JPH0620948A - Manufacture of infrared detector material - Google Patents

Manufacture of infrared detector material

Info

Publication number
JPH0620948A
JPH0620948A JP20067092A JP20067092A JPH0620948A JP H0620948 A JPH0620948 A JP H0620948A JP 20067092 A JP20067092 A JP 20067092A JP 20067092 A JP20067092 A JP 20067092A JP H0620948 A JPH0620948 A JP H0620948A
Authority
JP
Japan
Prior art keywords
substrate
hgcdte
holder
thin film
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20067092A
Other languages
Japanese (ja)
Inventor
Narihito Sasaki
得人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20067092A priority Critical patent/JPH0620948A/en
Publication of JPH0620948A publication Critical patent/JPH0620948A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance crystal uniformity of a grown thin film of HgCdTe when an infrared detector material is manufactured by the HgCdTe as a material by an MBE method. CONSTITUTION:An HgCdTe growing substrate 2 is fixed to a substrate holder 1 through a mirror surface thin plate 10 having the same size as that of the holder 1, and an HgCdTe thin film is grown on the substrate 2 by using an MBE method. Thus, adhesive properties of the substrate 2 are enhanced, and an irregularity in a temperature of the entire surface of the substrate 2 is eliminated. It is interrupted by the plate 10 during growing, HgCdTe is not deposited on the holder 1, reaction of the holder 1 with gallium is prevented, and a decrease in a substrate temperature due to an increase in radiational cooling can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分子線エピタキシー
(MBE)法によるHgCdTe薄膜を材料とする赤外
線検出器材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an infrared detector material using a HgCdTe thin film as a material by a molecular beam epitaxy (MBE) method.

【0002】[0002]

【従来の技術】分子線エピタキシー(MBE)法により
HgCdTe薄膜を成長する場合の概念図を図2に示
す。同図において、るつぼ4には、HgCdTeの分子
線源の元素Hg,Te及び化合物のCdTeが入ってい
る。シャッター3を開けることにより、加熱されたるつ
ぼ4から分子線が被成長基板2へ照射され、被成長基板
2上にHgCdTeが成長するようになっている。基板
ホルダー1周辺の拡大図を図3に示す。図3において、
被成長基板2は、基板ホルダー1の裏面からヒータ6で
加熱される。
2. Description of the Related Art FIG. 2 shows a conceptual diagram in the case of growing a HgCdTe thin film by a molecular beam epitaxy (MBE) method. In the figure, the crucible 4 contains the elements Hg and Te of the molecular beam source of HgCdTe and the compound CdTe. By opening the shutter 3, a molecular beam is irradiated from the heated crucible 4 to the growth substrate 2, and HgCdTe grows on the growth substrate 2. An enlarged view around the substrate holder 1 is shown in FIG. In FIG.
The growth substrate 2 is heated by the heater 6 from the back surface of the substrate holder 1.

【0003】HgCdTe薄膜は、揮発性が高く、プロ
セスでは大気中で100℃以上の加熱で結晶中の水銀が
抜けるという欠点があるため、従来、被成長基板2は、
基板ホルダー1にガリウム(融点約30℃)8のような
低融点金属にて固定されていた。
Since the HgCdTe thin film has a high volatility and has a drawback that mercury in the crystal is removed by heating at 100 ° C. or more in the atmosphere in the process, conventionally, the substrate 2 to be grown is
It was fixed to the substrate holder 1 with a low melting point metal such as gallium (melting point about 30 ° C.) 8.

【0004】このような基板加熱装置にて被成長基板2
が加熱されるわけであるが、例えば、Journal
of Vacuum Science and Tec
hnology B5(1987)734頁 W.E.
Hokeらが述べているように、基板ホルダー1の表面
は、凹凸が大きい粗面であるため、基板ホルダー1の被
成長基板に覆われない部分の占める表面積が大きいほ
ど、薄膜堆積とともに同表面部分からの放射冷却が大き
くなり、熱電対7に表示される温度は、一定にもかかわ
らず実際の基板温度(基板ホルダーの表面温度にほぼ等
しい)は、薄膜の成長が進行するにつれ、低下すること
が示されている(図4参照)。
The substrate to be grown 2 is formed by such a substrate heating device.
Is heated, for example, Journal
of Vacuum Science and Tec
hnology B5 (1987) p.734 W. E.
As described by Hoke et al., The surface of the substrate holder 1 is a rough surface with large irregularities. The radiative cooling from the substrate becomes large, and the temperature displayed on the thermocouple 7 is constant, but the actual substrate temperature (which is almost equal to the surface temperature of the substrate holder) decreases as the growth of the thin film progresses. Are shown (see FIG. 4).

