JPS62279624A - Substrate holder for molecular beam epitaxy - Google Patents

Substrate holder for molecular beam epitaxy

Info

Publication number
JPS62279624A
JPS62279624A JP12102586A JP12102586A JPS62279624A JP S62279624 A JPS62279624 A JP S62279624A JP 12102586 A JP12102586 A JP 12102586A JP 12102586 A JP12102586 A JP 12102586A JP S62279624 A JPS62279624 A JP S62279624A
Authority
JP
Japan
Prior art keywords
substrate
heat
substrate holder
holder
heat radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12102586A
Other languages
Japanese (ja)
Inventor
Shinichi Komatsu
伸一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12102586A priority Critical patent/JPS62279624A/en
Publication of JPS62279624A publication Critical patent/JPS62279624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To improve a heating efficiency and to make an epitaxial crystal thin film of high purity grow on a substrate by a method wherein the surface of a heat-radiating body opposite to a heating means is formed of a high-melting metal while the surface thereof opposite to the substrate is formed of Si. CONSTITUTION:A substrate 6, a heat-radiating body 11 and a spacer 13 are fixed on a substrate holder 9 through the intermediary of a ring 15 and screws 16. The holder 9 is formed of molybdenum and the substrate 6 of GaAs, for instance. A disk made of silicon and subjected to mirror polishing is used as the heat-radiating body 11, and a film 12 of a high-melting metal is applied on the surface opposite to a heating means (not shown in the figure) such as an electric heater. A space 14 is secured between the substrate 6 and the heat radiating body 11 by the spacer 13. When this holder 9 is used to make an epitaxial crystal thin film grow by a method of a molecular beam epitaxy, the substrate can be heated uniformly, and thus the thin film of high purity can be obtained.

Description

【発明の詳細な説明】 五 発明の詳細な説明 〔産業上の第1」用分野〕 本発明は、分子線エピタキシ用基板ホルダに係91特に
単結晶基板の加熱効率を同上させ、基板上に高純度のエ
ビタキ7ヤル結晶薄膜を成長させるために好適な分子線
エピタキシ用基板ホルダに関するものである。
Detailed Description of the Invention 5. Detailed Description of the Invention [First Industrial Field] The present invention relates to a substrate holder for molecular beam epitaxy. The present invention relates to a substrate holder for molecular beam epitaxy suitable for growing high-purity epitaxy crystal thin films.

〔従来の技術〕[Conventional technology]

超高真空に保たれた成長室内で、加熱された単結晶基板
に複数の分子線を照射し、基板上に単結晶薄膜を成長さ
せる分子線エピタキシ法は公知である。この方法を実施
するために用いる分子線エピタキシ装置は、一般に成長
室の超高真空を破ることなく成長室への基板の出し入れ
を行うためのロードロック機構と、成長1の膜厚の均一
性を同上させるための基板回転機構を備えている。
Molecular beam epitaxy is a well-known method in which a heated single-crystal substrate is irradiated with a plurality of molecular beams in a growth chamber maintained in an ultra-high vacuum to grow a single-crystal thin film on the substrate. The molecular beam epitaxy equipment used to carry out this method generally has a load-lock mechanism that allows the substrate to be taken in and out of the growth chamber without breaking the ultra-high vacuum of the growth chamber, and a load-lock mechanism that ensures uniformity of the film thickness during growth 1. It is equipped with a substrate rotation mechanism for doing the same.

すなわち、第6図に示すように、基板加熱用にタングス
テン製のヒータ1と、メンタル製の熱シールド2と、温
度測定用の熱電対3および基板ホルダ袋層用のカギ形溝
4を具備する基板加熱回転機構5に、基板6をマウント
した基板ホルダ7を、前記カギ形溝4にビン8を嵌め込
んで装着する。
That is, as shown in FIG. 6, it is equipped with a heater 1 made of tungsten for heating the substrate, a heat shield 2 made of Mental, a thermocouple 3 for temperature measurement, and a key-shaped groove 4 for the substrate holder bag layer. A substrate holder 7 with a substrate 6 mounted thereon is attached to the substrate heating rotation mechanism 5 by fitting the bottle 8 into the key-shaped groove 4.

