JPH1047823A - Ice making method and ice heat storage device - Google Patents

Ice making method and ice heat storage device

Info

Publication number
JPH1047823A
JPH1047823A JP8384497A JP8384497A JPH1047823A JP H1047823 A JPH1047823 A JP H1047823A JP 8384497 A JP8384497 A JP 8384497A JP 8384497 A JP8384497 A JP 8384497A JP H1047823 A JPH1047823 A JP H1047823A
Authority
JP
Japan
Prior art keywords
ice
water
antifreeze
freezing
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8384497A
Other languages
Japanese (ja)
Inventor
Takayuki Hachimonji
孝幸 八文字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8384497A priority Critical patent/JPH1047823A/en
Publication of JPH1047823A publication Critical patent/JPH1047823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the maintenance and control of water quality with high resistance to the dirt of water and form ice with high charging rate. SOLUTION: An ice heat storage device comprises an ice making tank 1 having a storing part 10 with water stored therein for storing nonaqueous antifreezing solution having a specific gravity higher than water and a freezing point below an ice point on its bottom part, an antifreezing solution recovery port for recovering the antifreezing solution 4 stored in the refrigerant storing part and an antifreezing solution injection port for injecting the antifreezing solution from an outside part on its bottom surface, a pump 8 for pressing the antifreezing solution recovered from the antifreezing solution recovery port, a refrigerating machine 9 for cooling the antifreezing solution pressed by the pump and a plurality of nozzles 7 provided on the bottom part of the ice making tank 1 for injecting the antifreezing solution entering through the antifreezing solution injection port and cooled to temperature below the ice point by the refrigerating machine toward water from the antifreezing solution of the refrigerant storing part and generating foamy droplets on the interface of water and antifreezing solution to form ice on the films of the droplets.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷蓄熱装置に係わ
り、特に夜間の割安な電力を利用してシャーベット状の
氷を生成する氷製造法及びこの方法により生成された氷
の高氷充填率(IPF)化を図った氷蓄熱装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device, and more particularly to a method for producing ice in the form of sherbet using low-cost electricity at night and a high ice filling rate of the ice produced by the method. The present invention relates to an ice heat storage device designed to be (IPF).

【0002】[0002]

【従来の技術】近年、工業プラントやビル等における比
較的大規模な空調システムでは、料金の安い夜間電力を
使用した蓄熱空調システムを導入する例が多く見られ
る。これは昼間の空調負荷のピーク時、電力需要を軽減
し、並びに夜間オフピーク時の時間帯における電力需要
を増加させることで、電力の安定供給に寄与し、電力設
備の経済的運用を図るものである。
2. Description of the Related Art In recent years, in a relatively large-scale air-conditioning system in an industrial plant, a building, or the like, an example in which a thermal storage air-conditioning system using low-cost nighttime power is often introduced. This contributes to the stable supply of power by reducing the power demand during the peak air conditioning load in the daytime and increasing the power demand during the off-peak hours at night, thereby achieving economical operation of power equipment. is there.

【0003】さらに、この電力設備の経済的運用は炭酸
ガス発生の抑制、環境保護を目指す社会的要求にも答え
得るものである。ところで、この種の蓄熱空間システム
では夏期の冷房負荷を対象として、安全性、経済性に優
れた氷蓄熱装置が注目されている。この氷蓄熱装置の氷
の製造方法としては、間接熱交換方式(スタテック方
式)と直接熱交換方式(ダイナミック方式)の2通りが
ある。
[0003] Further, the economical operation of the electric power equipment can meet the social demands for suppressing the generation of carbon dioxide gas and protecting the environment. By the way, in this type of heat storage space system, an ice heat storage device which is excellent in safety and economic efficiency for cooling load in summer has been attracting attention. There are two methods for producing ice in the ice heat storage device, an indirect heat exchange method (static method) and a direct heat exchange method (dynamic method).

【0004】スタテック方式は、氷蓄熱層内に製氷用伝
熱管を有し、伝熱管の内側、または外側に低温の冷媒を
循環させて、この伝熱管の外側、または内側に氷を生成
させる方式である。このスタテック方式では冷媒にエチ
レングリコール等の不凍液やフレオン等を用いて伝熱管
に氷を生成させて行くと、氷の厚さの増加に伴って氷自
身の熱伝達率が小さいことから、冷媒から氷への熱移動
が減少する。そのために冷媒の温度を低く冷媒を冷却す
る冷凍機の効率が低下する欠点を有している。
[0004] In the static method, a heat transfer tube for ice making is provided in an ice heat storage layer, and a low-temperature refrigerant is circulated inside or outside the heat transfer tube to generate ice outside or inside the heat transfer tube. It is. In this static method, when ice is generated in the heat transfer tube using an antifreeze such as ethylene glycol or freon as the refrigerant, the heat transfer coefficient of the ice itself decreases with an increase in the thickness of the ice. Heat transfer to ice is reduced. For this reason, there is a disadvantage that the efficiency of a refrigerator that lowers the temperature of the refrigerant and cools the refrigerant is reduced.

【0005】この欠点を回避するために、氷蓄熱層内に
多数の伝達管を配置し、氷の厚さを抑えて冷凍機の効率
を向上させると、伝熱管の増加分だけ氷の充填率が減少
することになる。一方、解氷時には着氷した氷の解け方
に不均一が生じ、溶け切らない部分ができる。そして、
再度伝熱管に着氷する時に残着氷部から着氷を開始する
ため厚い分がさらに厚くなり、ついには氷と氷とが接触
して伝熱管が曲がったり、破損すると言った事故を生じ
ることがある。
In order to avoid this drawback, a large number of transfer tubes are arranged in the ice thermal storage layer to reduce the thickness of the ice and improve the efficiency of the refrigerator. Will decrease. On the other hand, at the time of thawing, unevenness of melting of the iced ice occurs, and there is a portion that does not completely melt. And
When icing on the heat transfer tube again, the icing starts from the remaining icing part, so the thick part becomes even thicker, and eventually the ice comes into contact with ice and the heat transfer tube may be bent or damaged There is.

【0006】一方、ダイナミック方式としては、流動過
冷却方式などがあるが、この方式では水の浄化に問題が
あり、大量の水を常に浄化しなければならないため大形
化を妨げている。また、製氷時に放出される水温の温度
設定がかなり厳しく、この温度は氷の生成状態に大きく
依存するため、装置の複雑化を招いている。
On the other hand, as a dynamic system, there is a fluid supercooling system and the like. However, this system has a problem in water purification, and a large amount of water must be constantly purified, which hinders an increase in size. In addition, the temperature of the water temperature discharged during ice making is quite strict, and this temperature greatly depends on the state of ice formation, which complicates the apparatus.

【0007】[0007]

【発明が解決しようとする課題】このように従来の蓄熱
空調システムでは、夏期の冷房負荷を対象としているた
め、昼間の空調負荷ピーク時に蓄えられた冷熱を一気に
放出しなければならない場合もあり、夜間の安価な時間
帯に高速に、しかも大量に製氷し、且つ氷を高密度に貯
蔵する必要がある。
As described above, since the conventional thermal storage air conditioning system is intended for the cooling load in the summer, it may be necessary to release the cold stored at the peak of the air conditioning load during the daytime. It is necessary to make ice in large quantities at high speed and at a low cost at night and store ice at high density.

