JPH06207725A - Ice heat storage apparatus - Google Patents

Ice heat storage apparatus

Info

Publication number
JPH06207725A
JPH06207725A JP229293A JP229293A JPH06207725A JP H06207725 A JPH06207725 A JP H06207725A JP 229293 A JP229293 A JP 229293A JP 229293 A JP229293 A JP 229293A JP H06207725 A JPH06207725 A JP H06207725A
Authority
JP
Japan
Prior art keywords
ice
heat storage
storage medium
storage tank
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP229293A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakuma
勉 佐久間
Kazuo Saito
和夫 齊藤
Toshio Otaka
敏男 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP229293A priority Critical patent/JPH06207725A/en
Publication of JPH06207725A publication Critical patent/JPH06207725A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a loading rate of ice in an ice heat storage tank by injecting a fluid, in which a temperature thereof is lower than a solidification point of a heat storage medium and which has a greater specific gravity than that of the heat storage medium and is not dissolved in the heat storage medium, from the lower portion thereof into a cylindrical member on a bottom in the ice heat storage tank, hereby producing powdered ice pieces, and depositing the heat storage medium on an external wall of the cylindrical member for formation of ice of the heat storage medium thereon. CONSTITUTION:An ice heat storage tank 1 is loaded therein with water M being a heat storage medium and with a refrigerant R being a non-aqueous fluid which has a temperature thereof lower than a solidifiaction point of the ice M and has a greater specific gravity than that of the water M. A heat transfer pipe 17 is vertically provided as a cylindrical member so as to surround the periphery of an infection outlet 15 a which opens toward the interior of the ice heat storage tank 1. A refrigrerant pump 11 is cooled and is simplified from a nozzle 15 into the heat transfer pipe 17, and the refrigerant R overflown from an opening formed in the heat transfer pipe 17 at the upper end of the same makes direct contact with the water M. Ice pieces K are produced and are disposed on an external wall of the heat transfer pipe. The ice is grown as clusters L of ice.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄熱媒体と蓄熱媒体
の凝固点以下でかつ蓄熱媒体に溶解しない液体との直接
接触により蓄熱媒体を凍結製氷させ、この製氷物の吸熱
作用を利用する氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage system for freezing and ice-making a heat storage medium by direct contact between the heat storage medium and a liquid which is below the freezing point of the heat storage medium and does not dissolve in the heat storage medium, and utilizes the heat absorbing action of this ice-making product. Regarding the device.

【0002】[0002]

【従来の技術】氷蓄熱装置を備えた空気調和システム
は、夏期の昼間に集中する冷房用電力需要の一部を夜間
にシフトし、電力の平準化を可能とするものである。つ
まり、割安な夜間電力を利用して蓄冷熱を行い、この蓄
冷熱を昼間の冷房に使用することによって、ユーザは低
ランニングコストによる空調が得られ、一方電力会社は
電力需要のピークシフトにより設備稼働率の向上が図ら
れる。
2. Description of the Related Art An air conditioning system equipped with an ice heat storage device is capable of leveling electric power by shifting a part of the electric power demand for cooling concentrated during the daytime in summer to nighttime. In other words, low-cost nighttime electricity is used to store cold heat, and by using this cold heat for air conditioning in the daytime, users can obtain air conditioning with low running costs, while electric power companies can install equipment by peak shifting power demand. The operating rate is improved.

【0003】氷蓄熱装置における氷の製氷方法は、大別
すると製氷用熱交換器上で着氷・解氷を行うスタティッ
ク型と、製氷用熱交換器上で着氷させないダイナミック
型がある。
The methods of making ice in the ice heat storage device are roughly classified into a static type in which ice accretion / thawing is performed on the ice making heat exchanger and a dynamic type in which ice is not made to accrete on the ice making heat exchanger.

【0004】一般に、スタティック型は、構造が単純で
ある反面、氷の成長に伴って伝熱抵抗が増加するため、
製氷のための冷却温度を徐々に下げなければならず、効
率の低下を招くといった本質的な欠点があるのに対し、
ダイナミック型ではスタティック型に比較して冷媒の冷
却温度を高くすることができるため、冷凍機の成績係数
が良好となり、氷蓄熱槽内に熱交換器などを配置する必
要がなく、氷の充填率(IPF:Ice Packing Factor)
も向上する。
Generally, the static type has a simple structure, but on the other hand, the heat transfer resistance increases as the ice grows.
While the cooling temperature for ice making has to be gradually lowered, which has the essential drawback of lowering efficiency,
Since the dynamic type can raise the cooling temperature of the refrigerant higher than the static type, the coefficient of performance of the refrigerator is good and there is no need to arrange a heat exchanger in the ice heat storage tank and the filling rate of ice (IPF: Ice Packing Factor)
Also improves.