そして、基板力ロ熱時の温度測定は熱電対3を用いて行
うが、成長中に基板回転、つ−2シ基板ホルダ7を回転
させるので、基板ホルダ7の裏面の中心部の温度を非接
触で測定し、コントロールしていた。このため、成長室
の外からビューボートを介して放射温度計等により基板
温度を測定し、熱電対3の指示温度を校正する必要があ
った。
Temperature measurement when the substrate is heated is performed using a thermocouple 3, but since the substrate is rotated during growth and the substrate holder 7 is rotated twice, the temperature at the center of the back surface of the substrate holder 7 can be measured using a thermocouple. It was measured and controlled by contact. Therefore, it was necessary to measure the substrate temperature with a radiation thermometer or the like from outside the growth chamber via a view boat and calibrate the temperature indicated by the thermocouple 3.

また、高品質の結晶を成長させるためには基板温度の最
適化が重要であり、このため基板温度の面内均一性を同
上させる必要があった。この目的から発明された従来の
基板ホルダ構造および基板ホルダへの基板のマウント法
は、例えば特開昭57−30320号公報に示されてい
るように、(1)  Inソルダを用いて基板ホルダに
GaAs基板を貼シ付け、基板ホルダからの熱伝導によ
ってGaA6基板を加熱する技術、 (2)押さえ板(タンタル裂)を用いて基板ホルダにG
aAs基板をねじで固定し、電気ヒータとGaAl11
基板の間に浮石1〜2mmの加熱板(タンタル裂)を設
け、電気ヒータによシ加熱された加熱板からの熱放射に
よってGaAs基板の加熱を行う技術、 等が知られている。
Furthermore, in order to grow high-quality crystals, it is important to optimize the substrate temperature, and therefore it is necessary to improve the in-plane uniformity of the substrate temperature. Conventional substrate holder structures and methods for mounting a substrate on a substrate holder invented for this purpose are as shown in, for example, Japanese Patent Application Laid-Open No. 57-30320 (1) In solder is used to mount a substrate on a substrate holder. A technique for attaching a GaAs substrate and heating the GaA6 substrate by heat conduction from the substrate holder. (2) Using a holding plate (tantalum crack) to attach the G
The aAs substrate was fixed with screws, and an electric heater and GaAl11
A technique is known in which a heating plate (tantalum crack) with floating stones of 1 to 2 mm is provided between the substrates, and the GaAs substrate is heated by heat radiation from the heating plate heated by an electric heater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術は、いずれも基板温度の面内均一性の改善
を図ったものであるが、以下に述べる問題があった。
The above-mentioned conventional techniques all aim to improve the in-plane uniformity of the substrate temperature, but they have the following problems.

前記(1)の技術では、 Inソルダを使用するため、
結晶成長後に基板裏面のIn除去と、研摩等による平坦
化の処理が必要であシ、プロセスが煩雑であった。また
、大面積の基板を使用した場合には、結晶成長後に基板
ホルダから基板を取シ外す際に、基板が割れるというト
ラブルが発生していた。
In the technique (1) above, since In solder is used,
After crystal growth, it was necessary to remove In from the back surface of the substrate and flatten it by polishing or the like, making the process complicated. Further, when a large-area substrate is used, there is a problem that the substrate breaks when the substrate is removed from the substrate holder after crystal growth.

前記(2)の技術では、 Inソルダを使用しないので
、前記(1)の技術のもつ問題は解決される。しかし、
Inソルダを使用した場合に比べて基板の加熱効率が低
く、このため基板加熱時のガス放出量が増大してしまう
ため、高純度の結晶を得ることが困難であった。
Since the technique (2) does not use In solder, the problem of the technique (1) is solved. but,
Compared to the case where In solder is used, the heating efficiency of the substrate is lower, and as a result, the amount of gas released when heating the substrate increases, making it difficult to obtain high-purity crystals.