【0008】しかし、密度の高い間接的熱交換方式のス
タテック製氷方式では時間がかかる上、製氷層内の配管
によりスペースが狭くなることは氷の充填率の減少につ
ながる。
[0008] However, in the static ice making method of the indirect heat exchange method having a high density, it takes time, and the narrow space due to the piping in the ice making layer leads to a decrease in the ice filling rate.

【0009】また、シャーベット状態の氷を製造するこ
とが可能なダイナミック製氷方式では、製氷方式として
非常に高度な制御を駆使しなければ連続製氷は無理なた
め、装置の大形化と装置の複雑化を招き、氷蓄熱装置と
しての実用化には安定した製氷方法の確立が再重要課題
となっている。
Further, in the dynamic ice making method capable of producing ice in a sherbet state, continuous ice making cannot be performed unless very high-level control is used as the ice making method. Therefore, the establishment of a stable ice making method has become an important issue for practical use as an ice heat storage device.

【0010】例えば流動過冷却方式においては水質を一
定に保つことが要求されるため、水の汚れを浄化するの
に大変な時間とエネルギーを必要とし、このため大形の
プラントには大量の水が必要となり、すべての水を短時
間で浄化処理することはかなり無理があり、大規模地域
の熱供給には不向きである。
For example, in a fluidized subcooling system, since it is required to maintain a constant water quality, it takes a great deal of time and energy to purify water dirt. Therefore, it is quite impossible to purify all water in a short time, which is not suitable for heat supply in a large area.

【0011】本発明は上記のような事情に鑑みなされた
もので、水の汚れに強く、水質の維持管理を軽減させる
ことが可能な氷製造方法及びこの方法により生成された
氷の高充填率化を図った氷蓄熱装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a method for manufacturing ice which is resistant to water contamination and can reduce the maintenance of water quality, and a high filling rate of ice produced by the method. It is an object of the present invention to provide an ice heat storage device that has been developed.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような氷製造方法及びこの方法を用い
た氷蓄熱装置により上記課題を解決するものである。請
求項1に対応する発明は、内部に水が貯溜され、底部に
水よりも比重が大きく非水溶性で氷点下より低い温度の
凝固点を有する不凍液を貯溜させる冷媒貯溜部が形成さ
れた製氷槽の冷媒貯溜部の底部よりポンプにより加圧さ
れた不凍液を冷凍機により冷却して噴出させ、この冷媒
貯溜部の底部より冷媒貯溜部に噴出した不凍液を氷点下
より低い温度に保ちながら冷媒中から水中に向って噴出
する際に、不凍液と水との界面にて泡状の液滴を発生さ
せることにより、この液滴の薄膜に氷を生成させ、且つ
この液滴が崩壊または界面の不凍液に吸収されるときに
液滴の中に蓄えられた冷熱の放出により水と熱交換しな
がら氷を連続的に生成する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention solves the above-mentioned problems by the following method for producing ice and an ice heat storage device using this method. The invention corresponding to claim 1 is an ice-making tank in which water is stored inside, and a refrigerant storage portion is formed at the bottom where a refrigerant storage portion for storing an antifreeze having a specific gravity greater than water and having a freezing point at a temperature lower than the freezing point is insoluble and lower than the freezing point. The antifreeze liquid pressurized by the pump from the bottom of the refrigerant reservoir is cooled by a refrigerator and ejected, and the antifreeze ejected to the refrigerant reservoir from the bottom of the refrigerant reservoir is maintained at a temperature lower than the freezing point and into the water from the refrigerant. When squirting toward the surface, a bubble-like droplet is generated at the interface between the antifreeze and the water, so that ice is generated in a thin film of the droplet, and the droplet collapses or is absorbed by the antifreeze at the interface. Ice is continuously generated while exchanging heat with water due to the release of cold stored in the droplets.

【0013】従って、請求項1に対応する発明の氷製造
方法にあっては、冷却した冷媒を貯溜部10の冷媒中に
向かって噴き上げ、水との界面にて液滴を形成して貯溜
部の冷熱と貯溜部上の液滴内の冷熱により液滴表面にて
氷を生成し、液滴の崩壊により自動的に液滴と氷が分離
されて氷だけが浮上するので、熱交換の効率が非常に良
く、氷の生成効率を上げることができる。
Therefore, in the ice manufacturing method according to the present invention, the cooled refrigerant is blown up toward the refrigerant in the storage unit 10 to form droplets at the interface with the water. Ice is generated on the surface of the droplets by the cold heat of the droplets and the cold heat in the droplets in the reservoir, and the droplets are automatically separated from the droplets by the collapse of the droplets, and only the ice floats. Is very good, and the efficiency of ice production can be increased.

【0014】請求項2に対応する発明は、内部に水が貯
溜され、底部に水よりも比重が大きく非水溶性で氷点下
より低い温度の凝固点を有する不凍液を貯溜させる冷媒
貯溜部が形成され、且つ底面に前記冷媒貯溜部に貯溜す
る不凍液を外部に回収する不凍液回収口及び外部より不
凍液を噴出する不凍液噴出孔を設けた製氷槽と、この製
氷槽の底面に有する前記不凍液回収口より回収される不
凍液を加圧するポンプと、このポンプにより加圧された
不凍液を冷却する冷凍機と、前記製氷槽の前記不凍液噴
出孔を通して流入する前記冷凍機により氷点下以下に冷
却された不凍液を冷媒貯溜部の不凍液中から水中に向っ
て噴出させて前記水と不凍液の界面にて泡状の液滴を発
生させることで液滴の薄膜に氷を生成させるノズルとに
より構成され、前記液滴が崩壊または界面の不凍液に吸
収されるときに液滴の中に蓄えられた冷熱を界面上に放
出させて水と熱交換をする製氷装置を備える。
According to a second aspect of the present invention, water is stored inside, and a refrigerant storage portion is formed at the bottom for storing an antifreeze having a specific gravity larger than water, being insoluble in water, and having a freezing point at a temperature below freezing. And an ice-making tank provided with an antifreeze liquid recovery port for recovering the antifreeze stored in the refrigerant storage section to the outside and an antifreeze ejection hole for ejecting the antifreeze from the outside, and the antifreeze liquid recovery port provided on the bottom of the ice-making tank. A pump for pressurizing the antifreeze solution, a refrigerator for cooling the antifreeze solution pressurized by the pump, and an antifreeze solution cooled to below freezing by the refrigerator that flows through the antifreeze jet hole of the ice making tank. A nozzle that spouts out of the antifreeze liquid into the water to generate foamy droplets at the interface between the water and the antifreeze liquid, thereby generating ice in a thin film of the droplets. Comprising ice making apparatus of the cold stored in the droplets are emitted on the interface to the water and heat exchanger when the droplets are absorbed into the antifreeze of disintegration or surfactant.