【0005】ダイナミック型にも種々の方式があるが、
そのーつに低温で比重が1以上の非水溶性液体(冷媒)
と水との直接接触により製氷する方式がある。これは、
蓄熱槽の底部に存在する非水溶性液体を0℃以下に冷却
して蓄熱槽内に配置されたノズルを介して水中に噴出さ
せるものである。この冷却された水溶性液体の循環によ
って蓄熱槽内ではシャーベット状の氷(氷粒)が生成さ
れ、この氷は浮力によって上昇し、蓄熱槽上部から貯溜
され、浮遊して存在することになる。そして、必要に応
じてこの氷の溶解時における吸熱作用を空調機の冷房運
転に利用する。
There are various types in the dynamic type,
At the same time, it is a non-water-soluble liquid (refrigerant) that has a specific gravity of 1 or more at low temperature.
There is a method to make ice by direct contact with water. this is,
The water-insoluble liquid existing at the bottom of the heat storage tank is cooled to 0 ° C. or less and jetted into water through a nozzle arranged in the heat storage tank. Due to the circulation of the cooled water-soluble liquid, sherbet-like ice (ice particles) is generated in the heat storage tank, and this ice rises due to buoyancy and is stored from the upper portion of the heat storage tank and floats. Then, if necessary, the endothermic action when the ice is melted is used for the cooling operation of the air conditioner.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ようなダイナミック型氷蓄熱システムにおいては、生成
されて浮遊するシャーベット状の氷では、氷間の圧縮が
ほとんどないため、氷の占める体積率が低く、IPFが
低い欠点があった。また、非水溶性液体と水との熱交換
は、ノズルから水中に噴出された非水溶性液体が水中を
落下する間に行われるため、ノズルの配置は、氷蓄熱槽
の底部より熱交換に必要な距離だけ上方でなければなら
ない。通常、この落下距離は1m程度必要である。つま
り、ノズルより下方の1m程度までの領域は氷の製氷領
域で、ノズルより上方が氷の貯溜領域となる。この場
合、氷蓄熱槽においてノズルより低い領域はデッドスペ
ースとなることを意味し、氷を貯溜することはできず、
IPFの低い原因になっている。仮に、ノズルより下方
の領域でも氷の貯溜とともに製氷を行おうとすると、製
氷時にノズルが氷結し、噴出孔が詰まって冷媒の供給が
できなくなる。
However, in the dynamic ice heat storage system as described above, the sherbet-like ice that is generated and floats has almost no compression between the ices, so that the volume ratio of the ice is low. , The IPF was low. Further, heat exchange between the non-water-soluble liquid and water is performed while the non-water-soluble liquid ejected from the nozzle into the water falls in the water, so that the nozzle is arranged so that heat is exchanged from the bottom of the ice heat storage tank. Must be above the required distance. Usually, this fall distance is required to be about 1 m. That is, the area below the nozzle up to about 1 m is the ice making area, and the area above the nozzle is the ice storage area. In this case, the area lower than the nozzle in the ice heat storage tank becomes a dead space, and it is not possible to store ice,
It is a cause of low IPF. If it is attempted to make ice together with ice storage in a region below the nozzle, the nozzle freezes during ice making, and the ejection holes are clogged, making it impossible to supply the refrigerant.

【0007】また、ノズルより上方だけを氷の貯溜領域
とした場合においても、ノズルの噴出孔が徐々に凍結
し、これが成長して噴出孔が詰まり、製氷の継続ができ
なくなるという問題があった。
Further, even when the ice storage area is provided only above the nozzle, there is a problem that the ejection hole of the nozzle gradually freezes and grows to clog the ejection hole, making it impossible to continue ice making. .

