JPH03140767A - Ice heat accumulator - Google Patents

Ice heat accumulator

Info

Publication number
JPH03140767A
JPH03140767A JP1277831A JP27783189A JPH03140767A JP H03140767 A JPH03140767 A JP H03140767A JP 1277831 A JP1277831 A JP 1277831A JP 27783189 A JP27783189 A JP 27783189A JP H03140767 A JPH03140767 A JP H03140767A
Authority
JP
Japan
Prior art keywords
oily liquid
ice
aqueous solution
liquid
oily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277831A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamashita
浩幸 山下
Yuji Nakazawa
仲沢 優司
Shingo Ito
信吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1277831A priority Critical patent/JPH03140767A/en
Publication of JPH03140767A publication Critical patent/JPH03140767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To enable continuous ice making without closing the supply port of an oily liquid by cooling extracted oily liquid to the freezing temperature or less of an aqueous solution and dropping and feeding the oily liquid cooled from the upper section of the aqueous solution stored in an ice freezing tank. CONSTITUTION:An oily liquid O positioned in a lower part in an ice freezing tank 2 is extracted by an oily-liquid extracting means 3, cooled at the freezing temperature or less of an aqueous solution W by an oily-liquid cooling means 4, forwarded to an oily-liquid supply means 5, and dropped and fed to the aqueous solution W stored in the ice freezing tank 2 from the upper section of the aqueous solution W. The dropped and fed oily liquid O falls in the aqueous solution W due to the difference in specific gravity between the liquid O and the aqueous solution W, and is heat-exchanged with the aqueous solution W in the process, and the aqueous solution W is cooled up to the freezing temperature of the aqueous solution W.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱媒体としての水溶液と冷却媒体としての
油性液体とを直接接触させることで、上記水溶液を冷却
して氷化し、生成した氷を貯留する氷蓄熱装置に係り、
特に、製氷能力の向上対策に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention cools and freezes the aqueous solution by bringing an aqueous solution as a heat storage medium into direct contact with an oily liquid as a cooling medium, and the resulting ice Regarding the ice heat storage device that stores
In particular, it concerns measures to improve ice-making capacity.

(従来の技術) 近年、工業プラントやビル等における比較的大規模な空
調システムには蓄熱空調システムが利用され、冷房負荷
のピーク時における電力=要の軽減並びにオフビーク時
における電力需要の拡大を図るようにしており、その中
でも氷蓄熱方式が注目されている。
(Conventional technology) In recent years, thermal storage air conditioning systems have been used in relatively large-scale air conditioning systems in industrial plants, buildings, etc., with the aim of reducing the power requirement during peak cooling load times and increasing power demand during off-peak times. Among them, the ice heat storage method is attracting attention.

この氷蓄熱方式を採用した空調システムのこれまでの一
般的なものとしては、スタティック方式と呼ばれるもの
であって、製氷用の水を収容した収容タンク内に冷凍回
路における冷媒蒸発用の冷却管を導入配設し、冷却管内
での冷媒の蒸発により上記水を冷却して該冷却管の表面
で氷を生成し、該氷を上記収容タンク内に蓄熱媒体とし
て貯留するものである。
The most common type of air conditioning system that has adopted this ice heat storage method is called a static system, in which a cooling pipe for evaporating the refrigerant in the refrigeration circuit is placed inside a storage tank containing water for ice making. The water is cooled by evaporation of the refrigerant in the cooling pipe to generate ice on the surface of the cooling pipe, and the ice is stored as a heat storage medium in the storage tank.

しかし、このような方式では、冷却管に付着した氷が伝
熱抵抗となり、氷の厚さが厚くなるに従って伝熱性能が
低下することになり、該システムの成績係数COPが低
下するという欠点があった。
However, in this type of system, the ice adhering to the cooling pipes becomes a heat transfer resistance, and as the thickness of the ice increases, the heat transfer performance decreases, resulting in a decrease in the coefficient of performance COP of the system. there were.

また、冷却管上に生成した氷は氷塊となっているために
氷の放熱時において迅速且つ均一な融解を行い難く、負
荷変動に追従した放熱が得難いといった課題をも有して
いるものであった。
Furthermore, since the ice formed on the cooling pipes is in the form of ice blocks, it is difficult to melt the ice quickly and uniformly during heat dissipation, and it is difficult to obtain heat dissipation that follows load fluctuations. Ta.

そこで、これらの問題を解決するための従来技術として
、特開昭56−25664号公報に示されるような氷蓄
熱装置がある。この装置は、製氷用水溶液の凝固点以下
に冷却した油性液体を水溶液中に浸漬した供給管によっ
て滴状にして注入することにより、該水溶液と油性液体
とを直接接触させて熱交換を行わせ、該水溶液を油性液
体の周囲で結晶化させ、この結晶を蓄熱媒体として貯留
するようにしたものである。
Therefore, as a conventional technique for solving these problems, there is an ice heat storage device as disclosed in Japanese Patent Application Laid-Open No. 56-25664. This device injects an oily liquid cooled below the freezing point of an aqueous ice-making solution in the form of drops through a supply pipe immersed in the aqueous solution, thereby bringing the aqueous solution and the oily liquid into direct contact to perform heat exchange. The aqueous solution is crystallized around the oily liquid, and the crystals are stored as a heat storage medium.

(発明が解決しようとする課題) しかし、上述したような方式のものにあっては、供給管
の供給口が水溶液に接触しているため、この供給口付近
の水溶液が冷却されることで、該水溶液が供給口に氷と
なって付着することがある。
(Problem to be Solved by the Invention) However, in the above-mentioned system, since the supply port of the supply pipe is in contact with the aqueous solution, the aqueous solution near the supply port is cooled. The aqueous solution may adhere to the supply port as ice.

そして、この付着量が多くなると、該氷が供給口を閉塞
してしまい、油性液体の注入が損われ、連続製氷が行え
なくなるおそれがあった。そこで、本発明は、油性液体
の供給口を閉塞することなく連続製氷を可能にした氷蓄
熱装置を得ることを目的とする。
If the amount of this adhesion increases, the ice may block the supply port, impairing the injection of the oily liquid, and making it impossible to make continuous ice. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain an ice heat storage device that enables continuous ice making without clogging the oil-based liquid supply port.

(課題を解決するための手段) 上記の目的を達成するために、本発明は、冷却媒体とし
ての油性液体の供給口と蓄熱媒体としての水溶液とを非
接触状態で製氷を行うようにした。
(Means for Solving the Problems) In order to achieve the above object, the present invention performs ice making in a non-contact state between a supply port for an oily liquid as a cooling medium and an aqueous solution as a heat storage medium.

