7に入力されると、制御装置7は予め記憶したデータの
中から入力されたレーザ加工条件に対応するデータを選
択する。次に、制御装置7は、上記加工テーブル1の駆
動源の作動を制御して該加工テーブル1をXY方向に移
動させて、上記加工ヘッド3を被加工物2における加工
開始位置の上方に位置させる。この後、制御装置7は、
昇降機構6の作動を制御して被加工物2と加工ヘッド3
の下端部との距離が所定の距離となる高さ位置に加工ヘ
ッド3を停止させる。次に、制御装置7は、レーザ発振
器8を作動させると同時に、加工テーブル1の駆動源を
介して加工テーブル1をXY方向に移動させるので、レ
ーザ光線Lが加工テーブル1上の被加工物2に照射され
つつ、被加工物2と加工ヘッド3とがXY方向に相対移
動されるので、被加工物2に対して切断、溶接等の所要
のレーザ加工を施すことができる。また、このレーザ加
工中においては、被加工物2と加工ヘッド3の下端部と
の距離が静電容量センサ9によって検出されるととも
に、その検出値は信号に変換されて制御装置7に入力さ
れる。そして、制御装置7は、この静電容量センサ9か
ら入力される静電容量センサ9の検出信号によって被加
工物2と加工ヘッド3の下端部との距離を確認すること
ができ、該距離が所定の距離と異なるときには、該所定
の距離となるように上記昇降機構6の作動を制御して加
工ヘッド3の高さ位置を調整するようになっている。上
述した構成とそれに基づく作動は、従来公知のレーザ加
工装置と変わるところはない。ところで、上述した構成
を備えた従来の装置では、レーザ加工中にプラズマが発
生する被加工物2を加工する場合に、プラズマによって
上記静電容量センサ9が悪影響を受け、それによって被
加工物2に加工不良が生じていた。より詳細には、例え
ば被加工物2がアルミニウムやステンレスであって、そ
れを無酸化切断する場合には、被加工物2の切断加工中
にプラズマが発生し、そのプラズマによって上記静電容
量センサ9による検出値が不正確になる。そして、特に
本実施例のように、被加工物2に照射するレーザ光線L
がパルスレーザである時には、図2の下から2段目に示
すように、プラズマによる影響を受けた静電容量センサ
9の検出信号は、レーザ発振器8から放射されるレーザ
光線Lのパルスの周期に対応した波形の周期的な信号と
なる。そのため、従来の装置では、このようなプラズマ
による影響を受けた静電容量センサ9の検出信号がその
まま制御装置7に入力されることになる。そして、制御
装置7はその静電容量センサ9から入力される検出信号
に基づいて、上記昇降機構6の作動を制御して加工ヘッ
ド3の高さ位置を調整する。したがって、従来では、被
加工物2にプラズマが発生するレーザ加工を行う場合に
は、被加工物2に切断不良や溶接不良が生じるという欠
点が指摘されていたものである。本実施例では、このよ
うな従来の問題点に鑑み、プラズマが発生する被加工物
2のレーザ加工を行うに際して、プラズマによる影響を
受けることなく良好なレーザ加工を行うことができるよ
うに構成したものである。本実施例の詳細な説明を行う
前に、先ず本願発明の前提となる上記従来の問題点につ
いてより詳細に説明する。すなわち、本願の発明者がレ
ーザ加工中に発生するプラズマによる影響を分析したと
ころ、図3の(A)ないし(D)に示すような結果を得
た。つまり、図3の(A)に示すように、レーザ光線の
パルスの周期VLと、プラズマの影響を受けた静電容量
センサ9の検出信号の振動周期FCGとは右上りの直線
で表現される比例関係にあることが判明した。換言する
と、レーザ光線Lのパルス周期VLは、或るレーザ加工
を行う際には一定なので、上記静電容量センサ9の検出
信号の振動周期FCGも一定となることを意味してい
る。また、プラズマの影響を受けた静電容量センサ9の
検出信号の振動の振幅VCGと、加工ヘッド3の下端部
と被加工物2間の距離Dとの間には図3の(B)に示す
ように、右下がりの曲線で示される関係にあり、加工ヘ
ッド3の下端部と被加工物2間の距離Dが小さくなるほ
ど静電容量センサ9の検出信号の振動の振幅VCGが大
きくなることを示している。さらに、プラズマの影響を
受けた静電容量センサ9の検出信号の振動の振幅VCG
と、レーザ光線Lのパルスのピーク値Pとの間には、図
3の(C)に示すように右上りの曲線で表示される関係
があり、また、プラズマの影響を受けた静電容量センサ
9の検出信号の振動の振幅VCGと、レーザ光線Lのパ
ルス幅Wとの間には、図3の(D)に示すような右上り
の曲線で表示される関係があることが判明した。そし
て、図3の(A)ないし(D)に示した関係は、次のよ
うな関数として表現することができる。図3の(A)に
示す関係(レーザ光線Lのパルスの周期VLと静電容量
センサ9の検出信号の振動の周期FCGとの関係)は、
FCG=f(VL)となる。また、図3の(B)に示す
関係(静電容量センサ9の検出信号の振動の振幅VCG
と、加工ヘッド3の下端部と被加工物2間の距離Dとの
関係)は、VCG1=f(D)となる。また、図3の
(C)に示す関係(静電容量センサ9の検出信号の振動
の振幅VCGと、レーザ光線Lのパルスのピーク値Pと
の関係)は、VCG2=f(P)となる。さらに、図3
(D)に示す関係(静電容量センサ9の検出信号の振動
の振幅VCGと、レーザ光線Lのパルスの幅Wとの関
係)は、VCG3=f(W)となる。そして、既に上述