【0008】そこで、この発明は、氷蓄熱槽における氷
の充填率をより向上させることを目的としている。
Therefore, an object of the present invention is to further improve the filling rate of ice in the ice heat storage tank.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、蓄熱媒体と、液温が蓄熱媒体の凝固点
以下で蓄熱媒体より比重が大きくかつ蓄熱媒体に溶解し
ない液体とを氷蓄熱槽に収納し、この氷蓄熱槽の底部
に、前記液体を回収し途中に冷却手段を備えた液体回収
配管の一端を接続し、この液体回収配管の他端に氷蓄熱
槽内の下部から液体を噴出する噴出手段を設け、この噴
出手段の噴出口周囲を囲むように、前記氷蓄熱槽内の底
部に、上端が開口する筒状部材を設けた構成としてあ
る。
In order to achieve the above object, the present invention provides a heat storage medium and a liquid having a liquid temperature below the freezing point of the heat storage medium and having a specific gravity larger than that of the heat storage medium and not dissolved in the ice. Stored in a heat storage tank, the bottom of this ice storage tank is connected to one end of a liquid recovery pipe that recovers the liquid and has a cooling means in the middle, and the other end of this liquid recovery pipe is connected to the bottom of the ice storage tank. A jetting means for jetting the liquid is provided, and a tubular member having an open upper end is provided at the bottom of the ice heat storage tank so as to surround the jetting outlet of the jetting means.

【0010】[0010]

【作用】このような構成の氷蓄熱装置によれば、氷蓄熱
槽の底部に滞留する液体は、液体回収管から回収されて
冷却手段により冷却された後、噴出手段から筒状部材内
に噴出される。筒状部材内に噴出された液体は、筒状部
材内を上昇し上端から氷蓄熱槽内に流出し、蓄熱媒体と
接触した際に粒状の氷が生成され、これと同時に筒状部
材の外周に接触する蓄熱媒体との熱伝導などにより、筒
状部材の外周に蓄熱媒体が着氷する。
According to the ice heat storage device having such a configuration, the liquid staying at the bottom of the ice heat storage tank is recovered from the liquid recovery pipe and cooled by the cooling means, and then ejected from the ejection means into the tubular member. To be done. The liquid ejected into the tubular member rises in the tubular member, flows out from the upper end into the ice heat storage tank, and when contacted with the heat storage medium, granular ice is generated, and at the same time, the outer periphery of the tubular member is formed. Due to heat conduction with the heat storage medium that comes into contact with the heat storage medium, the heat storage medium is iced on the outer periphery of the tubular member.

【0011】[0011]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、この発明の一実施例による氷蓄熱
装置の全体構成を示す断面図である。氷蓄熱槽1内は、
蓄熱媒体である水Mと、水Mの凝固点以下、つまり0℃
以下の液温で水Mより比重が大きい非水溶性の液体であ
る冷媒Rとで満たされている。氷蓄熱槽1の側壁近傍の
底部には、下方に突出する冷媒貯溜部3が設けられ、水
Mより比重が大きい冷媒Rは、水Mと分離して大部分が
冷媒貯溜部3に沈殿して存在することになる。冷媒貯溜
部3の下端には、冷媒貯溜部3内の冷媒Rを回収する液
体回収配管としての冷媒配管5の一端が接続されてい
る。冷媒配管5には、冷媒貯溜部3側から順に、冷媒R
を循環させる冷媒ポンプ11、冷媒ポンプ11から送ら
れる冷媒を冷却する冷却手段としての冷凍機13が設け
られている。
FIG. 1 is a sectional view showing the overall structure of an ice heat storage device according to an embodiment of the present invention. Inside the ice heat storage tank 1,
Water M, which is a heat storage medium, and below the freezing point of water M, that is, 0 ° C
It is filled with a refrigerant R which is a water-insoluble liquid having a specific gravity larger than that of water M at the following liquid temperature. At the bottom near the side wall of the ice heat storage tank 1, a refrigerant storage part 3 protruding downward is provided, and the refrigerant R having a larger specific gravity than the water M is separated from the water M and most of the refrigerant is deposited in the refrigerant storage part 3. Will exist. One end of a refrigerant pipe 5 as a liquid recovery pipe for recovering the refrigerant R in the refrigerant reservoir 3 is connected to the lower end of the refrigerant reservoir 3. In the refrigerant pipe 5, the refrigerant R is sequentially provided from the refrigerant reservoir 3 side.
A refrigerant pump 11 that circulates the refrigerant and a refrigerator 13 that serves as a cooling unit that cools the refrigerant sent from the refrigerant pump 11 are provided.