その具体的な手段は以下に述べるとおりである。The specific means are as described below.

先ず、請求項(1)に係る発明は、第1図に示すように
、製氷用の水溶液(W)と該水溶液(W)より比重量が
大きい油性液体(O)とを貯留する製氷槽(2)と、該
製氷槽(2)に接続され、製氷槽(2)内に貯留された
油性液体(O)を製氷槽(2)外部に取出す油性液体取
出手段(3)と、該油性液体取出手段(3)が接続され
、油性液体取出手段(3)で取出された油性液体(O)
を上記水溶液(W)の凍結温度以下に冷却する油性液体
冷却手段(4)と、該油性液体冷却手段(4)に接続さ
れ、油性液体冷却手段(4)で冷却された油性液体(O
)を上記製氷槽(2)に貯留されている水溶液(W)の
上方から落下供給する供給ノズル(52)を有する油性
液体供給手段(5)とから構成されている。
First, the invention according to claim (1), as shown in FIG. 1, provides an ice-making tank ( 2), an oily liquid extraction means (3) connected to the ice making tank (2) and for taking out the oily liquid (O) stored in the ice making tank (2) to the outside of the ice making tank (2), and the oily liquid The extraction means (3) is connected and the oily liquid (O) is taken out by the oily liquid extraction means (3).
an oily liquid cooling means (4) that cools the aqueous solution (W) below the freezing temperature of the aqueous solution (W);
) from above the aqueous solution (W) stored in the ice-making tank (2), and an oil-based liquid supply means (5) having a supply nozzle (52) for supplying the aqueous solution (W) stored in the ice-making tank (2).

一方、請求項(2に係る発明は、第2図および第3図に
示すように、製氷用の水溶液(W)と該水溶液(W)よ
り比重量が大きい油性液体(O)とを貯留する製氷#f
!(2)と、該製氷槽(2)に接続され、製氷槽(2)
内に貯留された油性液体(O)を製氷槽(2)外部に取
出す油性液体取出手段(3)と、該油性液体取出手段(
3)が接続され、油性液体取出手段(3)で取出された
油性液体(O)を上記水溶液(W)の凍結温度以下に冷
却する油性液体冷却手段(4)と、該油性液体冷却手段
(4)に接続され、油性液体冷却手段(4)で冷却され
た油性液体(O)を上記製氷槽(2)内の油性液体層側
から水溶液(W)と油性液体(O)との境界面に向って
噴出させるべく油性液体(O)中に浸漬された噴射ノズ
ル(73)を備えた油性液体噴出手段(7)とから構成
されている。
On the other hand, the invention according to claim 2 stores an aqueous solution (W) for ice making and an oily liquid (O) having a larger specific weight than the aqueous solution (W), as shown in FIGS. 2 and 3. Ice making #f
! (2), and the ice making tank (2) is connected to the ice making tank (2).
an oily liquid extraction means (3) for taking out the oily liquid (O) stored inside the ice making tank (2);
3) is connected to the oil-based liquid cooling means (4) which cools the oil-based liquid (O) taken out by the oil-based liquid extraction means (3) to below the freezing temperature of the aqueous solution (W), and the oil-based liquid cooling means ( 4), the oily liquid (O) cooled by the oily liquid cooling means (4) is passed from the oily liquid layer side in the ice making tank (2) to the interface between the aqueous solution (W) and the oily liquid (O). and an oil-based liquid ejecting means (7) equipped with an ejection nozzle (73) immersed in the oil-based liquid (O) to eject it toward the oil-based liquid (O).

また、請求項(3)に係る発明は、第4図に示すように
、上記請求項(1)記載の氷蓄熱装置において、油性液
体冷却手段(4)の油性液体流通下流側において分岐接
続され、油性液体冷却手段(4)で冷却された油性液体
(O)を製氷槽(2)内の油性液体層側から水溶液(W
)と油性液体(O)との境界面に向って噴出させるべく
油性液体(O)中に浸漬された噴射ノズル(73)を備
えた油性液体噴出手段(7)が設けられた構成としてい
る。
Further, the invention according to claim (3), as shown in FIG. , the oily liquid (O) cooled by the oily liquid cooling means (4) is poured into an aqueous solution (W) from the oily liquid layer side in the ice making tank (2).
) and the oily liquid (O), an oily liquid jetting means (7) is provided with a jetting nozzle (73) immersed in the oily liquid (O) to jet the oily liquid (O) toward the boundary surface.

更に、請求項(4)に係る発明は、同じく第4図に示す
ように、上記請求項(3)記載の氷蓄熱装置において、
油性液体供給手段(5)と油性液体噴出手段(7)とに
油性液体(O)の供給を切換える切換手段(8)が設け
られた構成としている。
Furthermore, the invention according to claim (4), as also shown in FIG. 4, provides the ice heat storage device according to claim (3),
A switching means (8) for switching the supply of oily liquid (O) is provided between the oily liquid supply means (5) and the oily liquid jetting means (7).

最後に、請求項(5)に係る発明は、第5図に示すよう
に、上記請求項+1)、 (3)または(4)記載の氷
蓄熱装置において、製氷槽(2)に、該製氷槽(2)内
の水溶液上層に浮上した氷(1)を取出して貯留する蓄
熱槽(9)が接続された構成としている。
Finally, the invention according to claim (5), as shown in FIG. A heat storage tank (9) is connected to take out and store the ice (1) floating on the upper layer of the aqueous solution in the tank (2).

(作用) 上記各請求項に係る発明の構成による作用は、以下に述
べるとおりである。
(Actions) The effects of the configurations of the inventions according to each of the above claims are as described below.

請求項(1)に係る発明においては、油性液体取出手段
(3)によって製氷槽(2)内の下層に位置する油性液
体(O)を取出し、油性液体冷却手段(4)で水溶液(
W)の凍結温度以下に冷却した後、油性液体供給手段(
5)に送り、該油性液体供給手段(5)の供給ノズル(
52)から、製氷槽(2)に貯留している水溶液(W)
に、その上方から落下供給する。この落下供給された油
性液体(O)は、水溶液(W)との比重量差によって、
該水溶液(W)中を下降し、その過程で水溶液(W)と
の間で熱交換を行い、水溶液(W)をその凍結温度まで
冷却する。そして、この水溶液(W)は過冷却状態を経
た後、氷化すると共に、この氷は落下供給する油性液体
(O)によって撹拌されることで、破砕されてスラリー
状態を保つことになる。
In the invention according to claim (1), the oily liquid extracting means (3) takes out the oily liquid (O) located in the lower layer in the ice making tank (2), and the oily liquid cooling means (4) extracts the aqueous solution (O).
After cooling to below the freezing temperature of W), the oil-based liquid supply means (
5) and the supply nozzle (
52), the aqueous solution (W) stored in the ice making tank (2)
It is supplied by falling from above. Due to the difference in specific weight between this dropped oily liquid (O) and the aqueous solution (W),
It descends through the aqueous solution (W), and in the process exchanges heat with the aqueous solution (W), cooling the aqueous solution (W) to its freezing temperature. After passing through a supercooled state, this aqueous solution (W) turns into ice, and the ice is agitated by the oily liquid (O) that is supplied falling, thereby being crushed and maintained in a slurry state.