【0005】基板温度を安定化するためには、薄膜堆積
にともない、一定の割合でヒータへの供給電力を増加さ
せる方法が採られており(例えばJournal of
Crystal Growth 111(1991)
898頁 J.P.Faurleら)、これにより実際
の基板温度は安定化され、膜厚方向の薄膜結晶性が均一
になるように制御されていた。
In order to stabilize the substrate temperature, a method has been adopted in which the power supplied to the heater is increased at a constant rate as the thin film is deposited (for example, Journal of of).
Crystal Growth 111 (1991)
898 p. P. Faurele et al.), Whereby the actual substrate temperature was stabilized and controlled so that the thin film crystallinity in the film thickness direction became uniform.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来の
方法によれば、薄膜の成長速度を変えた場合、あるいは
基板の大きさ(面積)が異なる場合、放射冷却により基
板ホルダー1の表面から放射される熱量が複雑に変化す
るため、ヒータ6への供給電力量の制御が容易でなかっ
た。
However, according to the above-mentioned conventional method, when the growth rate of the thin film is changed or the size (area) of the substrate is different, radiation is emitted from the surface of the substrate holder 1 by radiation cooling. Since the amount of heat applied changes intricately, it was not easy to control the amount of power supplied to the heater 6.

【0007】また、基板ホルダー1はモリブデンなどの
材質で、凹凸の多い粗面であるため、ガリウムなどの接
着金属を介しても、基板2と基板ホルダー1間の密着性
が悪く、かつ熱伝導が悪かった。このため、HgCdT
e薄膜成長時の基板温度制御が容易でなく、HgCdT
e薄膜の結晶性、及び再現性は著しく低く、結晶の電気
特性や赤外線の検出波長帯が結晶ごとにばらつくという
問題があった。
Further, since the substrate holder 1 is made of a material such as molybdenum and has a rough surface with many irregularities, even if an adhesive metal such as gallium is used, the adhesion between the substrate 2 and the substrate holder 1 is poor and the thermal conductivity is high. Was bad. Therefore, HgCdT
e It is not easy to control the substrate temperature during thin film growth, and HgCdT
The crystallinity and reproducibility of the e thin film are extremely low, and there is a problem that the electrical characteristics of the crystal and the infrared detection wavelength band vary from one crystal to another.

【0008】また、GaAs,Siなどの材料をHgC
dTeの被成長基板とする場合、500℃以上でこれら
基板の熱処理をする必要があった。このような高温で
は、ガリウムとモリブデンの基板ホルダーとが反応して
基板ホルダー1の表面にガリウムとモリブデンとの化合
物を作ってしまう。
In addition, materials such as GaAs and Si may be replaced with HgC.
In the case of dTe growth substrates, it was necessary to heat-treat these substrates at 500 ° C. or higher. At such a high temperature, the gallium and molybdenum substrate holders react with each other to form a compound of gallium and molybdenum on the surface of the substrate holder 1.

【0009】この化合物は、次回からの同基板ホルダー
1の使用において、ガリウムとの馴染みを悪くし、被成
長基板2への熱伝導を悪くする原因となるため、できる
限り、使用ごとに(水+硝酸+塩酸)の溶液により同基
板ホルダー1をエッチングしてホルダー表面の化合物を
除去する必要があった。そのため、エッチングごとに同
ホルダーは滅耗し、MBE装置に同ホルダーを使用でき
る寿命が短いという欠点があった。
[0009] This compound, when used in the same substrate holder 1 from the next time, becomes unsuitable for gallium and causes poor heat conduction to the substrate 2 to be grown. It was necessary to etch the substrate holder 1 with a solution of (+ nitric acid + hydrochloric acid) to remove the compound on the surface of the holder. Therefore, the holder wears out after every etching, and there is a drawback that the holder can be used in the MBE device for a short life.