【0013】冷媒配管5の他端は、二方に分岐し、その
各先端に冷媒Rを噴出する噴出手段としてのノズル15
が設けられている。ノズル15は氷蓄熱槽1の底部に装
着され、噴出口15aが氷蓄熱槽1の内部に開口してい
る。噴出口15aの周囲を囲むように氷蓄熱槽1内の底
部には、筒状部材としての伝熱パイプ17が垂直に設け
られている。伝熱パイプ17は、上端に開口部17aが
形成され、この開口部17aは氷蓄熱槽1内の水M中に
位置している。
The other end of the refrigerant pipe 5 is branched in two directions, and a nozzle 15 as a jetting means for jetting the refrigerant R at each tip thereof.
Is provided. The nozzle 15 is attached to the bottom of the ice heat storage tank 1, and the ejection port 15 a opens inside the ice heat storage tank 1. A heat transfer pipe 17 as a tubular member is vertically provided at the bottom of the ice heat storage tank 1 so as to surround the ejection port 15a. The heat transfer pipe 17 has an opening 17a formed at the upper end, and the opening 17a is located in the water M in the ice heat storage tank 1.

【0014】伝熱パイプ17内には、円柱状のスペーサ
19が上下両端に設けた複数の支持棒21を介して伝熱
パイプ17内壁に固定された状態で収納されている。ス
ペーサ19は、上下両端が閉塞しており、下端がノズル
15から離れた位置にあり、上端が伝熱パイプ17の開
口部17aより若干下方に位置している。スペーサ19
の外周と伝熱パイプ17の内壁との間には、環状の冷媒
通路23が形成されている。
A cylindrical spacer 19 is accommodated in the heat transfer pipe 17 in a state of being fixed to the inner wall of the heat transfer pipe 17 via a plurality of support rods 21 provided at both upper and lower ends. The upper and lower ends of the spacer 19 are closed, the lower end is located away from the nozzle 15, and the upper end is located slightly below the opening 17 a of the heat transfer pipe 17. Spacer 19
An annular refrigerant passage 23 is formed between the outer circumference of the heat transfer pipe 17 and the inner wall of the heat transfer pipe 17.

【0015】このような構成の氷蓄熱装置において、冷
媒ポンプ11を駆動すると、冷媒貯溜部3内の冷媒R
は、冷凍機13で任意の温度に冷却されてノズル15か
ら伝熱パイプ17内に供給される。そして、伝熱パイプ
17内が冷媒Rで満たされ、伝熱パイプ17の上端の開
口部17aからオーバーフローした冷媒Rは、水Mと直
接接触して熱交換を行い、水Mを冷却しながら氷蓄熱槽
1の底部に流下し、冷媒貯溜部3に導かれ貯溜される。
In the ice heat storage device having such a structure, when the refrigerant pump 11 is driven, the refrigerant R in the refrigerant storage section 3 is driven.
Is cooled to an arbitrary temperature in the refrigerator 13 and supplied from the nozzle 15 into the heat transfer pipe 17. Then, the inside of the heat transfer pipe 17 is filled with the refrigerant R, and the refrigerant R overflowing from the opening 17a at the upper end of the heat transfer pipe 17 makes direct contact with the water M to perform heat exchange, cooling the water M and ice. It flows down to the bottom of the heat storage tank 1 and is guided to and stored in the refrigerant storage unit 3.

【0016】このような行程を繰り返し、水Mの温度が
0℃に到達すると、冷媒Rと水Mとの接触により、氷の
生成が開始される。生成された氷は、その一部が氷粒
(シャーベット状の氷)Kとなり、この氷粒Kは浮力で
水中を上昇し氷蓄熱槽1の上部に浮遊する。そして、こ
の状態を継続すると、生成された氷粒Kは、氷蓄熱槽1
の上部から下部へと徐々に貯溜されて行く。
When the temperature of the water M reaches 0 ° C. by repeating the above process, the contact between the refrigerant R and the water M causes the generation of ice. A part of the generated ice becomes ice particles (sherbet-like ice) K, and the ice particles K rise in water due to buoyancy and float above the ice heat storage tank 1. Then, when this state is continued, the generated ice particles K are
It is gradually accumulated from the top to the bottom.