【0015】従って、請求項2に対応する発明の氷蓄熱
装置にあっては、製氷槽の底部に貯溜する不凍液を冷媒
回収口より冷媒搬送ポンプにより回収して加圧し、さら
に冷凍機により氷点下に冷却して製氷槽の不凍液噴出孔
を通して流入する冷凍機により氷点下以下に冷却された
不凍液を冷媒噴出ノズルより冷媒貯溜部の不凍液中から
水中に向って噴出させると共に、水と不凍液との界面に
おいて発生する液滴の中に蓄えられた冷熱の放出により
水との熱交換が行われて氷が生成されるので、効率良く
氷を生成することができる。
Therefore, in the ice heat storage device according to the second aspect of the present invention, the antifreeze liquid stored at the bottom of the ice making tank is recovered from the refrigerant recovery port by the refrigerant transport pump and pressurized, and further cooled to below freezing by the refrigerator. The antifreeze, which has been cooled and cooled to below freezing by the freezer flowing through the antifreeze outlet of the ice making tank, is jetted out of the antifreeze in the refrigerant reservoir from the refrigerant jet nozzle into the water, and is generated at the interface between the water and the antifreeze. Since the heat exchange with water is performed by the release of the cold stored in the falling droplets to generate ice, ice can be generated efficiently.

【0016】請求項3に対応する発明は、内部に水が貯
溜され、底部に水よりも比重が大きく非水溶性で氷点下
より低い温度の凝固点を有する不凍液を貯溜させる冷媒
貯溜部が形成され、且つ底面に前記冷媒貯溜部に貯溜す
る不凍液を外部に回収する不凍液回収口及び外部より不
凍液を噴出する不凍液噴出孔を設けた製氷槽と、この製
氷槽の底面に有する前記不凍液回収口より回収される不
凍液を加圧するポンプと、このポンプにより加圧された
不凍液を冷却する冷凍機と、前記製氷槽の底部に設置さ
れ、且つ前記不凍液噴出孔を通して流入する前記冷凍機
により氷点下以下に冷却された不凍液を蓄えるバッファ
タンクと、このバッファタンクに設けられ、バッファタ
ンク内に蓄えられた不凍液を冷媒貯溜部の不凍液中から
水中に向って噴出させて前記水と不凍液の界面にて泡状
の液滴を発生させることで液滴の薄膜に氷を生成させる
複数個のノズルとにより構成され、前記液滴が崩壊また
は界面の不凍液に吸収されるときに液滴の中に蓄えられ
た冷熱を界面上に放出させて水と熱交換をする製氷装置
を備える。
According to a third aspect of the present invention, there is provided a refrigerant storing portion for storing water therein, and for storing an antifreeze having a specific gravity larger than that of water, a water-insoluble property, and a freezing point having a temperature below freezing below the freezing point. And an ice-making tank provided with an antifreeze liquid recovery port for recovering the antifreeze stored in the refrigerant storage section to the outside and an antifreeze ejection hole for ejecting the antifreeze from the outside, and the antifreeze liquid recovery port provided on the bottom of the ice-making tank. A pump for pressurizing the antifreeze liquid, a refrigerator for cooling the antifreeze liquid pressurized by the pump, and a refrigerator installed at the bottom of the ice making tank and flowing through the antifreeze ejection hole and cooled to below freezing. A buffer tank for storing antifreeze, and the antifreeze stored in the buffer tank is jetted out of the antifreeze in the refrigerant reservoir toward the water. And a plurality of nozzles that generate ice on the thin film of the droplet by generating a bubble-like droplet at the interface between the water and the antifreeze, and the droplet collapses or is absorbed by the antifreeze at the interface. An ice making device that exchanges heat with water by releasing cold stored in the liquid droplets onto the interface when the liquid drops.

【0017】従って、請求項3に対応する発明の氷蓄熱
装置にあっては、製氷槽の底部に貯溜する不凍液を冷媒
回収口より冷媒搬送ポンプにより回収して加圧し、さら
に冷凍機により氷点下に冷却して製氷槽の底部に配設さ
れたバッファタンク内に蓄え、このバッファタンクの上
面に設けられた複数個の冷媒噴出ノズルより冷媒貯溜部
の不凍液中から水中に向って噴出させると共に、水と不
凍液との界面において発生する液滴の中に蓄えられた冷
熱の放出により水との熱交換が行われて氷が生成される
ので、効率良く氷を生成することができる。特にバッフ
ァタンク内の不凍液は加圧された状態にあるので、複数
個の冷媒噴出ノズルより同時に不凍液が噴出するので、
液滴の発生量も多くなり、より広い範囲で熱交換が行わ
れ、製氷効率が向上する。
Therefore, in the ice heat storage device according to the third aspect of the present invention, the antifreeze liquid stored at the bottom of the ice making tank is recovered from the refrigerant recovery port by the refrigerant transport pump and pressurized, and further cooled to below freezing by the refrigerator. Cooled and stored in a buffer tank arranged at the bottom of the ice making tank, and a plurality of refrigerant jet nozzles provided on the upper surface of the buffer tank are jetted into the water from the antifreeze in the refrigerant storage section toward the water. Ice is generated by exchanging heat with water due to the release of cold stored in droplets generated at the interface between the ice and the antifreeze, and ice can be generated efficiently. In particular, since the antifreeze in the buffer tank is in a pressurized state, since the antifreeze is ejected from a plurality of refrigerant ejection nozzles simultaneously,
The amount of generated droplets also increases, heat exchange is performed in a wider range, and ice making efficiency is improved.

【0018】請求項4に対応する発明は、請求項2又は
請求項3に対応する発明の氷蓄熱装置において、冷媒貯
溜部の不凍液と水との界面近傍に製氷槽内周面に凍結防
止用温熱装置を配置する。
According to a fourth aspect of the present invention, there is provided the ice heat storage device according to the second or third aspect of the present invention, wherein an antifreeze is provided on the inner peripheral surface of the ice making tank near the interface between the antifreeze and the water in the refrigerant storage section. Place a heating device.

【0019】請求項5に対応する発明は、請求項4に対
応する発明の氷蓄熱装置において、凍結防止用温熱装置
は冷媒貯溜部の不凍液と水との界面近傍に浮上するもの
である。
According to a fifth aspect of the present invention, in the ice heat storage device according to the fourth aspect, the anti-freezing heating device floats near the interface between the antifreeze and the water in the refrigerant storage section.

【0020】従って、請求項4及び請求項5に対応する
発明の氷蓄熱装置にあっては、貯溜部の不凍液と水との
界面近傍の製氷槽の下部内周面に凍結防止用温熱装置が
配設され、且つこの凍結防止用温熱装置は不凍液と水と
の界面上に浮いて常に界面位置が維持されるので、界面
が変化しても壁面凍結を防止することができ、安定した
製氷を維持できる。
Therefore, in the ice heat storage device according to the fourth and fifth aspects of the present invention, a heating device for preventing freezing is provided on the inner peripheral surface of the lower part of the ice making tank near the interface between the antifreeze and the water in the storage portion. This freezing-prevention heating device is arranged on the interface between the antifreeze and water, and the position of the interface is always maintained. Therefore, even if the interface changes, the freezing of the wall surface can be prevented, and stable ice making can be achieved. Can be maintained.