【0010】本発明の目的は、基板と基板ホルダーとの
密着性を高め、かつ、結晶成長時の基板温度の低下を防
止して高品質のHgCdTe薄膜を用いた赤外線検出器
材料を製造する方法を提供し、MBE装置にかかる基板
ホルダーの寿命を延ばすことにある。
An object of the present invention is to improve the adhesion between a substrate and a substrate holder and prevent the substrate temperature from lowering during crystal growth to produce an infrared detector material using a high quality HgCdTe thin film. To extend the life of the substrate holder of the MBE device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明による赤外線検出器材料の製造方法において
は、分子線エピタキシー法を用い、基板ホルダー上に設
置した被成長基板上に赤外線検出器材料となるHgCd
Te薄膜を成長させる赤外線検出器材料の製造方法であ
って、基板ホルダーの全面を該ホルダーと同サイズの鏡
面薄板で覆い、該薄板の鏡面上に被成長基板を密着させ
てHgCdTeの成長を行うものである。
In order to achieve the above object, in the method for producing an infrared detector material according to the present invention, a molecular beam epitaxy method is used, and the infrared detector is provided on a growth substrate placed on a substrate holder. HgCd as a material
A method of manufacturing an infrared detector material for growing a Te thin film, wherein the entire surface of a substrate holder is covered with a mirror-finish thin plate of the same size as the holder, and a substrate to be grown is brought into close contact with the mirror surface of the thin plate to grow HgCdTe. It is a thing.

【0012】[0012]

【作用】本発明は、被成長基板を基板ホルダーと同サイ
ズの鏡面薄板上を介して固定し、基板ホルダー全面を鏡
面薄板で覆うことにより、見かけ上の被成長基板面積を
大きくし、基板温度の低下を防止するものである。
According to the present invention, the growth substrate is fixed via a mirror-finished thin plate of the same size as the substrate holder, and the entire surface of the substrate holder is covered with the mirror-finished thin plate to increase the apparent growth-target substrate area and the substrate temperature. To prevent the decrease of

【0013】また、上記基板ホルダーと同面積の鏡面薄
板で覆うことにより、同ウェハー上に、面積の異なる同
一材料から被成長基板もしくは材料の異なる各種被成長
基板へのHgCdTe薄膜成長を容易にするものであ
る。
Further, by covering with a mirror-finished thin plate having the same area as that of the substrate holder, it becomes easy to grow HgCdTe thin film on the same wafer from the same material having a different area to a growth substrate or various growth substrates made of different materials. It is a thing.

【0014】また、上記基板ホルダーと被成長基板固定
のための低融点金属ガリウムが500℃以上の高温で反
応しないようにするために、鏡面薄板を隔離板として使
用することにある。
Further, in order to prevent the substrate holder and the low melting point metal gallium for fixing the growth substrate from reacting at a high temperature of 500 ° C. or higher, a mirror thin plate is used as a separator.

【0015】また、鏡面を使用することにより、被成長
基板を接着するガリウムをよく馴染ませることができ、
被成長基板との密着性を高め、被成長基板落下の危険性
を回避し、被成長基板全面の温度ムラを無くするもので
ある。
Further, by using the mirror surface, gallium for adhering the growth substrate can be made to fit well,
The adhesion with the substrate to be grown is increased, the risk of dropping the substrate to be grown is avoided, and the temperature unevenness on the entire surface of the substrate to be grown is eliminated.

【0016】本発明の方法により、HgCdTe薄膜
は、基板ホルダーの表面積とほぼ同面積の鏡面薄板に堆
積することになり、基板ホルダー粗面には、HgCdT
eは堆積しないため、放射冷却はほとんどなくなる。し
たがって、HgCdTe薄膜堆積に伴う基板温度の低下
は防止できる。
According to the method of the present invention, the HgCdTe thin film is deposited on a mirror-finished thin plate having the same surface area as that of the substrate holder, and HgCdT thin film is deposited on the rough surface of the substrate holder.
Since e is not deposited, radiative cooling is almost eliminated. Therefore, it is possible to prevent the substrate temperature from being lowered due to the deposition of the HgCdTe thin film.

【0017】また、基板ホルダーの表面積とほぼ同面積
の鏡面薄板を用いることにより、同鏡面薄板上であれ
ば、材料を問わず、いかなる大きさの被成長基板でも積
載可能であり、かつ、面積の違いによる基板温度の制御
の必要がない。
Further, by using a mirror-finish thin plate having substantially the same area as the surface area of the substrate holder, any size of growth substrate can be loaded on the same mirror-finish thin plate regardless of the material, and the area can be increased. There is no need to control the substrate temperature due to the difference in

【0018】また、鏡面薄板で基板ホルダーとガリウム
とを隔離することにより、基板ホルダーとガリウムの反
応が防止できる。
Further, by separating the substrate holder and gallium with a mirror thin plate, the reaction between the substrate holder and gallium can be prevented.