本発明の目的は、前記従来技術の問題を解決し、基板の
加熱効率を同上させ、基板上に高純度のエピタキシャル
結晶薄膜を成長させ得る分子線エピタキシ用基板ホルダ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate holder for molecular beam epitaxy that can solve the problems of the prior art, increase the heating efficiency of the substrate, and grow a highly pure epitaxial crystal thin film on the substrate.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するため、本発明の1番目の発明では熱
放射によシ単結晶基板を加熱する熱放射体をシリコンに
よ層形成し、該熱放射体の加熱手段に対向する面に、高
融点金属の被膜を施している。
In order to achieve the above object, in the first aspect of the present invention, a thermal radiator for heating a single crystal substrate by thermal radiation is formed as a layer of silicon, and on the surface of the thermal radiator facing the heating means, Coated with high melting point metal.

また、本発明の2番目の発明では熱放射体を高融点金属
により形成し、該熱放射体の基板に対向する面に、シリ
コンの被膜を施している。
Further, in the second aspect of the present invention, the heat radiator is formed of a high melting point metal, and the surface of the heat radiator facing the substrate is coated with silicon.

〔作用〕[Effect]

超高真空に保たれた成長室内で、加熱された単結晶基板
に複数の分子線を照射し、基板上に単結晶薄膜を成長さ
せる分子線エピタキシ法によシ、高純度で結晶を成長さ
せるには、 (1)基板を加熱する熱放射体を均一に加熱し、゛均一
に加熱された熱放射体からの熱放射により基板を均一に
加熱すること、 (2)基板の加熱効率を同上させ、加熱手段(を気ヒー
タ)の周囲からのガス放出量を低減させ、結晶W:、−
!gc中の真空度を爾めること、が3i要である。
In a growth chamber maintained in an ultra-high vacuum, a heated single crystal substrate is irradiated with multiple molecular beams to grow a single crystal thin film on the substrate using molecular beam epitaxy, which grows crystals with high purity. (1) Uniformly heat the heat radiator that heats the substrate, ``heat the substrate uniformly by heat radiation from the uniformly heated heat radiator, and (2) increase the heating efficiency of the substrate as above. to reduce the amount of gas released from around the heating means (air heater), crystal W:, -
! The key to 3i is to improve the degree of vacuum in the GC.

そこで、本発明の1番目の発明では、高融点金属の被膜
を施したシリコン製の熱放射体を加熱手段によシ加熱す
ると、加熱手段から供給された熱エネルギーは高融点金
属の被膜によシ吸収され、高融点金属の被膜からの熱伝
導によってシリコン製の熱放射体が均一に加熱され、こ
の熱放射体からの熱放射によって基板が均一に加熱され
る。
Therefore, in the first aspect of the present invention, when a silicon heat radiator coated with a high-melting point metal is heated by a heating means, the thermal energy supplied from the heating means is absorbed by the high-melting point metal coat. The silicon heat radiator is uniformly heated by heat conduction from the high melting point metal coating, and the substrate is uniformly heated by the heat radiation from the heat radiator.

そして、シリコン製の熱放射体は、シリコンの熱放射率
が約α4〜a6と大きいため、基板を効率よく加熱する
ことができ、したがって結晶成長中の真空度を同上させ
ることができ、高純度の結晶薄膜を得ることができる。
Silicon thermal radiators can efficiently heat the substrate because silicon has a high thermal emissivity of approximately α4 to α6, and therefore can maintain the same degree of vacuum during crystal growth, resulting in high purity. It is possible to obtain a crystalline thin film of.

また、本発明の2番目の発明では熱放射体を高融点金属
で形成しているため、熱放射体が加熱手段により均一に
加熱され、この熱放射体からの熱放射により基板が均一
に加熱される。
Further, in the second aspect of the present invention, since the heat radiator is formed of a high melting point metal, the heat radiator is uniformly heated by the heating means, and the substrate is uniformly heated by the heat radiation from the heat radiator. be done.