【0021】請求項6に対応する発明は、請求項2又は
請求項3に対応する発明の氷蓄熱装置において、製氷槽
は円筒状に構成され、その内周面に流下する循環水に旋
回流を与える螺旋状のフィンを設ける。
According to a sixth aspect of the present invention, in the ice heat storage device according to the second or third aspect, the ice making tank is formed in a cylindrical shape, and the circulating water flowing down on the inner peripheral surface thereof is swirled. Is provided.

【0022】請求項7に対応する発明は、請求項2又は
請求項3に対応する発明の氷蓄熱装置において、製氷槽
内のバッファタンク上方に生成された氷を集める逆ロー
ト状の集氷部を配置し、この集氷部の内周面に氷水搬送
のための上昇旋回流を形成するフィンを設ける。
According to a seventh aspect of the present invention, in the ice heat storage device according to the second or third aspect, an inverted funnel-shaped ice collecting section for collecting ice generated above a buffer tank in an ice making tank. And a fin for forming an upward swirling flow for transporting ice water is provided on the inner peripheral surface of the ice collecting portion.

【0023】従って、請求項6及び請求項7に対応する
発明の氷蓄熱装置にあっては、製氷槽の内周面に螺旋状
のフィンが設けられているので、製氷槽の上部より供給
された水は製氷槽の内周面に設けられた螺旋状のフィン
により旋回下降流を形成して集氷部内に流れ込むので、
生成された氷塊は集氷部の外周に移動することがなく、
高い集氷率で氷水を効率良く搬送できる。
Therefore, in the ice heat storage device of the invention corresponding to claims 6 and 7, since the spiral fins are provided on the inner peripheral surface of the ice making tank, the ice is supplied from the upper part of the ice making tank. The formed water flows into the ice collecting part by forming a swirling descending flow by spiral fins provided on the inner peripheral surface of the ice making tank,
The generated ice blocks do not move to the outer periphery of the ice collecting part,
Ice water can be transported efficiently with a high ice collection rate.

【0024】請求項8に対応する発明は、請求項2又は
請求項3に対応する発明の氷蓄熱装置において、バッフ
ァタンク上面に設けられる複数個のノズルは中央部に不
凍液噴出孔を有し、その周囲部を断熱層として構成す
る。
According to an eighth aspect of the present invention, in the ice heat storage device according to the second or third aspect, the plurality of nozzles provided on the upper surface of the buffer tank have an antifreeze ejection hole in a central portion, The surrounding area is configured as a heat insulating layer.

【0025】請求項9に対応する発明は、請求項2又は
請求項3に対応する発明の氷蓄熱装置において、バッフ
ァタンク上面に設けられる複数個のノズルは先端が鈍頭
体に形成され、且つ中央部に不凍液噴出孔を有し、その
周囲部を断熱層として構成する。
According to a ninth aspect of the present invention, in the ice heat storage device according to the second or third aspect, the plurality of nozzles provided on the upper surface of the buffer tank have blunt tips. An antifreeze ejection hole is provided at the center, and the surrounding area is configured as a heat insulating layer.

【0026】請求項10に対応する発明は、請求項2又
は請求項3に対応する発明の氷蓄熱装置において、バッ
ファタンク上面に設けられる複数個のノズルは管体の上
部を球形の噴出部として構成され、この球形部分にヒー
タを内蔵する。
According to a tenth aspect of the present invention, in the ice heat storage device according to the second or third aspect, the plurality of nozzles provided on the upper surface of the buffer tank are formed such that the upper part of the tube has a spherical ejection portion. This spherical part incorporates a heater.

【0027】従って、請求項8乃至請求項10に対応す
る発明の氷蓄熱装置にあっては、ノズル先端の凍結を防
止することができると共に、不凍液の噴出温度を制御す
ることができる。
Therefore, in the ice heat storage device of the invention according to claims 8 to 10, it is possible to prevent freezing of the nozzle tip and to control the temperature at which the antifreeze is ejected.

【0028】請求項11に対応する発明は、内部に水が
貯溜され、底部に水よりも比重が大きく非水溶性で氷点
下より低い温度の凝固点を有する不凍液を貯溜させる冷
媒貯溜部が形成され、且つ底面に前記冷媒貯溜部に貯溜
する不凍液を外部に回収する不凍液回収口及び外部より
不凍液を噴出する不凍液噴出孔を設けた製氷槽と、この
製氷槽の底面に有する前記不凍液回収口より回収される
不凍液を加圧するポンプと、このポンプにより加圧され
た不凍液を冷却する冷凍機と、前記製氷槽の前記不凍液
噴出孔を通して流入する前記冷凍機により氷点下以下に
冷却された不凍液を冷媒貯溜部の不凍液中から水中に向
って噴出させて前記水と不凍液の界面にて泡状の液滴を
発生させることで液滴の薄膜に氷を生成させるノズルと
により構成され、前記液滴が崩壊または界面の不凍液に
吸収されるときに液滴の中に蓄えられた冷熱を界面上に
放出させて水と熱交換をする複数の製氷装置を横並び又
は垂直方向に多段に設置して前記ポンプ及び冷凍機を各
製氷装置に共通に接続して不凍液循環系を構成する。
According to an eleventh aspect of the present invention, water is stored inside, and a refrigerant storage portion is formed at the bottom portion for storing an antifreeze having a specific gravity larger than water, being insoluble in water, and having a freezing point at a temperature below freezing, and And an ice-making tank provided with an antifreeze liquid recovery port for recovering the antifreeze stored in the refrigerant storage section to the outside and an antifreeze ejection hole for ejecting the antifreeze from the outside, and the antifreeze liquid recovery port provided on the bottom of the ice-making tank. A pump for pressurizing the antifreeze solution, a refrigerator for cooling the antifreeze solution pressurized by the pump, and an antifreeze solution cooled to below freezing by the refrigerator that flows through the antifreeze jet hole of the ice making tank. A nozzle that spouts into the water from the antifreeze to generate foamy droplets at the interface between the water and the antifreeze, thereby generating ice in a thin film of the droplets, A plurality of ice-making units are installed side-by-side or vertically in multiple stages to exchange heat with water by releasing cold stored in the droplets onto the interface when the droplets collapse or are absorbed by the antifreeze at the interface Then, the pump and the refrigerator are commonly connected to each ice making device to form an antifreeze circulation system.