従って、油性液体供給手段(5)の供給ノズル(52)
と水溶液(W)とは非接触状態を保ちつつ、水溶液(W
)を冷却して氷(1)を生成するために、供給ノズル(
52)に氷(りが付着して連続供給が不能になるといっ
た不具合は解消される。
Therefore, the supply nozzle (52) of the oily liquid supply means (5)
and the aqueous solution (W) while maintaining a non-contact state.
) to produce ice (1), the supply nozzle (
52) Problems such as ice adhering to ice and making continuous supply impossible will be resolved.

一方、請求項(′2Jに係る発明においては、油性液体
取出手段(3)によって蓄熱槽(2)内から取出され、
油性液体冷却手段(4)によって冷却された油性液体(
O)は、油性液体噴出手段(7)の噴射ノズル(73)
から水溶液(W)と油性液体(O)との境界面に向って
噴出し、該境界面を撹拌する。この撹拌によって、油性
液体(O)は水溶液(W)との接触面が拡大され、速や
かに熱交換を行い、水溶液(W)は冷却、氷化する。ま
た、この製氷は上記境界面付近で行われるものであり、
この境界面は常に油性液体(O)の噴出しによって撹拌
されていることで、生成された氷(1)は破砕されてス
ラリー状の氷(1)として、水溶液(W)の上層部に浮
上する。
On the other hand, in the invention according to claim ('2J), the oily liquid is extracted from the heat storage tank (2) by the oily liquid extraction means (3),
The oily liquid cooled by the oily liquid cooling means (4)
O) is the injection nozzle (73) of the oil-based liquid injection means (7)
from the aqueous solution (W) toward the interface between the aqueous solution (W) and the oily liquid (O), and agitates the interface. By this stirring, the contact surface of the oily liquid (O) with the aqueous solution (W) is expanded, heat exchange is quickly performed, and the aqueous solution (W) is cooled and turned into ice. In addition, this ice making is done near the above boundary surface,
This boundary surface is constantly agitated by the jetting of oily liquid (O), so the generated ice (1) is crushed and floats to the upper layer of the aqueous solution (W) as slurry ice (1). do.

請求項(3)に係る発明においては、油性液体供給手段
(5)の供給ノズル(52)および油性液体噴出手段(
7)の噴射ノズル(73)双方から油性液体(O)を供
給することにより、短時間で水溶液(W)を冷却氷化す
ることができる。
In the invention according to claim (3), the supply nozzle (52) of the oil-based liquid supply means (5) and the oil-based liquid ejection means (
By supplying the oily liquid (O) from both of the injection nozzles (73) in 7), the aqueous solution (W) can be cooled and turned into ice in a short time.

請求項(4)に係る発明においては、切換手段(8)に
よって、油性液体供給手段(5)と油性液体噴出手段(
7)とに油性液体(O)の供給を切換変更することで、
水溶液(W)の温度状態および氷(1)の生成状態に応
じて油性液体(O)の供給方向を変更する。例えば、先
ず、油性液体供給手段(5)のみから油性液体(O)を
供給して水溶液(W)を氷化させた後、切換手段(8)
によって油性液体噴出手段(7)のみからの供給に切換
えることで油性液体層と水溶液層との境界面付近で滞留
している氷(1)を破砕して水溶液層の上層部に浮上さ
せる。このようにして効率の良い製氷動作が得られる。
In the invention according to claim (4), the switching means (8) allows the oil-based liquid supply means (5) and the oil-based liquid jetting means (
7) By switching the supply of oil-based liquid (O) to
The supply direction of the oily liquid (O) is changed depending on the temperature state of the aqueous solution (W) and the formation state of ice (1). For example, first, the oily liquid (O) is supplied only from the oily liquid supply means (5) to freeze the aqueous solution (W), and then the switching means (8)
By switching to supply only from the oily liquid jetting means (7), the ice (1) staying near the interface between the oily liquid layer and the aqueous solution layer is crushed and floated to the upper part of the aqueous solution layer. In this way, efficient ice making operation can be obtained.

請求項(5)に係る発明においては、製氷槽(2)内の
氷(1)を適宜、蓄熱槽(9)へ取出すことで、製氷槽
(2)内に氷(1)を浮上させることかないため、製氷
槽(2)内で氷(1)が伝熱抵抗となって油性液体(O
)と水溶液(W)との円滑な熱交換が行えないといった
不具合が解消される。
In the invention according to claim (5), the ice (1) in the ice making tank (2) is appropriately taken out to the heat storage tank (9) to float the ice (1) in the ice making tank (2). As a result, the ice (1) acts as a heat transfer resistance in the ice making tank (2), causing oily liquid (O
) and the aqueous solution (W), which prevents smooth heat exchange from occurring.

(第1実施例) 先ず、請求項(1)に記載された発明に係る第1実施例
について第1図に基づいて説明する。
(First Embodiment) First, a first embodiment of the invention set forth in claim (1) will be described based on FIG. 1.

同図に示すように、氷蓄熱装置(1)は、製氷槽(2)
、油性液体取出手段(3)、油性液体冷却手段(4)お
よび油性液体供給手段(5)を主要部として構成されて
いる。
As shown in the figure, the ice heat storage device (1) includes an ice making tank (2)
, an oily liquid extraction means (3), an oily liquid cooling means (4), and an oily liquid supplying means (5) as main parts.

製氷槽(2)は製氷部と蓄熱部とを兼用した箱体であっ
て、その内部には製氷用の水溶液(W)と該水溶液(W
)より比重量が大きい油性液体(O)とを貯留している
。そして、油性液体(O)の上方で水溶M (W)中に
氷(1)を浮遊させることで冷熱を貯留するように構成
されている。また、該製氷槽(2)には冷房負荷(6)
が接続されており、日中などの冷房運転時には、この製
氷槽(2)内の蓄冷熱が冷房負荷(6)側に送給されて
冷房に寄与することになる。
The ice making tank (2) is a box that serves both as an ice making section and a heat storage section, and inside it contains an aqueous solution (W) for ice making and the aqueous solution (W).
) and an oily liquid (O) having a larger specific weight than that of the oil-based liquid (O). It is configured to store cold heat by suspending ice (1) in the water solution M (W) above the oily liquid (O). In addition, the ice making tank (2) has a cooling load (6).
is connected, and during cooling operation such as during the day, the stored cold heat in the ice making tank (2) is sent to the cooling load (6) side and contributes to cooling.