【0017】一方、ノズル15から供給された冷媒Rが
伝熱パイプ17内の冷媒通路23を上昇し、伝熱パイプ
15の上端の開口部15aからオーバーフローする過程
において、冷媒通路23内の冷媒Rは伝熱パイプ17と
の熱伝達により伝熱パイプ17外壁に接する水Mと熱交
換を行い、伝熱パイプ17の外壁に着氷し始め、次第に
氷塊Lとして成長する。冷媒通路23は、スペーサ19
が収納されることで通路面積が小さくなっているので、
ここでの冷媒Rの流速は高く保たれ、熱伝達効率が高い
ものとなる。またこのとき、オーバーフローして伝熱パ
イプ17の外壁を伝わって落下する過冷却状態の冷媒R
が存在する際にも、着氷した氷の成長を促進することに
なる。伝熱パイプ17の外壁に生成された氷塊Lは、解
氷時には水Mの循環によって外側から解けて行くので、
追加製氷が可能である。
On the other hand, in the process in which the refrigerant R supplied from the nozzle 15 rises in the refrigerant passage 23 in the heat transfer pipe 17 and overflows from the opening 15a at the upper end of the heat transfer pipe 15, the refrigerant R in the refrigerant passage 23. Heat-exchanges with the water M in contact with the outer wall of the heat transfer pipe 17 by heat transfer with the heat transfer pipe 17, starts icing on the outer wall of the heat transfer pipe 17, and gradually grows as an ice block L. The refrigerant passage 23 has a spacer 19
Since the passage area is reduced by storing the
The flow velocity of the refrigerant R here is kept high, and the heat transfer efficiency is high. Further, at this time, the refrigerant R in a supercooled state that overflows and falls along the outer wall of the heat transfer pipe 17
In the presence of, will also accelerate the growth of ice that has landed. The ice block L generated on the outer wall of the heat transfer pipe 17 is melted from the outside by the circulation of the water M when the ice is melted.
Additional ice making is possible.

【0018】このような製氷方法によると、伝熱パイプ
17の外周に密度の高い氷塊Lが生成され、氷蓄熱槽1
内の氷塊L以外の部位では氷粒K状態となり、氷蓄熱槽
1内の水M領域の全域において氷の生成が可能となって
高い氷充填率が得られることになる。さらに、伝熱パイ
プ17内は冷媒Rで満たされているため、ノズル15は
常に冷媒Rに浸っており、ノズル15の噴出口15aが
氷結して詰まるようなことはない。また仮に、冷媒Rと
水Mが接触する伝熱パイプ17の上端面に氷が着氷し、
次第に成長しても、伝熱パイプ17上端面の開口部17
aの径は充分大きいため、製氷途中において伝熱パイプ
17上端面が詰まり冷媒Rの供給ができなくなるような
ことはなく、長時間の製氷運転が可能である。
According to such an ice making method, a high-density ice block L is generated on the outer periphery of the heat transfer pipe 17, and the ice heat storage tank 1
The ice particles K are in a state other than the ice blocks L in the inside, and the ice can be generated in the entire region of the water M in the ice storage tank 1, and a high ice filling rate can be obtained. Further, since the heat transfer pipe 17 is filled with the refrigerant R, the nozzle 15 is always immersed in the refrigerant R, and the ejection port 15a of the nozzle 15 is not frozen and clogged. Further, temporarily, ice is deposited on the upper end surface of the heat transfer pipe 17 where the refrigerant R and the water M come into contact with each other,
Even if it grows gradually, the opening 17 on the upper end surface of the heat transfer pipe 17
Since the diameter of a is sufficiently large, the upper end surface of the heat transfer pipe 17 is not blocked during the ice making and the refrigerant R cannot be supplied, and the ice making operation can be performed for a long time.

【0019】[0019]

【発明の効果】以上説明してきたように、この発明によ
れば、氷蓄熱槽内の底部に設けた筒状部材内に、液温が
蓄熱媒体の凝固点以下で蓄熱媒体より比重が大きくかつ
蓄熱媒体に溶解しない液体を下方から噴出させ、この液
体が筒状部材の上端から氷蓄熱槽内に流出して蓄熱媒体
との接触により粒状の氷を生成させると同時に、筒状部
材の外壁に接触する蓄熱媒体との熱伝導などにより、筒
状部材の外壁に蓄熱媒体を着氷させるようにしたため、
氷蓄熱槽内のほぼ全域において氷の生成が可能となり、
高い氷充填率を得ることができる。また、液体を噴出す
る噴出手段は、筒状部材内で液体中に常時浸っているの
で、噴出口への着氷を防止できる。
As described above, according to the present invention, in the cylindrical member provided at the bottom of the ice heat storage tank, the liquid temperature is lower than the freezing point of the heat storage medium and the specific gravity is larger than that of the heat storage medium. A liquid that does not dissolve in the medium is ejected from below, and this liquid flows into the ice heat storage tank from the upper end of the tubular member to generate granular ice by contact with the heat storage medium, and at the same time it contacts the outer wall of the tubular member. By heat conduction with the heat storage medium, etc., the heat storage medium is iced on the outer wall of the tubular member.
It is possible to generate ice almost in the entire ice storage tank,
A high ice filling rate can be obtained. Further, since the jetting means for jetting the liquid is constantly immersed in the liquid inside the tubular member, it is possible to prevent icing on the jet outlet.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による氷蓄熱装置の全体構
成を示す断面図である。
FIG. 1 is a sectional view showing the overall structure of an ice heat storage device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