【0019】また、鏡面薄板を使用することにより、凹
凸の多いモリブデン製基板ホルダー表面に比べて、実効
表面積を小さくすることができ、かつ、被成長基板との
間隔が小さくなるため表面張力が向上し、被成長基板と
の密着性がよくなる。
Further, by using a thin mirror surface plate, the effective surface area can be made smaller than that of a molybdenum substrate holder surface having a lot of irregularities, and the distance to the substrate to be grown becomes small, so that the surface tension is improved. However, the adhesion with the substrate to be grown is improved.

【0020】[0020]

【実施例】以下、図によって赤外線検出器材料の製造方
法の実施例を説明する。図1において、モリブデンから
なる基板ホルダー(通常直径は2又は3インチ)1上
に、インジウム9を介して同ホルダーと同サイズの2又
は3インチ鏡面薄板(この場合Siウェハーを使用)1
0を固定する。
EXAMPLE An example of a method for manufacturing an infrared detector material will be described below with reference to the drawings. In FIG. 1, on a substrate holder (usually having a diameter of 2 or 3 inches) 1 made of molybdenum, a 2 or 3 inch mirror-finished thin plate (Si wafer is used in this case) 1 of the same size as the holder through indium 9.
Fix 0.

【0021】基板ホルダー1は、通常、表面形状が凹凸
の大きい粗面であるが、同Siウェハーは、鏡面の表面
形態を有しているため、同表面へ融点約30℃の金属ガ
リウム(Ga)8を塗布すると、濡れ性がよいため、非
常によく伸ばすことができた。この上へHgCdTeエ
ピタキシャル成長用被成長基板2を固定すると、相互の
間隔が非常に狭く、表面張力向上により、ガリウムとの
密着度に優れ、搬送中あるいは成長中に被成長基板が途
中で基板ホルダー1から落下する危険性を極めて減少さ
せることができた。
The substrate holder 1 is generally a rough surface with large irregularities, but since the Si wafer has a mirror-like surface morphology, metallic gallium (Ga) having a melting point of about 30 ° C. 8), it was possible to stretch it very well because the wettability was good. When the growth substrate 2 for HgCdTe epitaxial growth is fixed on this, the mutual distance is very narrow, the surface tension is improved, and the degree of adhesion with gallium is excellent, and the growth substrate is in the middle of transportation or growth. The risk of falling from it could be greatly reduced.

【0022】また、密着度の向上により、基板ヒータか
らの熱は、被成長基板2の全域でほぼ均一になった。成
長したHgCdTe薄膜について、二結晶法X線により
評価したところ、その結晶性の面内のばらつきが約1桁
改善された。
Further, due to the improved adhesion, the heat from the substrate heater becomes almost uniform over the entire area of the growth substrate 2. When the grown HgCdTe thin film was evaluated by the double crystal method X-ray, the in-plane variation in crystallinity was improved by about one digit.

【0023】このように基板温度の不均一性が改善され
た結果、成長したHgCdTeの結晶均一性に改善が見
られた。
As a result of improving the nonuniformity of the substrate temperature in this way, the crystal uniformity of the grown HgCdTe was improved.

【0024】図4は、物体から輻射される赤外線を利用
した温度計(パイロメータ)により、従来法において、
HgCdTe薄膜成長中の被成長基板温度の経時変化を
モニターしたときのものである。MBE法でのHgCd
Teの成長温度は、通常190℃程度であるが、従来法
では1時間成長して約21℃の基板温度の低下が見られ
た。
FIG. 4 shows a thermometer (pyrometer) utilizing infrared rays radiated from an object in the conventional method.
The graph shows the time-dependent change in the temperature of the growth substrate during the growth of the HgCdTe thin film. HgCd by MBE method
The growth temperature of Te is usually about 190 ° C., but the conventional method showed that the substrate temperature decreased by about 21 ° C. after growing for 1 hour.