【0029】請求項12に対応する発明は、内部に水が
貯溜され、底部に水よりも比重が大きく非水溶性で氷点
下より低い温度の凝固点を有する不凍液を貯溜させる冷
媒貯溜部が形成され、且つ底面に前記冷媒貯溜部に貯溜
する不凍液を外部に回収する不凍液回収口及び外部より
不凍液を噴出する不凍液噴出孔を設けた製氷槽と、この
製氷槽の底面に有する前記不凍液回収口より回収される
不凍液を加圧するポンプと、このポンプにより加圧され
た不凍液を冷却する冷凍機と、前記製氷槽の底部に設置
され、且つ前記不凍液噴出孔を通して流入する前記冷凍
機により氷点下以下に冷却された不凍液を蓄えるバッフ
ァタンクと、このバッファタンクに設けられ、バッファ
タンク内に蓄えられた不凍液を冷媒貯溜部の不凍液中か
ら水中に向って噴出させて前記水と不凍液の界面にて泡
状の液滴を発生させることで液滴の薄膜に氷を生成させ
る複数個のノズルとにより構成され、前記液滴が崩壊ま
たは界面の不凍液に吸収されるときに液滴の中に蓄えら
れた冷熱を界面上に放出させて水と熱交換をする複数の
製氷装置を横並び又は垂直方向に多段に設置して前記ポ
ンプ及び冷凍機を各製氷装置に共通に接続して不凍液循
環系を構成する。
According to a twelfth aspect of the present invention, water is stored inside, and a refrigerant storage part is formed at the bottom for storing an antifreeze having a specific gravity larger than water, being insoluble in water, and having a freezing point at a temperature below freezing, and And an ice-making tank provided with an antifreeze liquid recovery port for recovering the antifreeze stored in the refrigerant storage section to the outside and an antifreeze ejection hole for ejecting the antifreeze from the outside, and the antifreeze liquid recovery port provided on the bottom of the ice-making tank. A pump for pressurizing the antifreeze liquid, a refrigerator for cooling the antifreeze liquid pressurized by the pump, and a refrigerator installed at the bottom of the ice making tank and flowing through the antifreeze ejection hole and cooled to below freezing. A buffer tank for storing antifreeze, and the antifreeze stored in the buffer tank is sprayed from the antifreeze in the refrigerant reservoir toward the water. A plurality of nozzles that generate ice on the thin film of the droplets by generating foamy droplets at the interface between the water and the antifreeze, and the droplets collapse or are absorbed by the antifreeze at the interface. When a plurality of ice making devices that exchange heat with water by discharging the cold stored in the droplets to the interface when the liquid is stored are arranged side by side or in multiple stages in the vertical direction, the pump and the refrigerator are installed in each ice making device. Commonly connected to form an antifreeze circulating system.

【0030】従って、請求項11及び請求項12に対応
する発明の氷蓄熱装置にあっては、装置の設置面積が広
い場合には複数個の製氷装置を横並びに、設置面積が狭
い場合には複数個の製氷装置を垂直方向に多段に配置す
ることにより、大容量向けのフル稼働から、追加運転の
小容量の製氷運転までの能力を発揮させることができ
る。
Therefore, in the ice heat storage device of the invention corresponding to claim 11 and claim 12, a plurality of ice making devices are arranged side by side when the installation area of the device is large, and when the installation area of the device is small. By arranging a plurality of ice making devices in multiple stages in the vertical direction, it is possible to exhibit the ability from full operation for large capacity to small capacity ice making operation of additional operation.

【0031】[0031]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明による氷蓄熱装置の第
1の実施の形態を示す断面図である。図1において、1
は両端開口部が閉塞された円筒状の製氷槽で、この製氷
槽1の内周面には適宜の間隔を存して螺旋状のフィン2
が設けられ、また底面周囲部には水3よりも比重が大き
く、非水溶性で氷点下より温度の低い凝固点を有する例
えばフロリナートからなる不凍液(以下冷媒と呼ぶ)4
を回収する冷媒回収溝5が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a first embodiment of an ice heat storage device according to the present invention. In FIG. 1, 1
Is a cylindrical ice-making tank having openings at both ends thereof closed, and spiral fins 2 are provided on the inner peripheral surface of the ice-making tank 1 at appropriate intervals.
And an antifreeze liquid (hereinafter referred to as refrigerant) 4 made of, for example, Fluorinert, having a specific gravity greater than that of water 3, a water-insoluble property, and a freezing point lower than freezing point and lower than freezing point
And a refrigerant recovery groove 5 for recovering the refrigerant.

【0032】この冷媒回収溝5の内側に冷媒を加圧した
状態で収容する一重の筒体からなるバッファタンク6が
設置される。このバッファタンク6はその上面部に冷媒
を上方に向けて噴出する複数の冷媒噴出ノズル7が設け
られている。
A buffer tank 6 composed of a single cylinder for housing the refrigerant in a pressurized state is installed inside the refrigerant recovery groove 5. The buffer tank 6 is provided with a plurality of refrigerant jet nozzles 7 for jetting the refrigerant upward on the upper surface thereof.

【0033】この冷媒噴出ノズル7は、図2に示すよう
に中央部に冷媒噴出孔を有する鈍頭体形状ノズル21
で、冷媒噴出孔の周囲部には断熱効果のある例えばテフ
ロンからなる断熱層22を設けたものである。
As shown in FIG. 2, the coolant ejection nozzle 7 has a blunt body-shaped nozzle 21 having a coolant ejection hole at the center.
A heat insulating layer 22 made of, for example, Teflon, having a heat insulating effect, is provided around the coolant ejection holes.

【0034】また、バッファタンク6と冷媒回収溝5と
の間には冷媒回収溝5に貯溜する冷媒4を冷媒回収口よ
り排出させて冷媒搬送ポンプ8により加圧し、これを冷
凍機9により冷凍して再びバッファタンク6に流入させ
る冷媒循環系が構成されている。
Further, between the buffer tank 6 and the refrigerant recovery groove 5, the refrigerant 4 stored in the refrigerant recovery groove 5 is discharged from the refrigerant recovery port, pressurized by the refrigerant transport pump 8, and is cooled by the refrigerator 9. Then, a refrigerant circulating system that flows into the buffer tank 6 again is configured.

【0035】上記製氷槽1の下部にはバッファタンク6
の冷媒噴出ノズル7より噴出した冷媒4が貯溜する貯溜
部10が形成され、この貯溜部10と水3との界面近傍
に対応する製氷槽1の内周側にリング状の凍結防止用温
熱装置11が界面上に浮上させて配設されている。
A buffer tank 6 is provided below the ice making tank 1.
A storage part 10 for storing the refrigerant 4 ejected from the refrigerant ejection nozzle 7 is formed, and a ring-shaped antifreezing heating device is provided on the inner peripheral side of the ice making tank 1 corresponding to the vicinity of the interface between the storage part 10 and the water 3. 11 is provided so as to float above the interface.

【0036】さらに、製氷槽1内の貯溜部10の上方に
は内周面に螺旋状のフィン12を有し、且つバッファタ
ンク6の冷媒噴出ノズル7より噴出した冷媒4により生
成された氷13を集める逆ロート状の集氷部14が設け
られ、この集氷部14の上端開口部には製氷槽1の上面
を貫通させて内部に垂直方向に導入された氷水搬送管1
5の一端部が接続されている。
Further, a spiral fin 12 is provided on the inner peripheral surface above the storage portion 10 in the ice making tank 1, and ice 13 generated by the refrigerant 4 ejected from the refrigerant ejection nozzle 7 of the buffer tank 6. An ice collecting section 14 having an inverted funnel shape for collecting ice is provided, and an ice water transport pipe 1 vertically penetrated into the inside of the ice making tank 1 through an upper end opening of the ice collecting section 14 through the upper surface of the ice making tank 1.
5 is connected to one end.