M 水(蓄熱媒体) R 冷媒(液体) 1 氷蓄熱槽 5 冷媒配管(液体回収配管) 13 冷凍機(冷却手段) 15 ノズル(噴出手段) 15a 噴出口 17 伝熱パイプ(筒状部材) M Water (heat storage medium) R Refrigerant (liquid) 1 Ice heat storage tank 5 Refrigerant pipe (liquid recovery pipe) 13 Refrigerator (cooling means) 15 Nozzle (jetting means) 15a Jet outlet 17 Heat transfer pipe (cylindrical member)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱媒体と、液温が蓄熱媒体の凝固点以
下で蓄熱媒体より比重が大きくかつ蓄熱媒体に溶解しな
い液体とを氷蓄熱槽に収納し、この氷蓄熱槽の底部に、
前記液体を回収し途中に冷却手段を備えた液体回収配管
の一端を接続し、この液体回収配管の他端に氷蓄熱槽内
の下部から液体を噴出する噴出手段を設け、この噴出手
段の噴出口周囲を囲むように、前記氷蓄熱槽内の底部
に、上端が開口する筒状部材を設けたことを特徴とする
氷蓄熱装置。
1. A heat storage medium and a liquid whose liquid temperature is below the freezing point of the heat storage medium and whose specific gravity is greater than that of the heat storage medium and does not dissolve in the heat storage medium are stored in an ice heat storage tank, and at the bottom of this ice heat storage tank,
One end of the liquid recovery pipe for recovering the liquid and having a cooling means in the middle is connected, and the other end of the liquid recovery pipe is provided with ejection means for ejecting the liquid from the lower portion in the ice heat storage tank. An ice heat storage device, characterized in that a cylindrical member having an open upper end is provided at the bottom of the ice heat storage tank so as to surround the outlet.
JP229293A 1993-01-11 1993-01-11 Ice heat storage apparatus Pending JPH06207725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP229293A JPH06207725A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP229293A JPH06207725A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Publications (1)

Publication Number Publication Date
JPH06207725A true JPH06207725A (en) 1994-07-26

Family

ID=11525303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP229293A Pending JPH06207725A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Country Status (1)

Country Link
JP (1) JPH06207725A (en)

Similar Documents

Publication Publication Date Title
WO2004080892A9 (en) Process for producing slush nitrogen and apparatus therefor
CA1287045C (en) Water freezing enhancement for thermal storage brine tube
JPH06207725A (en) Ice heat storage apparatus
JP2696046B2 (en) Latent heat storage device
JPH06207724A (en) Ice heat storage apparatus
JPH102644A (en) Ice cold heat storage apparatus
JPH0763450A (en) Dynamic type ice heat accumulator
JPH0942715A (en) Ice thermal storage apparatus
JP2002168483A (en) Ice storing method and ice storage device
JPH06201163A (en) Dynamic ice heat accumulator
JP2547918B2 (en) Latent heat storage device
JPH1047823A (en) Ice making method and ice heat storage device
JPH03140767A (en) Ice heat accumulator
JPH05288372A (en) Ice accumulator
JPH06201162A (en) Dynamic ice heat accumulator
JP2502029B2 (en) Ice heat storage device
JPH0755302A (en) Dynamic ice storage apparatus
JPH0763449A (en) Dynamic type ice heat accumulator
JPH07103518A (en) Ice heat accumulator
JPH07253262A (en) Dynamic type ice heat accumulating device
JPH06300320A (en) Dynamic type ice heat storing device
JPH0727456A (en) Dynamic type ice heat accumulation device
JPH04174229A (en) Ice heat storage device
JPH068694B2 (en) Structure of Ice Storage Radiator in Ice Storage System
JPH04240366A (en) Ice heat accumulating device