【0025】本発明によりHgCdTeを成長すると、
図5に示すように1時間でわずか2℃程度の変化だけ
で、被成長基板周辺部からの放射冷却が非常によく抑え
られていることがわかった。
When HgCdTe is grown according to the present invention,
As shown in FIG. 5, it was found that the radiative cooling from the peripheral portion of the growth substrate was very well suppressed only by a change of about 2 ° C. in 1 hour.

【0026】被成長基板の温度は、HgCdTe薄膜成
長中、ほぼ一定なので、成長しているHgCdTe薄膜
の特性は、温度による擾乱をほとんど受けなくなった。
二結晶X線回折で従来、約100秒のものが本発明方法
により約60秒に改善できた。すなわち、HgCdTe
は、成長中に基板温度の低下に伴う結晶の劣化(双晶)
を起こすこともなく、結晶の均一性が従来の方法に比べ
て格段に向上した。
Since the temperature of the substrate to be grown is almost constant during the growth of the HgCdTe thin film, the characteristics of the growing HgCdTe thin film are hardly affected by the temperature.
Conventionally, double crystal X-ray diffraction of about 100 seconds could be improved to about 60 seconds by the method of the present invention. That is, HgCdTe
Deteriorates the crystal due to the decrease of the substrate temperature during growth (twin crystals)
The crystal uniformity was significantly improved as compared with the conventional method.

【0027】さらに、基板ホルダーとほぼ同面積の鏡面
薄板(Siウェハー)を用いたことから、本発明での鏡
面薄板10上に様々な面積の異なるCdTe系基板,G
aAsあるいはSiなどの被成長基板2を積載すること
が可能となり、基板温度の安定度は、全て同じであり、
従来のように異なった面積を有する基板ごとに、基板ヒ
ーターに供給する電力で基板温度を補償する必要が全く
無くなった。
Further, since the mirror thin plate (Si wafer) having almost the same area as that of the substrate holder is used, the CdTe substrate, G having various areas different from each other can be formed on the mirror thin plate 10 of the present invention.
It becomes possible to stack the growth substrate 2 such as aAs or Si, and the stability of the substrate temperature is the same,
It is no longer necessary to compensate the substrate temperature with the power supplied to the substrate heater for each substrate having a different area as in the prior art.

【0028】さらに、SiやGaAsをHgCdTeの
被成長基板として使用する場合、SiやGaAs基板表
面の酸化膜を除去するために、一時的に500℃以上の
高温で基板を熱処理する必要がある。本発明のように放
射冷却防止用Siウェハーを隔離板として使用すると、
500℃以上でもSiウェハーとガリウムとは反応しな
いため、モリブデンとガリウムとの化合物を基板ホルダ
ー表面に作らなくなった。つまり、モリブデンを溶解す
るエッチング液で、基板ホルダーを薄膜の成長毎に洗浄
する必要がなくなった。従って、基板ホルダーが滅耗す
ることがなくなり、同ホルダーの寿命を延ばすことがで
きた。
Further, when Si or GaAs is used as a substrate for growing HgCdTe, it is necessary to temporarily heat-treat the substrate at a high temperature of 500 ° C. or higher in order to remove the oxide film on the surface of the Si or GaAs substrate. When a radiation cooling prevention Si wafer is used as a separator as in the present invention,
Since the Si wafer and gallium do not react even at 500 ° C. or higher, the compound of molybdenum and gallium was not formed on the surface of the substrate holder. That is, it is no longer necessary to wash the substrate holder with an etching solution that dissolves molybdenum each time a thin film is grown. Therefore, the substrate holder is not worn away, and the life of the holder can be extended.

【0029】[0029]

【発明の効果】以上詳述したように本発明による赤外線
検出器材料の製造方法によれば、基板温度がHgCdT
eの成膜中、極めて安定であり、均一性の高い良質な結
晶性を有するHgCdTe薄膜を形成できる。したがっ
て、本発明方法により作製した結晶を用いれば、動作特
性に優れたHgCdTe赤外線検出器を実現でき、ま
た、基板ホルダーを使用できる寿命も延ばすことができ
る。
As described above in detail, according to the method for manufacturing an infrared detector material of the present invention, the substrate temperature is HgCdT.
During the film formation of e, the HgCdTe thin film that is extremely stable and has high quality and high uniformity can be formed. Therefore, by using the crystal produced by the method of the present invention, it is possible to realize an HgCdTe infrared detector having excellent operating characteristics, and it is possible to extend the service life of the substrate holder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による赤外線検出器材料の製造方法を説
明するための構造図である。
FIG. 1 is a structural diagram for explaining a method of manufacturing an infrared detector material according to the present invention.