【0037】ここで、上記した製氷槽1,バッファタン
ク6、貯溜部10及び集氷部14は製氷装置を構成して
いる。一方、16は製氷槽1とは別途に設けられた貯氷
槽で、この貯氷槽16の上部に前述した氷水搬送管15
の他端部が接続され、この氷水搬送管15を通して搬送
される氷を貯えるものである。
Here, the ice making tank 1, the buffer tank 6, the storage unit 10, and the ice collecting unit 14 constitute an ice making device. On the other hand, an ice storage tank 16 is provided separately from the ice making tank 1.
The other end is connected to store ice transported through the ice water transport pipe 15.

【0038】さらに、貯氷槽1の下部に有する吐出口に
氷水移送ポンプ17が接続され、この氷水移送ポンプ1
7により搬送される水を製氷槽1の上部に有する循環水
供給孔18に接続された水搬送管19を通して供給可能
にしてある。
Further, an ice water transfer pump 17 is connected to a discharge port provided at a lower portion of the ice storage tank 1.
The water conveyed by 7 can be supplied through a water conveyance pipe 19 connected to a circulating water supply hole 18 provided in the upper part of the ice making tank 1.

【0039】次に上記のように構成された氷蓄熱装置の
作用を述べる。今、冷媒搬送ポンプ8を駆動すると、製
氷槽1の底部に有する冷媒回収溝5に貯溜する冷媒4が
冷媒回収口より流出し、この冷媒4は冷媒搬送ポンプ8
により加圧された後、冷凍機9により0℃以下に冷却さ
れてバッファタンク6内に導入される。
Next, the operation of the ice heat storage device configured as described above will be described. Now, when the refrigerant transport pump 8 is driven, the refrigerant 4 stored in the refrigerant recovery groove 5 provided at the bottom of the ice making tank 1 flows out from the refrigerant recovery port, and the refrigerant 4 is
Then, the mixture is cooled to 0 ° C. or lower by the refrigerator 9 and introduced into the buffer tank 6.

【0040】このバッファタンク6内に蓄えられた冷媒
4は内部圧力により冷媒噴出ノズル7より上方に貯溜部
10に貯溜している冷媒4を通して水中に噴出され、こ
のとき次のような現象により氷が生成される。
The refrigerant 4 stored in the buffer tank 6 is jetted into the water by the internal pressure through the refrigerant 4 stored in the storage section 10 above the refrigerant jet nozzle 7, and at this time, the following phenomenon occurs. Is generated.

【0041】図6乃至図8は氷が生成されるまでの過程
並びに現象を説明するための図を示している。即ち、図
6に示すように0℃以下に冷却された冷媒4が貯溜部1
0に貯溜する冷媒中から噴き上がることにより、貯溜部
10を冷却すると共に、冷媒と水との界面において、液
滴群20(冷媒及び水)が発生する。そして、この液滴
群20は崩壊又は界面の冷媒に吸収されるときに液滴の
中に蓄えられた冷熱がこの時放出され、水と熱交換され
る。この時、水温と冷媒の貯溜部の温度が0℃以下にな
ると氷の生成が始まる。
FIGS. 6 to 8 are views for explaining processes and phenomena until ice is formed. That is, as shown in FIG. 6, the refrigerant 4 cooled to 0 ° C. or less
By spraying up from the refrigerant stored in 0, the storage unit 10 is cooled, and a droplet group 20 (refrigerant and water) is generated at the interface between the refrigerant and water. Then, when the droplet group 20 collapses or is absorbed by the coolant at the interface, the cold stored in the droplets is released at this time, and heat exchange is performed with water. At this time, when the water temperature and the temperature of the storage portion of the refrigerant become 0 ° C. or less, ice formation starts.

【0042】この場合、図7に示すように氷は水と冷媒
の界面上に発生し、冷熱を蓄えた液滴(冷媒、水)の薄
膜で生成される。そして、図8に示すように液滴群20
が崩壊して貯溜部10に吸収されるときに氷13が浮上
する。即ち、冷媒4の液滴群が貯溜部10に吸収される
とき、放熱と崩壊を繰返すことにより水3と冷媒4の界
面近傍より氷13が生成される。
In this case, as shown in FIG. 7, ice is generated on the interface between water and the refrigerant, and is generated as a thin film of droplets (refrigerant, water) storing cold heat. Then, as shown in FIG.
The ice 13 floats when the water collapses and is absorbed by the storage unit 10. That is, when the droplet group of the refrigerant 4 is absorbed by the storage unit 10, ice 13 is generated from the vicinity of the interface between the water 3 and the refrigerant 4 by repeating heat dissipation and collapse.

【0043】このような現象は界面より上に冷媒を噴き
上げないと液滴は発生せず、また冷媒に冷熱を与え、液
滴に冷熱を含んでいないと氷は生成されない。更に、貯
溜部を0℃以下に冷却しないと氷は生成されない。これ
らの条件をクリアーし、初めて氷生成が可能になってく
る。
In such a phenomenon, no droplet is generated unless the refrigerant is blown up above the interface, and cold is applied to the refrigerant, and ice is not generated unless the droplet contains cold. Further, ice is not generated unless the reservoir is cooled below 0 ° C. Clearing these conditions will enable ice production for the first time.

【0044】ここで、貯溜部10の温度と氷の生成結果
の具体例について述べる。冷媒貯溜部10の温度が0℃
から−1℃までは初生氷の1mm程度の丸い円盤状の氷が
生成され、−1℃〜−2℃までは2mm程度の木の葉状の
氷が発生する。この時のノズル噴き出し温度は0℃以下
であり、流量はノズル径により異なる。この場合、冷媒
の噴き出し流量の限界は水に懸濁しない程度である。
Here, a specific example of the temperature of the storage unit 10 and the result of ice formation will be described. The temperature of the refrigerant storage unit 10 is 0 ° C.
From 1 ° C to -1 ° C, round disc-shaped ice of about 1 mm of primary ice is generated, and from -1 ° C to -2 ° C, leaf-like ice of about 2 mm is generated. At this time, the nozzle ejection temperature is 0 ° C. or less, and the flow rate differs depending on the nozzle diameter. In this case, the limit of the flow rate of the discharged refrigerant is such that the refrigerant is not suspended in water.

【0045】例えば、比重が水の1.8倍のフロリナー
トと呼ばれる冷媒の適性噴き出し流量はφ8mmで長さ5
0mmのテフロン製のノズルでノズル先端から界面まで3
0mm〜40mmの条件で100mm〜150mmぐらいが噴き
上げ高さとして適性であり、界面上により効果的に液滴
(泡状)を発生させることができる。因みに、液滴
(泡)の部分以外ではシャーベット状の氷は生成されな
い。
For example, an appropriate flow rate of a refrigerant called Fluorinert, whose specific gravity is 1.8 times that of water, is φ8 mm and length 5 mm
0mm Teflon nozzle from nozzle tip to interface 3
Under the condition of 0 mm to 40 mm, about 100 mm to 150 mm is suitable as the jetting height, and can generate droplets (bubbles) more effectively on the interface. By the way, no sherbet-like ice is generated except for the droplets (bubbles).