油性液体取出手段(3)は、上記製氷槽(2)内の油性
液体(O)を取出すものであって、取出管(31)、該
取出管(31)に介設されたオイルポンプ(32)およ
び開閉バルブ(33)とで構成されている。そして、上
記取出管(31)は、その上流端(34)が上記製氷槽
(2)の底面(21)に接続されていると共に、下流端
(35)が後述する油性液体冷却手段(4)に接続され
ている。
The oily liquid extraction means (3) is for taking out the oily liquid (O) from the ice making tank (2), and includes a takeout pipe (31) and an oil pump (32) interposed in the takeout pipe (31). ) and an on-off valve (33). The upstream end (34) of the take-out pipe (31) is connected to the bottom surface (21) of the ice making tank (2), and the downstream end (35) is connected to the oil-based liquid cooling means (4), which will be described later. It is connected to the.

油性液体冷却手段(4)は、圧縮機(41)、凝縮器(
42)、膨張機構(43)および蒸発器(44)が冷媒
配管(45)によって直列接続されてなる周知の冷凍回
路で構成されている。そして、蒸発器(44)の内部に
上記取出管(31)の下流端(35)に接続する冷却管
(46)が配設されており、この冷却管(46)中に上
記取出管(31)で取出された油性液体(O)が供給さ
れるようになっている。
The oil-based liquid cooling means (4) includes a compressor (41), a condenser (
42), an expansion mechanism (43), and an evaporator (44) are connected in series by a refrigerant pipe (45) to form a well-known refrigeration circuit. A cooling pipe (46) connected to the downstream end (35) of the take-out pipe (31) is disposed inside the evaporator (44), and the take-out pipe (31) is provided in the cooling pipe (46). ) is supplied with the oil-based liquid (O) taken out.

油性液体供給手段(5)は、供給管(51)と供給ノズ
ル(52)とで構成されており、上記油性液体冷却手段
(4)で冷却された油性液体(O)を製氷槽(2)内の
水溶液(W)に供給するものである。供給管(51)の
上流端(53)は上記油性液体冷却手段(4)の冷却管
(46)に接続されていると共に、下流端(54)に上
記供給ノズル(52)が接続されている。該供給ノズル
(52)は、水溶液(W)の水面よりも上方に位置する
ように配設されていると共に、冷却された油性液体(O
)を水溶液(W)の水面に向って分散供給するように複
数の供給口が穿設されている。
The oil-based liquid supply means (5) is composed of a supply pipe (51) and a supply nozzle (52), and supplies the oil-based liquid (O) cooled by the oil-based liquid cooling means (4) to the ice making tank (2). It is supplied to the aqueous solution (W) inside. The upstream end (53) of the supply pipe (51) is connected to the cooling pipe (46) of the oil-based liquid cooling means (4), and the downstream end (54) is connected to the supply nozzle (52). . The supply nozzle (52) is disposed above the water surface of the aqueous solution (W), and supplies the cooled oily liquid (O
A plurality of supply ports are provided so as to disperse and supply ) to the water surface of the aqueous solution (W).

次に、上記製氷槽(2)内に貯留されている各液体(W
)、(O)について説明する。
Next, each liquid (W) stored in the ice making tank (2) is
) and (O) will be explained.

水溶液(W)は、純粋な水か若しくはブライン等の混合
液体であって、その比重量は略1に等しい。一方、油性
液体(O)は、不活性液体であって、フッ素系のオイル
等が採用されており、上述したように、比重量が上記水
溶液(W)よりも大きいものである。
The aqueous solution (W) is pure water or a mixed liquid such as brine, and its specific weight is approximately equal to 1. On the other hand, the oily liquid (O) is an inert liquid, such as a fluorine-based oil, and has a larger specific weight than the aqueous solution (W), as described above.

次に、上記構成による氷蓄熱装置(1)の作動について
説明する。
Next, the operation of the ice heat storage device (1) having the above configuration will be explained.

先ず、油性液体取出手段(3)の開閉バルブ(33)を
開放すると共に、オイルポンプ(32)を駆動して、蓄
熱槽(2)の最下層に位置する油性液体(O)を取出管
(31)を経て油性液体冷却手段(4)の冷却管(46
)に送給する。そして、この送給された油性液体(O)
は、油性液体冷却手段(4)の圧縮機(41)の駆動に
伴う蒸発器(44)内での冷媒の蒸発によって冷却され
る。次に、この冷却された油性液体(O)は、油性液体
供給手段(5)の供給管(51)に送られて、該供給管
(51)の下流端(54)に配設されている供給ノズル
(52)により、水溶液(W)の水面の上方から該水面
に向って分散落下する。
First, open the on-off valve (33) of the oily liquid extraction means (3), drive the oil pump (32), and take out the oily liquid (O) located at the bottom layer of the heat storage tank (2) through the extraction pipe ( 31) to the cooling pipe (46) of the oil-based liquid cooling means (4).
). Then, this supplied oily liquid (O)
is cooled by evaporation of the refrigerant in the evaporator (44) as the compressor (41) of the oil-based liquid cooling means (4) is driven. Next, this cooled oily liquid (O) is sent to the supply pipe (51) of the oily liquid supply means (5), and is arranged at the downstream end (54) of the supply pipe (51). The supply nozzle (52) causes the aqueous solution (W) to disperse and fall from above the water surface toward the water surface.

その後、この水溶液(W)中に落下した油性液体(O)
は、水溶液(W)との比重量差によって、水溶液(W)
中を下降して最下層に達する。この下降する過程で、水
溶液(W)と油性液体(O)との間で熱交換を行い、水
溶液(W)が凍結温度まで冷却されて過冷却状態を経た
後、この水溶液(W)は油性液体(O)によって撹拌さ
れることで、この過冷却状態が速やかに解消し、氷化す
る。
After that, the oily liquid (O) that fell into this aqueous solution (W)
is the aqueous solution (W) depending on the specific weight difference with the aqueous solution (W).
Descend inside to reach the bottom floor. During this descending process, heat exchange occurs between the aqueous solution (W) and the oily liquid (O), and after the aqueous solution (W) is cooled to freezing temperature and passes through a supercooled state, the aqueous solution (W) becomes oily. By being stirred by the liquid (O), this supercooled state is quickly dissolved and the liquid turns into ice.