したように、レーザ光線Lのパルスの周期VLと静電容
量センサ9の検出信号の振動の周期FCGとの関係(図
3の(A)の関係)は、FCG=f(VL)となり、し
かもレーザ加工する際のレーザ光線Lのパルスの周期V
Lは一定なので、静電容量センサ9の検出信号の振動の
周期FCGも一定となり、したがって、FCG=f(V
L)による演算結果は一定となる。ここで、このFCG
=f(VL)を第1式とする。他方、静電容量センサ9
の検出信号の振動の振幅VCGについては、さらに次の
ように表現することができる。すなわち、VCG=VC
G1*VCG2*VCG3=f(D)*f(P)*f
(W) ここで、これを第2式とする。そして、図3の
(B)ないし(D)に横軸として取った値(距離D,パ
ルスのピーク値P、パルス幅W)は、被加工物2の材
質、板厚によって異なるものであり、したがって、上記
VCG=VCG1*VCG2*VCG3=f(D)*f
(P)*f(W)によって得られる値、つまり静電容量
センサ9の検出信号の振幅VCGは、被加工物2の各材
質、板厚によって異なる。上述した図3の(A)ないし
(D)に表現された分析結果から得られる結論を端的に
表現すると、或るレーザ加工を行う際のレーザ光線Lの
パルスの周期VLは一定なので、プラズマの影響を受け
た静電容量センサ9による検出信号の波の周期FCGは
一定となり、被加工物2の板厚、材質が特定できれば、
静電容量センサ9による検出信号の波の振幅VCGを特
定することができ、したがって、静電容量センサ9によ
る検出信号を特定することができる。そして、本実施例
では、このような知見に基づいて、上記制御装置7を改
良することにより、レーザ加工中にプラズマが発生する
被加工物2であっても良好なレーザ加工を行うようにし
たものである。すなわち、本実施例の制御装置7は、演
算部7Aと、信号発生器7Bと、信号加算回路7Cとを
備えている。演算部7Aは、被加工物2の材質、板厚が
制御装置7に入力されると、それに対応するプラズマ発
生時の静電容量センサ9による検出信号を演算するよう
になっている。つまり、演算部7Aは、上記第1式 F
CG=f(VL)および第2式 VCG=f(D)*f
(P)*f(W)とを基に所定の計算モジュール7aに
よって、静電容量センサ9による検出信号を演算する。
上述のように、レーザ加工中はレーザ光線Lのパルス周
期VLは一定なので、上記第1式 FCG=f(VL)
による演算結果(静電容量センサ9による検出信号の周
期FCG)は一定である。他方、静電容量センサ9によ
る検出信号の振幅VCGは被加工物2の材質、板厚によ
って異なるので、加工すべき各被加工物2の材質、板厚
に応じて上記第2式によって、振幅VCGを演算し、こ
の検出信号の振幅VCGと周期FCGとをもとに所定の
計算モジュール7aによって、静電容量センサ9による
検出信号を演算する。このようにして、演算部7Aは加
工すべき被加工物2に生じるプラズマの影響を受けた静
電容量センサ9による検出信号を演算するとともに、そ
の検出信号を信号発生器7Bに伝達する。信号発生器7
Bは、上記演算部7Aから検出信号が伝達されると、図
2の上から2段目に示すように、該検出信号とは逆位相
の信号S1を発生させるとともに、その発生させた信号
S1を信号加算回路7Cに入力する。信号加算回路7C
は信号発生器7Bから入力された信号S1を記憶すると
ともに、実際にレーザ加工が開始されてから上記静電容
量センサ9が実際に検出した検出信号が制御装置7に入
力されると、該静電容量センサ9から制御装置7に入力
された検出信号に上記信号発生器7Bからの信号S1を
加算し、それによって得られる合成の信号S2を求める
ようになっている。換言すると、信号加算回路7Cは、
静電容量センサ9から制御装置7に入力される検出信号
に対して、それとは逆位相の信号S1を加算して、合成
の信号S2を求める。その結果、図2の最下方に示す様
に、波形の振動がない合成の信号S2を得ることができ
る。そして、制御装置7は、信号加算回路7Cによって
得た合成の信号S2に基づいて、上記昇降機構6の作動
を制御して加工ヘッド3の高さ位置を調整する。そのた
め、プラズマが発生する被加工物2であっても、レーザ
加工中に被加工物2と加工ヘッド3との間の距離を一定
に維持することができ、したがって、加工不良を起こす
ことなく、良好なレーザ加工を行うことができる。な
お、上記実施例においては、加工すべき被加工物2の材
質、板厚が制御装置7に入力されてから上記演算部7A
によって、静電容量センサ9によって検出される信号を
演算するようにしているが、次のような構成でもよい。
つまり、演算部7Aによって、予め加工すべき被加工物
2の材質、板厚ごとに静電容量センサ9によって検出さ
れる信号を演算し、それらを予め演算部7Aに記憶して
おき、実際に加工すべき被加工物2の材質、板厚が制御
装置7に入力されたら、既に記憶している上記信号の中
から制御装置7に入力された材質、板厚に対応する静電
容量センサ9の信号を選択し、その選択した信号を上述
した信号発生器7Bに伝達し、以後、上記第1実施例と
同様に信号発生器7Bおよび信号加算回路7Cによる処
理を行えばよい。このような構成であっても上述した実