【0046】一方、冷媒噴出ノズル7より噴出した冷媒
4は水3との界面において、液滴群20を形成しながら
製氷槽1の壁面に移動して壁面凍結を誘発するが、水3
との界面近傍に配設された凍結防止用温熱装置11によ
りその凍結が防止される。
On the other hand, the coolant 4 ejected from the coolant ejection nozzle 7 moves to the wall surface of the ice making tank 1 while forming a group of droplets 20 at the interface with the water 3 and induces freezing of the wall surface.
The freezing is prevented by a heating device 11 for preventing freezing, which is arranged near the interface with the substrate.

【0047】このように氷13を生成した後、貯溜部1
0に回収された冷媒4は、冷媒回収溝5より冷媒搬送ポ
ンプ8及び冷凍機9を経由して再びバッファタンク6に
戻る冷媒循環系を循環しながら製氷部に供給される。
After the ice 13 is generated in this manner, the storage unit 1
The refrigerant 4 recovered to 0 is supplied to the ice making unit while circulating in the refrigerant circulation system returning to the buffer tank 6 via the refrigerant conveyance pump 8 and the refrigerator 9 from the refrigerant recovery groove 5 again.

【0048】この時、氷水移送ポンプ17の駆動により
貯氷槽16より製氷槽1内にその上部に有する循環水供
給孔18を通して水3が供給されている。この循環水供
給孔18より供給された水3は製氷槽1の内周面に設け
られた螺旋状のフィン2により、旋回下降流を形成して
逆ロート状の集氷部14内に導かれる。
At this time, the water 3 is supplied from the ice storage tank 16 into the ice making tank 1 through the circulating water supply hole 18 provided in the upper part thereof by the driving of the ice water transfer pump 17. The water 3 supplied from the circulating water supply hole 18 forms a swirling downward flow by the spiral fins 2 provided on the inner peripheral surface of the ice making tank 1 and is guided into the inverted funnel-shaped ice collecting unit 14. .

【0049】上記製氷部で生成された氷13は、集氷部
14内に導かれる水の流れと集氷部14の内周面に設け
られた螺旋状のフィン12により、効率よく集氷され、
氷水移送ポンプ17による循環作用により貯氷槽16に
搬送される。
The ice 13 generated in the ice making section is efficiently collected by the flow of water guided into the ice collecting section 14 and the spiral fins 12 provided on the inner peripheral surface of the ice collecting section 14. ,
The water is transferred to the ice storage tank 16 by the circulation operation of the ice water transfer pump 17.

【0050】このように第1の実施の形態では、冷却し
た冷媒を貯溜部10の冷媒中に向かって噴き上げ、水と
の界面にて液滴を形成して貯溜部の冷熱と貯溜部上の液
滴内の冷熱により液滴表面にて氷を生成し、液滴の崩壊
により自動的に液滴と氷が分離されて氷だけが浮上する
ので、熱交換の効率が非常に良く、氷の生成効率を上げ
ることができる。
As described above, in the first embodiment, the cooled refrigerant is blown up into the refrigerant in the storage unit 10 to form droplets at the interface with water, and the cooling heat of the storage unit and the water on the storage unit Ice is generated on the surface of the droplet due to the cold heat in the droplet, and the droplet is automatically separated from the droplet by the collapse of the droplet, and only the ice floats. Generation efficiency can be increased.

【0051】また、製氷槽1の底部の冷媒回収溝5に貯
溜する冷媒4を冷媒回収口より冷媒搬送ポンプ8により
回収して加圧し、さらに冷凍機9により氷点下に冷却し
て製氷槽1の底部に配設されたバッファタンク6内に蓄
え、このバッファタンク6の上面に設けられた複数個の
冷媒噴出ノズル7より冷媒4を噴出させ、水と冷媒の界
面にて液滴を形成して貯溜部の冷熱と貯溜部上の液滴内
の冷熱により液滴表面にて氷を生成し、液滴の崩壊によ
り自動的に液滴と氷が分離することで氷だけを浮上させ
て氷を生成するようにしたので、より広い範囲で熱交換
が行われ、効率良く氷を生成することができる。
The refrigerant 4 stored in the refrigerant recovery groove 5 at the bottom of the ice maker 1 is recovered from the refrigerant recovery port by the refrigerant transport pump 8 and pressurized, and further cooled to below freezing by the refrigerator 9 to cool the ice maker 1. The refrigerant is stored in a buffer tank 6 disposed at the bottom, and the refrigerant 4 is jetted from a plurality of refrigerant jet nozzles 7 provided on the upper surface of the buffer tank 6 to form droplets at the interface between water and the refrigerant. Ice is generated on the surface of the droplet by the cold heat of the reservoir and the cold in the droplet on the reservoir, and the droplet is automatically separated from the droplet by the collapse of the droplet. Since it is generated, heat exchange is performed in a wider range, and ice can be generated efficiently.

【0052】特に冷媒噴出ノズル7により冷媒と水の界
面より、水中に向って冷媒を噴出することで界面上に大
量の泡状の液滴を発生させ、この冷熱を含んだ泡状の液
滴が生成、崩壊を繰り返すことにより冷媒と水との熱交
換を行うので、液滴の数だけ製氷効率が向上すると同時
に、連続製氷が可能となり、生成された氷を搬送すれば
高い氷充填率が得られる。
In particular, a large amount of foam-like droplets are generated on the interface by ejecting the coolant toward the water from the interface between the coolant and the water by the coolant ejection nozzle 7, and this foam-like droplet containing cold heat is generated. Since the heat exchange between the refrigerant and water is performed by repeating generation and collapse, the ice making efficiency is improved by the number of droplets, and at the same time, continuous ice making becomes possible. can get.

【0053】一方、貯溜部10と水3との界面近傍の製
氷槽1の下部内周面にリング状の凍結防止用温熱装置1
1が配設され、且つこの凍結防止用温熱装置11は冷媒
に浮いて常に界面位置を維持しているので、界面が変化
しても壁面凍結を防止することができ、安定した製氷を
維持できる。
On the other hand, a ring-shaped antifreezing heating device 1 is provided on the lower inner peripheral surface of the ice making tank 1 near the interface between the storage section 10 and the water 3.
1 is provided, and since the anti-freezing heating device 11 floats on the refrigerant and always maintains the interface position, even if the interface changes, it is possible to prevent wall surface freezing and maintain stable ice making. .

【0054】また、製氷槽1の内周面に螺旋状のフィン
2が設けられているので、製氷槽1の上部の循環水供給
孔18より供給された水は製氷槽1の内周面に設けられ
た螺旋状のフィン2により旋回下降流を形成して集氷部
14内に流れ込むので、生成された氷塊は集氷部14の
外周に移動することがなく、高い集氷率で氷水を効率良
く貯氷槽16に搬送することができる。
Since the spiral fins 2 are provided on the inner peripheral surface of the ice making tank 1, the water supplied from the circulating water supply hole 18 at the upper part of the ice making tank 1 is supplied to the inner peripheral surface of the ice making tank 1. Since the spiral fins 2 provided form a swirling downward flow and flow into the ice collecting unit 14, the generated ice blocks do not move to the outer periphery of the ice collecting unit 14, and ice water is collected at a high ice collecting rate. It can be efficiently transported to the ice storage tank 16.