そして、ここで生成された氷(1)は上記の撹拌により
スラリー状態に保たれ、蓄熱媒体として水溶液層の上層
部に浮上して貯留される。
The ice (1) generated here is kept in a slurry state by the above-mentioned stirring, and is floated to the upper part of the aqueous solution layer and stored as a heat storage medium.

このように、油性液体供給手段(5)の供給ノズル(5
2)と水溶液(W)とを非接触状態に保ちつつ、水溶液
(W)を冷却して氷(1)を生成する。そして、冷房運
転時には貯留された冷熱が冷房負荷(6)に供給される
ことにより冷房運転に寄与する。また、ここで生成した
氷(1)はスラリー状であるために冷房負荷の変動に追
従可能となっている。
In this way, the supply nozzle (5) of the oil-based liquid supply means (5)
2) and the aqueous solution (W) while keeping them in a non-contact state, the aqueous solution (W) is cooled to generate ice (1). During the cooling operation, the stored cold heat is supplied to the cooling load (6), thereby contributing to the cooling operation. Furthermore, since the ice (1) generated here is in the form of slurry, it is possible to follow fluctuations in the cooling load.

このように、冷却された油性液体(O)の供給口である
供給ノズル(52)は、水溶液(W)の水面より上方に
位置していることで水溶液(W)に接触することがない
ために、該供給ノズル(52)に氷(1)が付着して供
給口を閉塞して連続供給が不能になることが防止されて
いる。
In this way, the supply nozzle (52), which is the supply port for the cooled oily liquid (O), is located above the water surface of the aqueous solution (W) so that it does not come into contact with the aqueous solution (W). In addition, ice (1) is prevented from adhering to the supply nozzle (52) and blocking the supply port, making continuous supply impossible.

(第2実施例) 次に、請求項(2の発明に係る第2実施例を第2図およ
び第3図に基づいて説明する。
(Second Embodiment) Next, a second embodiment according to the invention of claim 2 will be described based on FIGS. 2 and 3.

本例のものは、第1実施例の油性液体供給手段(5)に
代えて油性液体噴出手段(7)を設けたものである。尚
、上述した第1実施例と同部材に6あっては同符号を付
す。
In this example, an oily liquid jetting means (7) is provided in place of the oily liquid supplying means (5) of the first example. The same members as in the first embodiment described above are given the same reference numerals.

第2図に示すように、本例における油性液体噴出手段(
7)は供給管(71)の下流端(72)に油性液体噴射
ノズル(73)を備えている。この油性液体噴射ノズル
(73)は油性液体(O)中において水平方向に複数本
浸漬されて構成されている。そして、この油性液体噴射
ノズル(73)は上記供給管(71)と略同径の管体で
あって、その上方には第3図に示すように2列に小径の
噴射孔(74)、  (74)、・・・が穿設されてい
る。
As shown in FIG. 2, the oil-based liquid ejection means (
7) is equipped with an oil-based liquid injection nozzle (73) at the downstream end (72) of the supply pipe (71). A plurality of oily liquid injection nozzles (73) are horizontally immersed in the oily liquid (O). The oil-based liquid injection nozzle (73) is a tube body having approximately the same diameter as the supply pipe (71), and above it, as shown in FIG. 3, there are two rows of small-diameter injection holes (74). (74), . . . are drilled.

そして、本例における氷蓄熱装置(1)の製氷運転時に
は、油性液体取出手段(3)によって製氷槽(2)から
取出され冷却管(46)を流通する際に油性液体冷却手
段(4)により冷却された油性液体(O)は、供給管(
71)を経て油性液体噴射ノズル(73)に流入した後
、第3図の如く噴射孔(74)、(74)、・・・から
高速噴流として水溶液(W)と油性液体(O)との境界
面に向って噴出し、該境界面を撹拌する。この撹拌によ
って、上記境界面が乱され、油性液体(O)は水溶液(
W)との接触面積が拡大して、速やかに熱交換を行い、
水溶液(W)は冷却、氷化される。
During the ice making operation of the ice heat storage device (1) in this example, the oily liquid is taken out from the ice making tank (2) by the oily liquid extraction means (3), and when flowing through the cooling pipe (46), the oily liquid is cooled by the oily liquid cooling means (4). The cooled oily liquid (O) is passed through the supply pipe (
71) and into the oily liquid injection nozzle (73), the aqueous solution (W) and oily liquid (O) are released as high-speed jets from the injection holes (74), (74), etc. as shown in Fig. 3. It is ejected toward the boundary surface and agitates the boundary surface. By this stirring, the above boundary surface is disturbed, and the oily liquid (O) turns into an aqueous solution (
The contact area with W) is expanded to quickly exchange heat,
The aqueous solution (W) is cooled and turned into ice.

また、この製氷は上記境界面付近で行われるものであり
、この境界面は常に油性液体(O)によって撹拌されて
いることで、生成された氷(1)は破砕されてスラリー
状の氷として、水溶1 (W)の上層部に浮上する。従
って、本例の構成においても、噴射ノズル(73)は、
水溶液(W)に接触することがないために、該噴射ノズ
ル(73)の噴射孔(74)に氷(1)が付着して連続
供給が不能になることが防止されている。
In addition, this ice making is performed near the above-mentioned boundary surface, and this boundary surface is constantly agitated by the oily liquid (O), so the generated ice (1) is crushed and turned into slurry ice. , floats to the upper layer of water-soluble 1 (W). Therefore, also in the configuration of this example, the injection nozzle (73) is
Since there is no contact with the aqueous solution (W), ice (1) is prevented from adhering to the injection hole (74) of the injection nozzle (73), making continuous supply impossible.

(第3実施例) 次に、請求項(3)および(4)の発明に係る第3実施
例を第4図にUづいて説明する。
(Third Embodiment) Next, a third embodiment of the invention according to claims (3) and (4) will be described with reference to FIG. 4.

本例の氷蓄熱装置(1)は、第4図に示すように、油性
液体冷却手段(4)の冷却管(46)の出口側が油性液
体供給手段(5)および油性液体噴出手段(7)の2系
統に分岐されており、上述した各実施例と同様に、油性
液体供給手段(5)の供給管(51)は製氷槽(2)内
の上部に位置する供給ノズル(52)に、油性液体噴出
手段(7)の供給管(71)は油性液体層に浸漬された
噴射ノズル(73)に接続されている。また、本例の氷
蓄熱装置(1)には切換手段(8)が設けられている。
In the ice heat storage device (1) of this example, as shown in FIG. As in each of the above embodiments, the supply pipe (51) of the oil-based liquid supply means (5) is connected to the supply nozzle (52) located at the upper part of the ice making tank (2). A supply pipe (71) of the oily liquid jetting means (7) is connected to a spray nozzle (73) immersed in the oily liquid layer. Further, the ice heat storage device (1) of this example is provided with a switching means (8).