−万、藁融点金属裂の熱放射体の基板に対向する面に、
シリコンの被膜を施しておシ、このシリコンは熱放射率
が大きいため、基板を効率よく加熱することができ、結
晶成長中の真空度を向上させることか可能となシ、高純
度の結晶薄膜を得ることができる。
- 10,000, on the surface facing the substrate of the heat radiator of the straw melting point metal crack,
The silicon coating has a high thermal emissivity, so it can heat the substrate efficiently and improve the degree of vacuum during crystal growth.It is a high-purity crystal thin film. can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面によシ説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の1番目の発明の一実施例を示す平面図
、第2図は第1図の縦断正面図である。
FIG. 1 is a plan view showing an embodiment of the first aspect of the present invention, and FIG. 2 is a longitudinal sectional front view of FIG. 1.

これらの図に示す実施例の分子線エピタキシ用基板ホル
ダでは、基板ホルダ9に、保持機構を介して基板6と、
熱放射体11と、スペーサ16とが固定されている。
In the molecular beam epitaxy substrate holder of the embodiment shown in these figures, the substrate 6 is attached to the substrate holder 9 via the holding mechanism,
The heat radiator 11 and the spacer 16 are fixed.

前記基板ホルダ9は、例えばモリブデンによシ外径64
mm、’f径60 mm 、高さ14mm等に作製され
ている。また、前記基板ホルダ9にはビン10が設けら
れてお)、このビン10を基板加熱回転機構(図示せず
)に形成された基板ホルダ装着用のカギ形#(図示せず
〕に嵌め込み、前記基板加熱回転機構に基板ホルダ9を
装着するようになっている。
The substrate holder 9 is made of, for example, molybdenum and has an outer diameter of 64 mm.
mm, 'f diameter 60 mm, height 14 mm, etc. Further, the substrate holder 9 is provided with a bottle 10), and the bottle 10 is fitted into a key shape # (not shown) for mounting the substrate holder formed on the substrate heating rotation mechanism (not shown), A substrate holder 9 is attached to the substrate heating rotation mechanism.

前記保持機構は、リング15と、これを基板ホルダ9に
止める複数本のねじ16とで構成されている。前記リン
グ15とねじ16は、例えばタンタルにより形成されて
いる。また、リング15は、例えば外径64 mm 、
  内径46mm、厚さ12 mmに形成されている。
The holding mechanism includes a ring 15 and a plurality of screws 16 for fixing the ring 15 to the substrate holder 9. The ring 15 and the screw 16 are made of tantalum, for example. Further, the ring 15 has an outer diameter of 64 mm, for example.
It is formed with an inner diameter of 46 mm and a thickness of 12 mm.

前記基板6は、 GaAsにより形成され、例えば直径
50 mm 、厚さくL 45 mmに作製されている
The substrate 6 is made of GaAs, and has a diameter of 50 mm and a thickness of 45 mm, for example.

前記スペーサ16は、例えばタンタルにより外径53m
m、  内径46 mmで段付きのリング状に形成され
、厚さa1〜1 mm に作製されている。
The spacer 16 is made of tantalum, for example, and has an outer diameter of 53 m.
It is formed into a stepped ring shape with an inner diameter of 46 mm and a thickness of a1 to 1 mm.

前記熱放射体11は、シリコンよシなる円板を鏡面研摩
したものを用いて、例えば直径55mm。
The heat radiator 11 is a mirror-polished disk made of silicon, and has a diameter of, for example, 55 mm.

厚さ1 mm に形成されている。前記熱放射体11の
電気ヒータ等の加熱手段(図示せず)に対向する面には
、高融点金属の被膜12が施されている。
It is formed to have a thickness of 1 mm. A coating 12 of a high melting point metal is applied to the surface of the heat radiator 11 facing a heating means (not shown) such as an electric heater.

前記高融点金属の被膜12は、モリブデン、タンタル、
タングステン等を例えば厚さ0.05〜1μmとなるよ
うに、高周波スパッタリング法にょシ蒸着して形成され
ている。
The high melting point metal coating 12 is made of molybdenum, tantalum,
It is formed by depositing tungsten or the like to a thickness of 0.05 to 1 μm, for example, using a high frequency sputtering method.

前記基板6と熱放射体11間には、スペーサ13の有効
厚さによって、空間14が確保されている。
A space 14 is secured between the substrate 6 and the heat radiator 11 by the effective thickness of the spacer 13.

前記実施例の分子線エピタキシ用基板ホルダは。The molecular beam epitaxy substrate holder of the above embodiment is as follows.