【図2】従来の赤外線検出器材料の製造方法を説明する
ための構造図である。
FIG. 2 is a structural diagram for explaining a conventional method for manufacturing an infrared detector material.

【図3】従来の赤外線検出器材料の製造方法を説明する
ための図で、図2の一部分を拡大した図である。
FIG. 3 is a view for explaining a conventional method for manufacturing an infrared detector material, and is an enlarged view of a part of FIG. 2;

【図4】従来の赤外線検出器材料の製造方法を説明する
ための図で、HgCdTeの成膜中の基板温度の変化を
示した図である。
FIG. 4 is a diagram for explaining a conventional method for manufacturing an infrared detector material, showing a change in substrate temperature during film formation of HgCdTe.

【図5】本発明方法によるHgCdTeの成膜中の基板
温度変化を示した図である。
FIG. 5 is a diagram showing changes in substrate temperature during film formation of HgCdTe by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 基板ホルダー 2 被成長基板 6 ヒータ 8 ガリウム 9 インジウム 10 鏡面薄板 1 substrate holder 2 growth substrate 6 heater 8 gallium 9 indium 10 mirror thin plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/0264 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 31/0264

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分子線エピタキシー法を用い、基板ホル
ダー上に設置した被成長基板上に赤外線検出器材料とな
るHgCdTe薄膜を成長させる赤外線検出器材料の製
造方法であって、 基板ホルダーの全面を該ホルダーと同サイズの鏡面薄板
で覆い、該薄板の鏡面上に被成長基板を密着させてHg
CdTeの成長を行うことを特徴とする赤外線検出器材
料の製造方法。
1. A method for producing an infrared detector material, comprising growing a HgCdTe thin film as an infrared detector material on a substrate to be grown set on a substrate holder by using a molecular beam epitaxy method, comprising: Cover the substrate with a mirror thin plate of the same size as the holder, and bring the substrate to be grown into close contact with the mirror surface of the thin plate.
A method for manufacturing an infrared detector material, which comprises growing CdTe.
JP20067092A 1992-07-03 1992-07-03 Manufacture of infrared detector material Pending JPH0620948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20067092A JPH0620948A (en) 1992-07-03 1992-07-03 Manufacture of infrared detector material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20067092A JPH0620948A (en) 1992-07-03 1992-07-03 Manufacture of infrared detector material

Publications (1)

Publication Number Publication Date
JPH0620948A true JPH0620948A (en) 1994-01-28

Family

ID=16428286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20067092A Pending JPH0620948A (en) 1992-07-03 1992-07-03 Manufacture of infrared detector material

Country Status (1)

Country Link
JP (1) JPH0620948A (en)

Similar Documents

Publication Publication Date Title
US4960720A (en) Method of growing compound semiconductor thin film using multichamber smoothing process
US5441011A (en) Sublimation growth of single crystal SiC
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
US4152182A (en) Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
US5435264A (en) Process for forming epitaxial BaF2 on GaAs
US4135027A (en) Semiconductor element embodying an optical coating to enhance thermal gradient zone melting processing thereof
US5913974A (en) Heat treating method of a semiconductor single crystal substrate
EP0856880A2 (en) A method for the heat treatment of group II-VI semiconductors
JPH0620948A (en) Manufacture of infrared detector material
US4576676A (en) Thick crystalline films on foreign substrates
JPH0977594A (en) Production of low resistance single crystal silicon carbide
US5925429A (en) Pyrolytic boron nitride container, and manufacture thereof
JP2850642B2 (en) Substrate holder for mercury cadmium tellurium thin film in molecular beam epitaxy equipment
JPH0557239B2 (en)
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
JP2944426B2 (en) Molecular beam epitaxy equipment
JPH09194300A (en) Production of gaas substrate
JP2679708B2 (en) Organic film fabrication method
JP3210410B2 (en) Semiconductor device and method of manufacturing the same
JP3198971B2 (en) Molecular beam epitaxy equipment
KR100488830B1 (en) Heat treatment method of group II-VI compound semiconductor
JPS62279624A (en) Substrate holder for molecular beam epitaxy
JPS60240119A (en) Molecular beam crystal growth
JPS6356199B2 (en)
JPS61263212A (en) Molecular beam epitaxy substrate holder