該切換手段(8)は各系の供給管(51)、(71)に
介設された第1電磁弁(82)および第2電磁弁(83
)と、この両電磁弁(82)、(83)の開閉を制御す
るコントローラ(81)とから成っている。
The switching means (8) is connected to a first solenoid valve (82) and a second solenoid valve (83) interposed in the supply pipes (51) and (71) of each system.
) and a controller (81) that controls the opening and closing of both electromagnetic valves (82) and (83).

そして、製氷運転時には、先ず、コントローラ(81)
の作動により、第1電磁弁(82)を開、第2電磁弁(
83)を閉とし、油性液体冷却手段(4)で冷却された
油性液体(O)を、油性液体供給手段(5)の供給管(
51)に導き、供給ノズル(52)により、水溶液(W
)の水面に向って分散落下して、水溶液(W)を冷却氷
化する。
During ice making operation, first, the controller (81)
, the first solenoid valve (82) is opened and the second solenoid valve (82) is opened.
83) is closed, and the oily liquid (O) cooled by the oily liquid cooling means (4) is passed through the supply pipe (0) of the oily liquid supplying means (5).
51), and the aqueous solution (W
) to cool and freeze the aqueous solution (W).

この場合、水溶液層と油性液体層との境界部で氷(1)
が生成される場合があるため、その後、コントローラ(
81)の作動によって第1電磁弁(82)を閉、第2電
磁弁(83)を開状態に切換えて、油性液体冷却手段(
4)で冷却された油性液体(O)を油性液体噴出手段(
7)の供給管(71)に導き、噴射ノズル(73)によ
り、上記境界面に向って噴出し、該境界面を撹拌する。
In this case, ice (1) forms at the boundary between the aqueous solution layer and the oily liquid layer.
may be generated, so then the controller (
81), the first solenoid valve (82) is closed, the second solenoid valve (83) is opened, and the oil-based liquid cooling means (
4) The oily liquid (O) cooled by the oily liquid jetting means (
7), and is ejected from the injection nozzle (73) toward the boundary surface to agitate the boundary surface.

この撹拌によって、上記境界面付近の氷(1)は破砕さ
れ、水溶液層の上部に浮上することになる。
By this stirring, the ice (1) near the boundary is crushed and floats to the top of the aqueous solution layer.

このような動作を繰返すことで、生成される氷(1)は
、常に水溶液層の上部に浮遊された状態で貯留されるこ
とになるため、境界部分に氷(1)が滞留することで油
性液体(O)の回収の阻害や、製氷効率の低下が生じる
ことがない。また、他の作動例として第1電磁弁(82
)、第2電磁弁(83)を共に開として供給ノズル(5
2)および噴射ノズル(73)の両方から油性液体(O
)を供給するように設定しても良い。この場合には、短
時間で多量の油性液体(O)を水溶液(W)中に供給す
ることができるため、製氷時間の短縮化が図れる。
By repeating this operation, the ice (1) that is generated will always be stored in a suspended state at the top of the aqueous solution layer. There is no inhibition of recovery of liquid (O) and no decrease in ice making efficiency. In addition, as another example of operation, the first solenoid valve (82
) and the second solenoid valve (83) are both open and the supply nozzle (5
2) and the injection nozzle (73).
) may be set to supply. In this case, since a large amount of oily liquid (O) can be supplied into the aqueous solution (W) in a short time, the ice making time can be shortened.

(第4実施例) 次に、請求項(5)の発明に係る第4実施例を第5図に
基づいて説明する。
(Fourth Embodiment) Next, a fourth embodiment according to the invention of claim (5) will be described based on FIG. 5.

本例のものは、第1実施例の氷蓄熱装置(1)に氷(1
)を貯蔵するための蓄熱槽(9)を設けたものである。
In this example, ice (1) is added to the ice heat storage device (1) of the first example.
) is provided with a heat storage tank (9) for storing.

第5図に示すように、製氷vj(2)の側面には氷取出
管(91)および水回収管(92)によって接続したも
のであって、水回収管(92)にはウォータポンプ(9
3)が介設されている。つまり、製氷運転時において、
製氷槽(2)内で所定量の氷(1)が生成されると、ウ
ォータポンプ(93)を駆動して、蓄熱槽(9)内の下
層部の水溶液(W′)を水回収管(92)を経て製氷槽
(2)内に流入させて製氷槽(2)内の水面を上昇させ
る。そして、この水面上昇に伴って、製氷槽(2)内の
上層部に浮遊している氷(1)は氷取出管(91)を経
て、蓄熱槽(9)内に貯留されることになる。
As shown in FIG. 5, the ice making vj (2) is connected to the side by an ice removal pipe (91) and a water recovery pipe (92), and a water pump (92) is connected to the water recovery pipe (92).
3) is provided. In other words, during ice making operation,
When a predetermined amount of ice (1) is generated in the ice making tank (2), the water pump (93) is driven to transfer the aqueous solution (W') in the lower layer of the heat storage tank (9) to the water recovery pipe ( 92) into the ice making tank (2) to raise the water level in the ice making tank (2). As the water level rises, the ice (1) floating in the upper layer of the ice making tank (2) passes through the ice removal pipe (91) and is stored in the heat storage tank (9). .

従って、本例の構成によれば、製氷槽(2)内の氷(1
)を適宜、蓄熱槽(9)に取出し、製氷槽(2)内に氷
(1)を浮遊することで該氷が伝熱抵抗となって油性液
体(O)と水溶液(W)との円滑な熱交換が行えないと
いった不具合が解消される。
Therefore, according to the configuration of this example, the ice (1
) is appropriately taken out to the heat storage tank (9), and by floating ice (1) in the ice making tank (2), the ice acts as a heat transfer resistance and smooths the flow between the oily liquid (O) and the aqueous solution (W). This solves the problem of not being able to perform proper heat exchange.

(発明の効果) 以上の如く、本発明によれば、以下に述べるような効果
が発揮される。
(Effects of the Invention) As described above, according to the present invention, the following effects are exhibited.