使用に当たっては基板ホルダ9にシリコン製の熱放射体
11を、高融点金属の被膜12を加熱手段側に向けて乗
せる。
In use, the heat radiator 11 made of silicon is placed on the substrate holder 9 with the high melting point metal coating 12 facing the heating means side.

矢に、熱放射体11の上にスペーサ13を乗せ、このス
ペーサ13の上に単結晶基板6を乗せる。
A spacer 13 is placed on the heat radiator 11, and a single crystal substrate 6 is placed on the spacer 13.

ついで、前記熱放射体11とスペーサ13と基板6とを
、保持機構を構成しているリング15と複数本のねじ1
6とによシ基板ホルダ9に固定する。
Next, the heat radiator 11, spacer 13, and substrate 6 are held together by a ring 15 and a plurality of screws 1 that constitute a holding mechanism.
6 and fixed to the board holder 9.

そして、超高真空に保たれた成長室内で、加熱手段によ
シシリコン製の熱放射体11を加熱する、前記熱放射体
11には、加熱手段に対向する面に高融点金属の被膜1
2が施されているため、加熱手段から供給される熱エネ
ルギーが前記高融点金属の被膜12で吸収され、被膜1
2からの熱伝導によって熱放射体11が均一に加熱され
る。
A heat radiator 11 made of silicon is heated by a heating means in a growth chamber kept in an ultra-high vacuum.
2, the thermal energy supplied from the heating means is absorbed by the high melting point metal coating 12, and the coating 1
The heat radiator 11 is uniformly heated by heat conduction from the heat source 2 .

前記熱放射体11が均一に加熱されるに伴い、この熱放
射体11の熱放射によシ単結晶基板6が均一に加熱され
る。
As the heat radiator 11 is uniformly heated, the single crystal substrate 6 is uniformly heated by the heat radiation of the heat radiator 11.

前記加熱された単結晶基板6に複数の分子線を照射し、
前記基板6上に単結晶薄膜を成長させる。
Irradiating the heated single crystal substrate 6 with a plurality of molecular beams,
A single crystal thin film is grown on the substrate 6.

前記基板6の加熱に際して、前記熱放射体11がシリコ
ンで形成されているため、熱放射率が約I14〜α6と
大きく、シだがって基板6を効率よく加熱することがで
きる。その結果、加熱手段の周囲からのガス放出量を著
しく低減させることができ、これにより結晶成長中の真
空度を高めることができるので、高純度の結晶薄膜を得
ることが可能となる。
When heating the substrate 6, since the thermal radiator 11 is made of silicon, the thermal emissivity is as high as about I14 to α6, and therefore the substrate 6 can be heated efficiently. As a result, the amount of gas emitted from around the heating means can be significantly reduced, thereby increasing the degree of vacuum during crystal growth, making it possible to obtain a highly pure crystal thin film.

ついで、第6図は本発明の2番目の発明の一実施例を示
す平面図、第4図は同縦町正面図である。
Next, FIG. 6 is a plan view showing an embodiment of the second invention, and FIG. 4 is a vertical front view of the same.

これらの図に示す分子線エピタキシ用基板−ホルダは、
熱放射体17がモリブデン1 メンタル等の高融点金属
の円板で形成され、例えば直径53mm。
The molecular beam epitaxy substrate-holder shown in these figures is
The heat radiator 17 is formed of a disk of high melting point metal such as molybdenum 1-mental, and has a diameter of 53 mm, for example.

厚さ1mmに作製されている。It is made to have a thickness of 1 mm.

前記高融点金属製の熱放射体17の基板6に対向する面
には、シリコンの被膜18が施されている。
A silicon coating 18 is applied to the surface of the heat radiator 17 made of a high melting point metal that faces the substrate 6.

このシリコンの被膜18は、高周波スバノタリフグ法に
よ)シリコンを例えば厚さ0.05〜1μmとなるよう
に蒸着させている。
This silicon film 18 is formed by vapor-depositing silicon to a thickness of, for example, 0.05 to 1 μm using the high-frequency Subanotarifug method.