施例と同様の作用、効果を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. In FIG. 1, reference numeral 1 is a processing table on which a workpiece 2 is placed and which can be moved in XY directions.
A processing head 3 for irradiating the workpiece 2 with the laser beam L is provided above the position. The machining head 3 is moved up and down by an elevating mechanism 6 including a motor 4 and a screw shaft 5 provided on a support frame (not shown), whereby the distance between the lower end of the machining head 3 and the workpiece 2 is increased. Can be adjusted. A drive source (not shown) for moving the processing table in XY directions and the lifting mechanism 6
The operation of the motor 4 constituting the above is controlled by the controller 7, and the operation of the laser oscillator 8 which emits the laser beam L is also controlled by the controller 7. A conventionally known electrostatic capacity sensor 9 is provided at the lower end of the processing head 3, and the electrostatic capacity sensor 9 includes the workpiece 2 placed on the processing table 1 and the lower end of the processing head 3. The distance between the two is detected, the detected distance is converted into a signal, and the signal is input to the control device 7. The control device 7 includes an optimum output of the laser beam L and a pulse cycle according to processing conditions such as a material of the workpiece 2, a plate thickness, a type of laser processing, a moving speed of the processing table in the XY directions, and Data such as the distance between the workpiece 2 and the lower end of the processing head 3 is stored in advance. Then, in the above-described configuration, when laser processing such as cutting is performed on the workpiece 2, processing conditions such as the material of the workpiece 2, the plate thickness, and the type of laser processing are determined, and these are controlled by the controller 7. Then, the control device 7 selects the data corresponding to the input laser processing conditions from the data stored in advance. Next, the control device 7 controls the operation of the drive source of the machining table 1 to move the machining table 1 in the XY directions, and position the machining head 3 above the machining start position on the workpiece 2. Let After this, the controller 7
The work 2 and the processing head 3 are controlled by controlling the operation of the lifting mechanism 6.