請求項(1)に係る発明においては、油性液体供給手段
の供給ノズルと水溶液とは非接触状態を保ちつつ、水溶
液を冷却して氷を生成するために、供給ノズルに氷が付
着することがなく油性液体の連続供給が可能であり、連
続製氷運転を確実に行うことができる。また、生成され
た氷はスラリー状に保持されるため、冷房負荷の変動に
追従可能なものとなっている。更には、氷貯蔵率IPP
を高くすることができるため、製氷槽のコンパクト化が
図れる。
In the invention according to claim (1), ice is generated by cooling the aqueous solution while maintaining a non-contact state between the supply nozzle of the oil-based liquid supply means and the aqueous solution, so that ice does not adhere to the supply nozzle. Continuous supply of oil-based liquid is possible without any problems, and continuous ice-making operation can be performed reliably. Furthermore, since the generated ice is held in a slurry form, it is possible to follow fluctuations in the cooling load. Furthermore, the ice storage rate IPP
Since the height can be increased, the ice making tank can be made more compact.

請求項(2に係る発明においては、境界面は常に油性液
体の噴出しによって撹拌されていることで、油性液体は
水溶液との接触面が拡大され、速やかに熱交換が行われ
、円滑な製氷動作を?与ることができると共に、境界面
は常に撹拌されていることで、生成された氷は氷塊とな
ることなしにスラリー状の氷として、強制的に水溶液の
上層部に浮上させることができる。
In the invention according to claim 2, the boundary surface is constantly agitated by the jetting of the oily liquid, so that the contact surface of the oily liquid with the aqueous solution is expanded, heat exchange is quickly performed, and smooth ice making is achieved. In addition to the fact that the interface is constantly stirred, the generated ice can be forcibly floated to the top of the aqueous solution as slurry-like ice without forming into ice blocks. can.

請求項(3)に係る発明においては、油性液体供給手段
の供給ノズルおよび油性液体噴出手段の噴射ノズル双方
から冷却された油性液体を供給することにより、氷生成
時間の短縮化が図れる。
In the invention according to claim (3), ice generation time can be shortened by supplying the cooled oily liquid from both the supply nozzle of the oily liquid supply means and the injection nozzle of the oily liquid jetting means.

請求項(4)に係る発明においては、切換手段によって
、油性液体(jt給千手段油性液体噴出手段とに油性液
体の供給を切換変更することで、水溶液の温度状態およ
び氷の生成状態に応じて油性液体の供給方向を変更でき
、効率の良い製氷動作が得られる。
In the invention according to claim (4), the supply of the oily liquid is switched between the oily liquid supply means and the oily liquid jetting means by the switching means, so that the supply of the oily liquid is changed depending on the temperature state of the aqueous solution and the ice formation state. The supply direction of the oil-based liquid can be changed by changing the oil-based liquid supply direction, resulting in highly efficient ice-making operation.

請求項(5)に係る発明においては、製氷槽内の氷を適
宜、蓄熱槽へ取出すことで、製氷槽内に氷を浮上させる
ことがないため、製氷槽内で氷が伝熱抵抗となることが
なく、油性液体と水溶液との円滑な熱交換が行え、効率
の良い製氷が行われる。
In the invention according to claim (5), by appropriately taking out the ice in the ice making tank to the heat storage tank, the ice does not float inside the ice making tank, so that the ice becomes a heat transfer resistance in the ice making tank. This allows for smooth heat exchange between the oil-based liquid and the aqueous solution, resulting in efficient ice making.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の各実施例を示し、第1図は第1実施例に
おける氷蓄熱装置の構造を示す図、第2図および第3図
は第2実施例を示し、第2図は第1図相当図、第3図は
第2図の■−■線における拡大断面図、第4図は第3実
施例における第1図相当図、第5図は第4実施例におけ
る第1図相当図である。 (1)・・・氷蓄熱装置 (2)・・・蓄熱槽 (3)・・・油性液体取出手段 (4)・・・油性液体冷却手段 (5)・・・油性液体供給手段 (52)・・・供給ノズル (7)・・・油性液体噴出手段 (73)・・・噴射ノズル (8)・・・切換手段 (9) (O) (W) (1) ・・・蓄熱槽 ・・・油性液体 ・・・水溶液 ・・・氷
The drawings show each embodiment of the present invention, FIG. 1 shows the structure of the ice heat storage device in the first embodiment, FIGS. 2 and 3 show the second embodiment, and FIG. 2 shows the structure of the ice heat storage device in the first embodiment. Figure 3 is an enlarged sectional view taken along the line ■-■ in Figure 2, Figure 4 is a diagram equivalent to Figure 1 in the third embodiment, and Figure 5 is a diagram equivalent to Figure 1 in the fourth embodiment. It is. (1) Ice heat storage device (2) Heat storage tank (3) Oily liquid extraction means (4) Oily liquid cooling means (5) Oily liquid supply means (52) ... Supply nozzle (7) ... Oil-based liquid ejection means (73) ... Injection nozzle (8) ... Switching means (9) (O) (W) (1) ... Heat storage tank ...・Oil-based liquid...Aqueous solution...Ice

Claims (5)