この実施例の分子線エピタキシ用基板ホルダでは、熱放
射体17が高融点金属で形成されているため、熱伝導特
性がよく、したがって熱放射体17からの熱放射によシ
基板6を均一に加熱することができる。
In the substrate holder for molecular beam epitaxy of this embodiment, since the heat radiator 17 is made of a high-melting point metal, it has good thermal conductivity, so that the heat radiation from the heat radiator 17 uniformly spreads over the substrate 6. Can be heated.

また、高融点金属製の熱放射体17の基板6に対向する
面に施烙れたシリコンの被膜18は、熱放射率が大きい
ため、基板6を効率よく力ロ熱することができ、したが
って加熱手段の周囲からのガス放出量を着しく少なくす
ることができる。
Furthermore, the silicon coating 18 applied to the surface of the heat radiator 17 made of a high-melting point metal that faces the substrate 6 has a high thermal emissivity, so the substrate 6 can be efficiently heated. The amount of gas released from around the heating means can be significantly reduced.

その結果、この第3図、第4図に示す実施例においても
、前記第1図、第2図に示す実施例と四様%底長室での
結晶成長中の真空度を同上でき、高純度の結晶薄膜を得
ることができる。
As a result, in the embodiment shown in FIGS. 3 and 4, the degree of vacuum during crystal growth in the four-way % bottom length chamber can be the same as in the embodiment shown in FIGS. A crystalline thin film of purity can be obtained.

なお、この第6図、第4図に示す実施例の他の構成1作
用については、前記第1図、第2図に示す実施例と刈株
であり、同じ部材には同じ符号を付けて示している。
Note that the other configuration 1 function of the embodiment shown in FIGS. 6 and 4 is similar to the stubble in the embodiment shown in FIGS. 1 and 2, and the same members are given the same reference numerals. It shows.

次に、第5図は本発明と従来技術とについて、GaAs
基板を加熱した時の基板温度と成長室真空度との関係を
比較して示している。この第5図から分かるように、本
発明によれば基板加熱時の成長室内の真空度を大幅に同
上させることができる。
Next, FIG. 5 shows the present invention and the prior art.
The relationship between the substrate temperature when the substrate is heated and the degree of vacuum in the growth chamber is shown in comparison. As can be seen from FIG. 5, according to the present invention, the degree of vacuum in the growth chamber during substrate heating can be significantly increased.

また、本発明の第1図および第2図に示す実施例、第6
図お^び第4図に示す実施例に示す分子線エピタキシ用
基板ホルダを用い、Cr−0ドープ100 GaAs基
板上に、アンドープGaAs層を1pm成長ちせ、式ら
にS1ドープGaAs膚(キャリア濃度I X 101
4am−’ )を約10μm成長させた試料について、
移動度の温度依存性からアクセスタ濃度を求めた結果、
従来技術を用いた場合にはアクセスタ濃度が10I4〜
10”am−’台であったのに対し。
Further, the embodiments shown in FIGS. 1 and 2 of the present invention, and
Using the substrate holder for molecular beam epitaxy shown in the example shown in Figs. IX101
4 am-') was grown to a thickness of about 10 μm,
As a result of calculating the accessor concentration from the temperature dependence of mobility,
When using the conventional technology, the accessor concentration is 10I4~
10"am-' range.

本発明にかかる前記二つの実施例の分子巌エピタキシ用
基板ホルダを用いた場合にはアクセスタ濃度が1010
l5a’台の高純度のGaAs結晶を得た。
When the molecular epitaxy substrate holder of the above two embodiments according to the present invention is used, the accessor concentration is 1010.
A high purity GaAs crystal on the order of 15a' was obtained.