The processing head 3 is stopped at a height position such that the distance from the lower end of the is a predetermined distance. Next, the control device 7 operates the laser oscillator 8 and simultaneously moves the machining table 1 in the XY directions via the drive source of the machining table 1, so that the laser beam L causes the workpiece 2 on the machining table 1 to move. Since the workpiece 2 and the processing head 3 are moved relative to each other in the XY directions while being irradiated, the required laser processing such as cutting and welding can be performed on the workpiece 2. During the laser processing, the distance between the workpiece 2 and the lower end of the processing head 3 is detected by the capacitance sensor 9, and the detected value is converted into a signal and input to the control device 7. It Then, the control device 7 can confirm the distance between the workpiece 2 and the lower end portion of the processing head 3 by the detection signal of the electrostatic capacity sensor 9 input from the electrostatic capacity sensor 9. When the distance is different from the predetermined distance, the height position of the processing head 3 is adjusted by controlling the operation of the elevating mechanism 6 so that the distance becomes the predetermined distance. The configuration described above and the operation based thereon are the same as those of the conventionally known laser processing apparatus. By the way, in the conventional apparatus having the above-described configuration, when the workpiece 2 in which plasma is generated during laser processing is processed, the electrostatic capacitance sensor 9 is adversely affected by the plasma, which causes the workpiece 2 to be processed. There was a processing defect in the. More specifically, for example, when the workpiece 2 is aluminum or stainless steel and is subjected to non-oxidative cutting, plasma is generated during the cutting of the workpiece 2, and the plasma causes the capacitance sensor. The value detected by 9 becomes inaccurate. Then, particularly as in this embodiment, the laser beam L for irradiating the workpiece 2
2 is a pulsed laser, the detection signal of the capacitance sensor 9 affected by the plasma is the pulse cycle of the laser beam L emitted from the laser oscillator 8 as shown in the second stage from the bottom of FIG. Is a periodic signal with a waveform corresponding to. Therefore, in the conventional device, the detection signal of the electrostatic capacity sensor 9 affected by such plasma is directly input to the control device 7. Then, the control device 7 controls the operation of the elevating mechanism 6 based on the detection signal input from the capacitance sensor 9 to adjust the height position of the processing head 3. Therefore, conventionally, it has been pointed out that when performing laser processing in which plasma is generated on the workpiece 2, the workpiece 2 may be cut or welded poorly. In consideration of such a conventional problem, the present embodiment is configured so that, when performing laser processing on the workpiece 2 in which plasma is generated, excellent laser processing can be performed without being affected by plasma. It is a thing. Before giving a detailed description of the present embodiment, first, the above-mentioned conventional problems that are the premise of the present invention will be described in more detail. That is, when the inventor of the present application analyzed the influence of plasma generated during laser processing, the results shown in FIGS. 3A to 3D were obtained. That is, as shown in FIG. 3A, the pulse cycle VL of the laser beam and the vibration cycle FCG of the detection signal of the capacitance sensor 9 affected by the plasma are expressed by a straight line on the upper right. It turned out to be proportional. In other words, since the pulse cycle VL of the laser beam L is constant when performing a certain laser processing, it means that the vibration cycle FCG of the detection signal of the capacitance sensor 9 is also constant. Further, between the amplitude VCG of the vibration of the detection signal of the electrostatic capacity sensor 9 affected by the plasma and the distance D between the lower end of the processing head 3 and the workpiece 2, as shown in FIG. As shown, there is a relationship shown by a downward-sloping curve, and as the distance D between the lower end of the processing head 3 and the workpiece 2 decreases, the amplitude VCG of the vibration of the detection signal of the capacitance sensor 9 increases. Is shown. Furthermore, the amplitude VCG of the vibration of the detection signal of the capacitance sensor 9 which is affected by the plasma
Between the peak value P of the pulse of the laser beam L and the peak value P of the pulse of the laser beam L as shown in the upper right curve of FIG. It has been found that the amplitude VCG of the vibration of the detection signal of the sensor 9 and the pulse width W of the laser beam L have a relationship represented by the upper right curve as shown in FIG. . The relationships shown in FIGS. 3A to 3D can be expressed as the following functions. The relationship shown in FIG. 3A (the relationship between the pulse cycle VL of the laser beam L and the vibration cycle FCG of the detection signal of the capacitance sensor 9) is
FCG = f (VL). In addition, the relationship shown in FIG. 3B (amplitude VCG of vibration of the detection signal of the capacitance sensor 9)
And the relationship between the lower end of the processing head 3 and the distance D between the workpiece 2) is VCG1 = f (D). Further, the relationship (relationship between the amplitude VCG of the vibration of the detection signal of the electrostatic capacity sensor 9 and the peak value P of the pulse of the laser beam L) shown in FIG. 3C is VCG2 = f (P). . Furthermore, FIG.