【特許請求の範囲】[Claims] (1)製氷用の水溶液(W)と該水溶液(W)より比重
量が大きい油性液体(O)とを貯留する製氷槽(2)と
、該製氷槽(2)に接続され、製氷槽(2)内に貯留さ
れた油性液体(O)を製氷槽(2)外部に取出す油性液
体取出手段(3)と、該油性液体取出手段(3)が接続
され、油性液体取出手段(3)で取出された油性液体(
O)を上記水溶液(W)の凍結温度以下に冷却する油性
液体冷却手段(4)と、該油性液体冷却手段(4)に接
続され、油性液体冷却手段(4)で冷却された油性液体
(O)を上記製氷槽(2)に貯留されている水溶液(W
)の上方から落下供給する供給ノズル(52)を有する
油性液体供給手段(5)とからなる氷蓄熱装置。
(1) An ice-making tank (2) that stores an aqueous solution (W) for ice-making and an oily liquid (O) whose specific weight is larger than that of the aqueous solution (W); 2) An oily liquid extraction means (3) for taking out the oily liquid (O) stored in the ice making tank (2) outside is connected to the oily liquid extraction means (3), and the oily liquid extraction means (3) The extracted oily liquid (
an oily liquid cooling means (4) for cooling O) to below the freezing temperature of the aqueous solution (W); and an oily liquid cooling means (4) connected to the oily liquid cooling means (4) and cooled by the oily liquid cooling means (4). O) is added to the aqueous solution (W) stored in the ice making tank (2).
) An ice heat storage device comprising an oil-based liquid supply means (5) having a supply nozzle (52) for dropping the supply from above.
(2)製氷用の水溶液(W)と該水溶液(W)より比重
量が大きい油性液体(O)とを貯留する製氷槽(2)と
、該製氷槽(2)に接続され、製氷槽(2)内に貯留さ
れた油性液体(O)を製氷槽(2)外部に取出す油性液
体取出手段(3)と、該油性液体取出手段(3)が接続
され、油性液体取出手段(3)で取出された油性液体(
O)を上記水溶液(W)の凍結温度以下に冷却する油性
液体冷却手段(4)と、該油性液体冷却手段(4)に接
続され、油性液体冷却手段(4)で冷却された油性液体
(O)を上記製氷槽(2)内の油性液体層側から水溶液
(W)と油性液体(O)との境界面に向って噴出させる
べく油性液体(O)中に浸漬された噴射ノズル(73)
を備えた油性液体噴出手段(7)とからなる氷蓄熱装置
(2) An ice-making tank (2) that stores an aqueous solution (W) for ice-making and an oily liquid (O) whose specific weight is larger than that of the aqueous solution (W); 2) An oily liquid extraction means (3) for taking out the oily liquid (O) stored in the ice making tank (2) outside is connected to the oily liquid extraction means (3), and the oily liquid extraction means (3) The extracted oily liquid (
an oily liquid cooling means (4) for cooling O) to below the freezing temperature of the aqueous solution (W); and an oily liquid cooling means (4) connected to the oily liquid cooling means (4) and cooled by the oily liquid cooling means (4). An injection nozzle (73) immersed in the oily liquid (O) in order to jet the oily liquid (O) from the oily liquid layer side in the ice making tank (2) toward the interface between the aqueous solution (W) and the oily liquid (O). )
An ice heat storage device comprising an oil-based liquid ejecting means (7).
(3)請求項(1)記載の氷蓄熱装置において、油性液
体冷却手段(4)の油性液体流通下流側において分岐接
続され、油性液体冷却手段(4)で冷却された油性液体
(O)を製氷槽(2)内の油性液体層側から水溶液(W
)と油性液体(O)との境界面に向って噴出させるべく
油性液体(O)中に浸漬された噴射ノズル(73)を備
えた油性液体噴出手段(7)が設けられていることを特
徴とする氷蓄熱装置。
(3) In the ice heat storage device according to claim (1), the oil-based liquid cooling means (4) is branched and connected on the oil-based liquid distribution downstream side, and the oil-based liquid (O) cooled by the oil-based liquid cooling means (4) is Aqueous solution (W) is poured from the oily liquid layer side in the ice making tank (2)
) and the oily liquid (O), the oily liquid jetting means (7) is provided with a jetting nozzle (73) immersed in the oily liquid (O) to jet the oily liquid (O) toward the interface. Ice heat storage device.
(4)請求項(3)記載の氷蓄熱装置において、油性液
体供給手段(5)と油性液体噴出手段(7)とに油性液
体(O)の供給を切換える切換手段(8)が設けられて
いることを特徴とする氷蓄熱装置。
(4) In the ice heat storage device according to claim (3), a switching means (8) for switching the supply of the oily liquid (O) is provided between the oily liquid supply means (5) and the oily liquid jetting means (7). An ice heat storage device characterized by:
(5)請求項(1)、(3)または(4)記載の氷蓄熱
装置において、製氷槽(2)には、該製氷槽(2)内の
水溶液上層に浮上した氷(1)を取出して貯留する蓄熱
槽(9)が接続されていることを特徴とする氷蓄熱装置
(5) In the ice heat storage device according to claim (1), (3) or (4), the ice (1) floating on the upper layer of the aqueous solution in the ice making tank (2) is removed from the ice making tank (2). An ice heat storage device characterized in that a heat storage tank (9) for storing ice is connected thereto.
JP1277831A 1989-10-25 1989-10-25 Ice heat accumulator Pending JPH03140767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277831A JPH03140767A (en) 1989-10-25 1989-10-25 Ice heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277831A JPH03140767A (en) 1989-10-25 1989-10-25 Ice heat accumulator

Publications (1)

Publication Number Publication Date
JPH03140767A true JPH03140767A (en) 1991-06-14

Family

ID=17588877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277831A Pending JPH03140767A (en) 1989-10-25 1989-10-25 Ice heat accumulator

Country Status (1)

Country Link
JP (1) JPH03140767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141720A (en) * 1991-11-21 1993-06-08 Toshiba Corp Ice storage heat device
JPH05240476A (en) * 1992-02-28 1993-09-17 Toshiba Corp Latent heat storage device
JPH0694272A (en) * 1992-09-16 1994-04-05 Toshiba Corp Latent heat accumulating device
US5381671A (en) * 1992-07-14 1995-01-17 Kabushiki Kaisha Toshiba Air conditioning apparatus with improved ice storage therein
JP2010230228A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Hydrate forming method, heat storage method, and heat storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141720A (en) * 1991-11-21 1993-06-08 Toshiba Corp Ice storage heat device
JPH05240476A (en) * 1992-02-28 1993-09-17 Toshiba Corp Latent heat storage device
US5381671A (en) * 1992-07-14 1995-01-17 Kabushiki Kaisha Toshiba Air conditioning apparatus with improved ice storage therein
JPH0694272A (en) * 1992-09-16 1994-04-05 Toshiba Corp Latent heat accumulating device
JP2010230228A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Hydrate forming method, heat storage method, and heat storage device

Similar Documents

Publication Publication Date Title
US4408654A (en) Accumulator for storing heat or cold
JPH03140767A (en) Ice heat accumulator
US5598712A (en) Latent heat accumulation system
TWI460382B (en) Ice melting apparatus in a heat storage system by ice utilizing supercooled water
JPS6314021A (en) Cold heat accumulating facility for air conditioning
JPH0370928A (en) Ice heat accumulator
JPH102644A (en) Ice cold heat storage apparatus
JP2696046B2 (en) Latent heat storage device
JPH02118373A (en) Making of ice and heat accumulating device for ice
JPH02110231A (en) Ice-making method and ice heat-accumulator
JPH02118374A (en) Making of ice and heat accumulating device for ice
JPH07248168A (en) Icemaker
JPH05248666A (en) Ice heat storage device
JP3443508B2 (en) Ice storage device
JPH02110229A (en) Ice heat-accumulator
JPH0297845A (en) Ice making method and ice heat accumulator
JP2547918B2 (en) Latent heat storage device
JPH1047823A (en) Ice making method and ice heat storage device
JPH02146437A (en) Ice heat accumulation device
JPH07174372A (en) Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method
JPH04306434A (en) Ice thermo-heat accumulation device
JPH0755302A (en) Dynamic ice storage apparatus
JPH02263076A (en) Direct contact type ice heat accumulation method and apparatus therefor
JPH11257693A (en) Ice cold storage device
JPH10332233A (en) Method and system for making ice