そして、本発明の前記二つの実施例とも、直径50mm
 GaAs基板の面内の温度分布は、基板温度が500
〜700℃の範囲に2いて、±6℃以内という良好な結
果を得た。
In both of the above two embodiments of the present invention, the diameter is 50 mm.
The in-plane temperature distribution of the GaAs substrate shows that the substrate temperature is 500°C.
Good results were obtained within ±6°C in the range of 2 to 700°C.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の1番目の発明によれば、熱放射に
より基板を加熱する熱放射体をシリコンによ)形成し、
該熱放射体の加熱手段に対向する面に、高融点金属の被
膜を施しておバ高融点金属の被膜は熱漬4%性がよいの
で、熱放射体を均一に加熱でき、この均一に加熱された
熱放射体からの熱放射により基板を均一に加熱でさるし
、シリコン製の熱放射体は熱放射率が大きく、したがっ
て基板を効率よく加熱できるため、加熱手段の周囲から
のガス放出量を低減でき、結晶成長中の成長室内の真空
度を同上させ得るので、基板上に高純度の結晶薄膜を成
長1せ得る効果がある。
According to the first aspect of the present invention described above, a thermal radiator that heats a substrate by thermal radiation is formed of silicon,
The surface of the heat radiator facing the heating means is coated with a high melting point metal.Since the high melting point metal coating has good heat soakability, the heat radiator can be heated uniformly. The heat radiation from the heated heat radiator uniformly heats the substrate, and the silicon heat radiator has a high thermal emissivity and can therefore efficiently heat the substrate, reducing the amount of gas released from around the heating means. Since the amount of crystal growth can be reduced and the degree of vacuum in the growth chamber during crystal growth can be increased, it is possible to grow a highly pure crystal thin film on a substrate.

また、本発明の2蕾目の発明によれば、熱放射体を高融
点金属により形成し、該熱放射体の基板に対向する面に
シリコンの被膜を施して2シ、高融点金属製の熱放射体
は熱伝24特性がよいので、この熱放射体からの熱放射
によシ基板を均一に加熱することができるし、シリコン
の被膜は熱放射率が大きいため、基板を効率よく力ロ熱
できる結果、加熱手段の周囲からのガス放出量を低減で
き、結晶成長中の成長室内の真空度を向上させ得るので
、基板上に尚純度の結晶薄膜を成長させ得る効果がある
According to the second invention of the present invention, the heat radiator is formed of a high melting point metal, and a silicon coating is applied to the surface of the heat radiator facing the substrate. The thermal radiator has good heat transfer characteristics, so the substrate can be uniformly heated by heat radiation from the thermal radiator, and the silicon coating has a high thermal emissivity, so it can efficiently heat the substrate. As a result of low heat generation, the amount of gas released from around the heating means can be reduced, and the degree of vacuum in the growth chamber during crystal growth can be improved, which has the effect of allowing a crystal thin film of higher purity to be grown on the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1番目の発明の一実施例を示す平面図
、第2図は第1図の縦喀正四図、第6図は本発明の2査
目の発明の一実施例の平面図、第4図は第6図の縦断正
面図、第5図は本発明と従来技術について、基板温度と
成長室真空度との関係を比較して示したグラフ、第6図
は従来技術を示す一部破断側面図である。 6・・・単結晶基板、9・・・基板ホルダ、11・・・
シリコン製の熱放射体、12・・・高融点金属の被膜、
13・・・スペーサ、14・・・基板と熱放射体間の空
間、17・・・高融点金属の熱放射体、18・・・シリ
コンの被膜。 ラ 牽 代理人 弁理士 小川勝男  り〇 第51¥] 基籾4度(°こ) 1 力O熱ヒー′7   29色シールド    3夕
た電9寸6基オ辰      7薯オ仄ホルフ゛8 ビ
ン茅 6 図 、5゜
FIG. 1 is a plan view showing an embodiment of the first invention of the present invention, FIG. 2 is a vertical diagonal square view of FIG. 1, and FIG. A plan view, FIG. 4 is a longitudinal sectional front view of FIG. 6, FIG. 5 is a graph comparing the relationship between the substrate temperature and the vacuum degree of the growth chamber for the present invention and the prior art, and FIG. 6 is for the prior art. It is a partially cutaway side view showing. 6... Single crystal substrate, 9... Substrate holder, 11...
Silicon heat radiator, 12... high melting point metal coating,
13... Spacer, 14... Space between substrate and heat radiator, 17... Heat radiator of high melting point metal, 18... Silicon coating. Ra Leading agent Patent attorney Katsuo Ogawa Ri〇 51 yen] Base 4 degrees (°ko) 1 Power O heat heat '7 29 color shield 3 Evening electricity 9 sun 6 pieces Otatsu 7 pieces O horf ゛ 8 Bottle grass 6 Figure, 5゜