The relationship shown in (D) (the relationship between the amplitude VCG of the vibration of the detection signal of the electrostatic capacity sensor 9 and the pulse width W of the laser beam L) is VCG3 = f (W). Then, as already described above, the relationship between the cycle VL of the pulse of the laser beam L and the cycle FCG of the vibration of the detection signal of the capacitance sensor 9 (the relationship of (A) of FIG. 3) is FCG = f (VL ), And the pulse period V of the laser beam L during laser processing
Since L is constant, the cycle FCG of vibration of the detection signal of the electrostatic capacity sensor 9 is also constant, and therefore FCG = f (V
The calculation result by L) is constant. Where this FCG
= F (VL) is the first expression. On the other hand, the capacitance sensor 9
The amplitude VCG of the vibration of the detection signal can be further expressed as follows. That is, VCG = VC
G1 * VCG2 * VCG3 = f (D) * f (P) * f
(W) Here, this is set as the second equation. The values (distance D, pulse peak value P, pulse width W) taken along the horizontal axis in FIGS. 3B to 3D are different depending on the material and plate thickness of the workpiece 2. Therefore, VCG = VCG1 * VCG2 * VCG3 = f (D) * f
The value obtained by (P) * f (W), that is, the amplitude VCG of the detection signal of the capacitance sensor 9 differs depending on each material and plate thickness of the workpiece 2. To briefly express the conclusion obtained from the analysis results expressed in (A) to (D) of FIG. 3 described above, since the pulse period VL of the laser beam L when performing a certain laser processing is constant, If the cycle FCG of the wave of the detection signal by the affected capacitance sensor 9 is constant and the plate thickness and material of the workpiece 2 can be specified,
The amplitude VCG of the wave of the detection signal by the capacitance sensor 9 can be specified, and thus the detection signal by the capacitance sensor 9 can be specified. Then, in the present embodiment, based on such knowledge, the control device 7 is improved so as to perform favorable laser processing even on the workpiece 2 in which plasma is generated during the laser processing. It is a thing. That is, the control device 7 of the present embodiment includes a calculation unit 7A, a signal generator 7B, and a signal addition circuit 7C. When the material and plate thickness of the workpiece 2 are input to the control device 7, the calculation unit 7A calculates a detection signal from the capacitance sensor 9 when plasma is generated corresponding to the material. That is, the arithmetic unit 7A uses the above-mentioned first equation F
CG = f (VL) and the second equation VCG = f (D) * f
Based on (P) * f (W), a predetermined calculation module 7a calculates a detection signal from the capacitance sensor 9.
As described above, since the pulse period VL of the laser beam L is constant during laser processing, the above first equation FCG = f (VL)
The calculation result (the cycle FCG of the detection signal by the capacitance sensor 9) is constant. On the other hand, since the amplitude VCG of the detection signal by the capacitance sensor 9 differs depending on the material and plate thickness of the workpiece 2, the amplitude is calculated according to the second formula according to the material and plate thickness of each workpiece 2 to be processed. The VCG is calculated, and the detection signal from the capacitance sensor 9 is calculated by the predetermined calculation module 7a based on the amplitude VCG and the cycle FCG of the detection signal. In this way, the calculation unit 7A calculates the detection signal by the capacitance sensor 9 which is affected by the plasma generated in the workpiece 2 to be processed, and transmits the detection signal to the signal generator 7B. Signal generator 7
When the detection signal is transmitted from the arithmetic unit 7A, the B generates a signal S1 having a phase opposite to the detection signal as shown in the second stage from the top of FIG. 2 and the generated signal S1. To the signal addition circuit 7C. Signal addition circuit 7C
Stores the signal S1 input from the signal generator 7B, and when the detection signal actually detected by the capacitance sensor 9 after the laser processing is actually started is input to the control device 7, The signal S1 from the signal generator 7B is added to the detection signal input from the capacitance sensor 9 to the control device 7, and a combined signal S2 obtained thereby is obtained. In other words, the signal addition circuit 7C
A signal S1 having a phase opposite to that of the detection signal input from the capacitance sensor 9 to the control device 7 is added to obtain a combined signal S2. As a result, as shown in the lowermost part of FIG. 2, it is possible to obtain a combined signal S2 having no waveform vibration. Then, the control device 7 controls the operation of the elevating mechanism 6 based on the combined signal S2 obtained by the signal adding circuit 7C to adjust the height position of the processing head 3. Therefore, even for the workpiece 2 in which plasma is generated, the distance between the workpiece 2 and the processing head 3 can be kept constant during the laser processing, and therefore a processing defect does not occur. Good laser processing can be performed. In the above embodiment, the material and plate thickness of the work piece 2 to be processed are input to the control device 7 and then the calculation unit 7A is operated.
Although the signal detected by the capacitance sensor 9 is calculated by the above, the following configuration may be used.
That is, the calculation unit 7A calculates signals detected by the capacitance sensor 9 for each material and plate thickness of the workpiece 2 to be processed in advance, and stores them in the calculation unit 7A in advance, and actually When the material and the plate thickness of the workpiece 2 to be processed are input to the control device 7, the capacitance sensor 9 corresponding to the material and the plate thickness input to the control device 7 from the above-mentioned stored signals. Signal is transmitted to the signal generator 7B described above, and thereafter, the processing by the signal generator 7B and the signal addition circuit 7C may be performed as in the first embodiment. Even with such a configuration, it is possible to obtain the same operation and effect as those of the above-described embodiment.

【発明の効果】以上のように、本発明によればプラズマ
が発生する被加工物であっても加工不良を生じることな
く良好なレーザ加工を施すことができるという効果が得
られる。
As described above, according to the present invention, it is possible to obtain an effect that good laser processing can be performed on a workpiece in which plasma is generated without causing processing defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略の構成図FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】本発明の各構成要素等において生じる信号の関
係を示す図
FIG. 2 is a diagram showing a relationship of signals generated in each component of the present invention.

【図3】静電容量センサの検出信号とレーザ光線のパル
ス周期等との関係を示す図
FIG. 3 is a diagram showing a relationship between a detection signal of a capacitance sensor and a pulse period of a laser beam, etc.

【符号の説明】[Explanation of symbols]

2 被加工物 3 加工ヘッド 6 昇降
機構 7 制御装置 7A 演算部 7B 信号
発生器 7C 信号加算回路 9 静電容量センサ
2 Workpiece 3 Processing head 6 Lifting mechanism 7 Control device 7A Calculation unit 7B Signal generator 7C Signal addition circuit 9 Capacitance sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光線を被加工物に照射する加工ヘ
ッドと、上記加工ヘッドを昇降させる昇降機構と、上記
昇降機構の作動を制御する制御装置と、被加工物と加工
ヘッドとの間の距離を検出して、その検出信号を上記制
御装置に入力する静電容量センサとを備え、被加工物と
加工ヘッドとの間の距離を所定の間隔に維持して被加工
物に所要のレーザ加工を施すようにしたレーザ加工装置
において、 レーザ加工を施す際にプラズマが発生する被加工物の材
質、板厚ごとに、上記静電容量センサから制御装置に入
力される検出信号を演算する演算部を上記制御装置に設
けるとともに、 上記演算部によって演算して求めた検出信号をもとに該
検出信号とは逆位相の信号を発生させ、実際に被加工物
に対してレーザ加工が開始されて静電容量センサから制
御装置に検出信号が入力されたら、該検出信号に上記逆
位相となる信号を加算する信号加算回路を制御装置に設
け、 制御装置は、上記信号加算回路によって加算した結果得
られる合成の信号に基づいて上記昇降機構の作動を制御
することを特徴とするレーザ加工装置。
1. A machining head for irradiating a workpiece with a laser beam, an elevating mechanism for elevating the machining head, a controller for controlling the operation of the elevating mechanism, and a machining head between the workpiece and the machining head. A laser that is required for the workpiece by including a capacitance sensor that detects the distance and inputs the detection signal to the control device and maintains the distance between the workpiece and the processing head at a predetermined interval. In a laser processing apparatus designed to perform processing, a calculation for calculating a detection signal input from the above capacitance sensor to the control device for each material and plate thickness of a workpiece in which plasma is generated when performing laser processing A part is provided in the control device, and a signal having a phase opposite to the detection signal is generated based on the detection signal calculated by the calculation part, and laser processing is actually started on the workpiece. The capacitance When a detection signal is input from the control device to the control device, the control device is provided with a signal addition circuit for adding the signal having the opposite phase to the detection signal, and the control device is a composite signal obtained as a result of addition by the signal addition circuit. A laser processing apparatus for controlling the operation of the elevating mechanism based on the above.