Claims (1)

【特許請求の範囲】[Claims] 1、基板ホルダと、該基板に対して空間をおいて対向さ
せて配置された熱放射体と、該熱放射体を加熱する加熱
手段とからなる分子線エピタキシ用基板ホルダにおいて
、前記熱放射体がシリコンよりなり、かつ前記熱放射体
の前記加熱手段に対向する面に高融点金属の被膜が設け
られたものか、前記熱放射体が高融点金属よりなり、か
つ前記熱放射体の基板と対向する面にシリコン被膜が設
けられたものであることを特徴とする分子線エピタキシ
用基板ホルダ。
1. A substrate holder for molecular beam epitaxy comprising a substrate holder, a thermal radiator disposed facing the substrate with a space therebetween, and a heating means for heating the thermal radiator, in which the thermal radiator is made of silicon and a coating of a high melting point metal is provided on the surface of the heat radiating body facing the heating means, or the heat radiating body is made of a high melting point metal and the substrate of the heat radiating body is A substrate holder for molecular beam epitaxy, characterized in that silicon coatings are provided on opposing surfaces.
JP12102586A 1986-05-28 1986-05-28 Substrate holder for molecular beam epitaxy Pending JPS62279624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102586A JPS62279624A (en) 1986-05-28 1986-05-28 Substrate holder for molecular beam epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102586A JPS62279624A (en) 1986-05-28 1986-05-28 Substrate holder for molecular beam epitaxy

Publications (1)

Publication Number Publication Date
JPS62279624A true JPS62279624A (en) 1987-12-04

Family

ID=14800948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102586A Pending JPS62279624A (en) 1986-05-28 1986-05-28 Substrate holder for molecular beam epitaxy

Country Status (1)

Country Link
JP (1) JPS62279624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169453A (en) * 1989-03-20 1992-12-08 Toyoko Kagaku Co., Ltd. Wafer supporting jig and a decompressed gas phase growth method using such a jig
JPH07161801A (en) * 1993-12-02 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Substrate holder
US5580388A (en) * 1993-01-21 1996-12-03 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169453A (en) * 1989-03-20 1992-12-08 Toyoko Kagaku Co., Ltd. Wafer supporting jig and a decompressed gas phase growth method using such a jig
US5580388A (en) * 1993-01-21 1996-12-03 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors
JPH07161801A (en) * 1993-12-02 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Substrate holder

Similar Documents

Publication Publication Date Title
Stultz et al. Arc lamp zone melting and recrystallization of Si films on oxidized silicon substrates
JPS62279624A (en) Substrate holder for molecular beam epitaxy
JP3206375B2 (en) Method for manufacturing single crystal thin film
JP2001114598A (en) Method of and device for producing silicon carbide single crystal
JP2868328B2 (en) Method for producing large diameter silicon carbide single crystal ingot and silicon carbide single crystal for seed crystal
JPH027415A (en) Formation of soi thin film
JPS63140085A (en) Film forming device
US5925429A (en) Pyrolytic boron nitride container, and manufacture thereof
JPS62196814A (en) Substrate holder for molecular beam epitaxy
JPH04298020A (en) Manufacture of silicon thin film crystal
JP3078574B2 (en) Vapor phase growth equipment
JPS6358916A (en) Molecular beam epitaxy equipment
JP2944426B2 (en) Molecular beam epitaxy equipment
JPS63241921A (en) Substrate heating device for molecular beam epitaxy system
JPH04289168A (en) Thin film forming substrate holder
JP2850642B2 (en) Substrate holder for mercury cadmium tellurium thin film in molecular beam epitaxy equipment
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPS6074425A (en) Substrate heating apparatus
JPH08239296A (en) Production of diamond single crystal film
JPS58110486A (en) Growing method for single crystal of semiconductor
JP3198971B2 (en) Molecular beam epitaxy equipment
JPH022284B2 (en)
JPS6358915A (en) Molecular beam epitaxy equipment
JPH03271193A (en) Substrate holder