【請求項2】 レーザ光線を被加工物に照射する加工ヘ
ッドと、上記加工ヘッドを昇降させる昇降機構と、上記
昇降機構の作動を制御する制御装置と、被加工物と加工
ヘッドとの間の距離を検出して、その検出信号を上記制
御装置に入力する静電容量センサとを備え、被加工物と
加工ヘッドとの間の距離を所定の間隔に維持して被加工
物に所要のレーザ加工を施すようにしたレーザ加工装置
において、 レーザ加工を施す際にプラズマが発生する被加工物の材
質、板厚ごとに、上記静電容量センサから制御装置に入
力される検出信号を求めてそれらを予め制御装置に記憶
するとともに、 レーザ加工を施す際に被加工物の材質、板厚が制御装置
に入力されたら、上記予め記憶した検出信号の中から該
入力された被加工物の材質、板厚に対応する検出信号を
選択し、該選択した検出信号をもとにそれとは逆位相の
信号を発生させ、実際に被加工物に対してレーザ加工が
開始されて静電容量センサから制御装置に検出信号が入
力されたら、該検出信号に上記逆位相となる信号を加算
する信号加算回路を制御装置に設け、 制御装置は、上記信号加算回路によって加算した結果得
られる合成の信号に基づいて上記昇降機構の作動を制御
することを特徴とするレーザ加工装置。
2. A machining head for irradiating a workpiece with a laser beam, an elevating mechanism for elevating the machining head, a controller for controlling the operation of the elevating mechanism, and a machining head between the workpiece and the machining head. A laser that is required for the workpiece by including a capacitance sensor that detects the distance and inputs the detection signal to the control device and maintains the distance between the workpiece and the processing head at a predetermined interval. In a laser processing device that is designed to perform processing, the detection signal input to the control device from the capacitance sensor is calculated for each material and plate thickness of the workpiece where plasma is generated when performing laser processing. Is stored in the control device in advance, and when the material and plate thickness of the workpiece when laser processing is input to the control device, the input material of the workpiece from the previously stored detection signals, Inspection corresponding to plate thickness A signal is selected, a signal having a phase opposite to that of the selected detection signal is generated, laser processing is actually started for the workpiece, and the detection signal is input from the capacitance sensor to the control device. Then, the control device is provided with a signal addition circuit for adding the signal having the opposite phase to the detection signal, and the control device operates the elevating mechanism based on a combined signal obtained as a result of addition by the signal addition circuit. A laser processing apparatus characterized by controlling the.
JP5022066A 1993-01-14 1993-01-14 Laser processing equipment Expired - Lifetime JP2743752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5022066A JP2743752B2 (en) 1993-01-14 1993-01-14 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5022066A JP2743752B2 (en) 1993-01-14 1993-01-14 Laser processing equipment

Publications (2)

Publication Number Publication Date
JPH06210476A true JPH06210476A (en) 1994-08-02
JP2743752B2 JP2743752B2 (en) 1998-04-22

Family

ID=12072528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5022066A Expired - Lifetime JP2743752B2 (en) 1993-01-14 1993-01-14 Laser processing equipment

Country Status (1)

Country Link
JP (1) JP2743752B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492848B1 (en) * 2002-03-25 2005-06-03 고등기술연구원연구조합 Laser welding apparatus and method for controlling same
US7557589B2 (en) 2006-06-13 2009-07-07 Mitsubishi Electric Corporation Gap detection device for laser beam machine, laser beam machining system and gap detection method for laser beam machine
CN102528288A (en) * 2012-02-17 2012-07-04 上海柏楚电子科技有限公司 Method for digital closed-loop control capacitance raising system
WO2013071283A1 (en) * 2011-11-10 2013-05-16 Ipg Photonics Corporation Dynamic height adjusting system and method for a head assembly of a laser processing system
JP2017196634A (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Laser processing apparatus and state detection device
WO2019159737A1 (en) * 2018-02-19 2019-08-22 株式会社小田原エンジニアリング Laser welding method and laser welding system
CN114535844A (en) * 2022-03-31 2022-05-27 华工法利莱切焊系统工程有限公司 System and method for monitoring working distance of laser cutting head

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492848B1 (en) * 2002-03-25 2005-06-03 고등기술연구원연구조합 Laser welding apparatus and method for controlling same
US7557589B2 (en) 2006-06-13 2009-07-07 Mitsubishi Electric Corporation Gap detection device for laser beam machine, laser beam machining system and gap detection method for laser beam machine
WO2013071283A1 (en) * 2011-11-10 2013-05-16 Ipg Photonics Corporation Dynamic height adjusting system and method for a head assembly of a laser processing system
CN104080570A (en) * 2011-11-10 2014-10-01 Ipg光子公司 Dynamic height adjusting system and method for head assembly of laser processing system
CN104080570B (en) * 2011-11-10 2016-01-13 Ipg光子公司 The dynamic height regulating system of laser-processing system head group part and method
CN102528288A (en) * 2012-02-17 2012-07-04 上海柏楚电子科技有限公司 Method for digital closed-loop control capacitance raising system
JP2017196634A (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Laser processing apparatus and state detection device
WO2019159737A1 (en) * 2018-02-19 2019-08-22 株式会社小田原エンジニアリング Laser welding method and laser welding system
JPWO2019159737A1 (en) * 2018-02-19 2021-02-25 株式会社小田原エンジニアリング Laser welding method and laser welding system
CN114535844A (en) * 2022-03-31 2022-05-27 华工法利莱切焊系统工程有限公司 System and method for monitoring working distance of laser cutting head
CN114535844B (en) * 2022-03-31 2024-03-19 华工法利莱切焊系统工程有限公司 Laser cutting head working distance monitoring system and method

Also Published As

Publication number Publication date
JP2743752B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JP2743752B2 (en) Laser processing equipment
WO1993019883A1 (en) Stand-off control apparatus for plasma processing machines
JP4182044B2 (en) Laser processing equipment
JP5642996B2 (en) Control device, laser processing machine, and laser processing method
JP2743754B2 (en) Laser processing equipment
JPH0550240A (en) Automatic welding device and its welding condition control method
JPH0470117B2 (en)
WO1995009066A1 (en) Piercing control method
JPS6057952B2 (en) Laser processing equipment
JP2003245785A (en) Beam machining method and device
JP2790166B2 (en) Piercing end detection device for laser beam machine
JP2714789B2 (en) Electric discharge machine
JP2837748B2 (en) Pierce completion detection device of laser beam machine
JPS61226198A (en) Laser beam machining control device
JPH09239576A (en) Laser beam machining equipment
JP2003290946A (en) Apparatus for evaluating laser welding quality, and process and equipment for laser welding
JP2872709B2 (en) Numerical controller for laser beam machine
JPH0577073A (en) Device for observing state of laser beam machining
JPH0952187A (en) Laser beam machine system
JP3281033B2 (en) Plasma processing machine
JP3594579B2 (en) Laser machining data acquisition start time judgment method and apparatus
JP2002035967A (en) Laser beam machine
JPH06198477A (en) Laser beam machine and its control method
JPH03207586A (en) Laser beam machine
JP2001287056A (en) Laser beam machining device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106