【0055】さらに、前述したようにバッファタンク6
に蓄えられた冷媒4を噴出する冷媒噴出ノズル7は先端
が鈍頭体に形成され、且つ冷媒噴出孔の周囲部に断熱層
が設けられているので、噴出した冷媒の液滴をこの傾斜
により逃がすことで、ノズル先端の凍結を防止すること
ができる。
Further, as described above, the buffer tank 6
The refrigerant ejection nozzle 7 for ejecting the refrigerant 4 stored in the nozzle has a blunt tip, and is provided with a heat insulating layer around the refrigerant ejection hole. The escape can prevent the tip of the nozzle from freezing.

【0056】図3はバッファタンク6に設けられる冷媒
噴出ノズル7の他の構成例を示すものである。即ち、こ
の冷媒噴出ノズル7は図3に示すように先端部を球形状
とした球形ノズル24とし、中央に有する冷媒噴出孔の
周囲部の球形状の中にヒータ23を組込むものである。
FIG. 3 shows another example of the structure of the refrigerant jet nozzle 7 provided in the buffer tank 6. That is, as shown in FIG. 3, the refrigerant jet nozzle 7 is a spherical nozzle 24 having a spherical tip at the tip, and the heater 23 is incorporated in a spherical shape around the refrigerant jet hole provided at the center.

【0057】このような構成の冷媒噴出ノズルを設ける
ことにより、ノズルの凍結を防止することができると共
に、冷媒4の噴出温度を制御することができる。図4は
本発明の第2の実施の形態を示す断面図で、図1と同一
構成要素には同一符号を付してその説明を省略する。
By providing the refrigerant ejection nozzle having such a configuration, the nozzle can be prevented from freezing, and the ejection temperature of the refrigerant 4 can be controlled. FIG. 4 is a sectional view showing a second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0058】第1の実施の形態では1個の製氷装置を設
ける場合について述べたが、第2の実施の形態では図4
に示すように複数個(図では3個)の製氷装置を横並び
に設置して、各製氷槽1の隣合せ壁面上部に連通孔31
を設けると共に、両側の製氷槽1の連通孔31に対向す
る壁面上部に図示しない貯氷槽側の氷水移送ポンプによ
り送水される給水系32を接続し、また各製氷槽1の集
氷部14に集められた氷を氷水搬送部15を共通に接続
して図示しない貯氷槽に搬送する氷水搬送系33を接続
する。
In the first embodiment, the case where one ice making device is provided has been described, but in the second embodiment, FIG.
A plurality of (three in the figure) ice making devices are installed side by side as shown in FIG.
And a water supply system 32 fed by an ice water transfer pump on the ice storage tank (not shown) is connected to the upper part of the wall opposite to the communication hole 31 of the ice making tank 1 on both sides, and is connected to the ice collecting part 14 of each ice making tank 1. An ice water transport system 33 that transports the collected ice to an ice storage tank (not shown) by connecting the ice water transport unit 15 in common is connected.

【0059】また、各製氷槽1のバッファタンク6と冷
媒回収溝5との間には冷媒回収溝5に貯溜する冷媒4を
排出する排出系を共通にして1台の冷媒搬送ポンプ8に
より加圧し、これを冷凍機9により冷凍して再び各製氷
槽1のバッファタンク6に流入させる冷媒循環系が構成
される。
Further, between the buffer tank 6 and the refrigerant recovery groove 5 of each ice making tank 1, a single refrigerant transport pump 8 is used to share a discharge system for discharging the refrigerant 4 stored in the refrigerant recovery groove 5. Then, the refrigerant is frozen by the refrigerator 9, and flows again into the buffer tank 6 of each ice making tank 1 to form a refrigerant circulation system.

【0060】従って、このような構成の氷蓄熱装置にあ
っては、装置の設置面積が広い場合に必要とする製氷量
に応じた数の製氷装置を並設することで、大容量向けの
フル稼働から追加運転の小量製氷運転まで幅広い可変運
転が可能である。
Accordingly, in the ice heat storage device having such a configuration, when a large number of ice making devices are provided in parallel according to the amount of ice making required when the installation area of the device is large, a full capacity for a large capacity is provided. A wide range of variable operation is possible from operation to additional operation of small ice making operation.

【0061】図5は本発明の第3の実施の形態を示す断
面図で、図1と同一構成要素には同一符号を付してその
説明を省略する。第1の実施の形態では1個の製氷装置
を設ける場合について述べたが、第3の実施の形態では
図5に示すように複数個(図では2個)の製氷装置を垂
直方向に設置して、各製氷槽1の壁面上部に連通孔41
を設けると共に、これらの連通孔41に図示しない貯氷
槽より氷水移送ポンプにより送水される給水系42を接
続し、また各製氷槽1の集氷部14に集められた氷を氷
水搬送部15を共通に接続して図示しない貯氷槽に搬送
する搬送系43を接続する。
FIG. 5 is a sectional view showing a third embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In the first embodiment, the case where one ice making device is provided has been described. However, in the third embodiment, a plurality of (two in the figure) ice making devices are installed vertically as shown in FIG. In the upper part of the wall of each ice making tank 1, a communication hole 41 is formed.
And a water supply system 42 fed from an ice storage tank (not shown) by an ice water transfer pump to the communication holes 41. The ice collected in the ice collection unit 14 of each ice making tank 1 is supplied to the ice water transfer unit 15. A transport system 43 that is commonly connected and transports to an ice storage tank (not shown) is connected.

【0062】また、各製氷槽1のバッファタンク6と冷
媒回収溝5との間には冷媒回収溝5に貯溜する冷媒4を
排出する排出系を共通にして1台の冷媒搬送ポンプ8に
より加圧し、これを冷凍機9により冷凍して再び各製氷
槽1のバッファタンク6に流入させる冷媒循環系が構成
される。
Further, between the buffer tank 6 of each ice making tank 1 and the refrigerant recovery groove 5, a single refrigerant transport pump 8 is used to share a discharge system for discharging the refrigerant 4 stored in the refrigerant recovery groove 5. Then, the refrigerant is frozen by the refrigerator 9, and flows again into the buffer tank 6 of each ice making tank 1 to form a refrigerant circulation system.

【0063】従って、このような構成の氷蓄熱装置にあ
っては、装置の設置面積が狭い場合に製氷量に応じて製
氷槽を多段方式で設置することで、大容量向けのフル稼
働から追加運転の小量製氷運転まで幅広い可変運転が可
能である。
Therefore, in the ice heat storage device having such a configuration, when the installation area of the device is small, the ice making tank is installed in a multi-stage system according to the amount of ice making, so that the full operation for a large capacity can be added. A wide range of variable operation is possible up to small ice making operation.

【0064】なお、前述した各実施の形態においては、
製氷槽1の冷媒貯溜部10にバッファタンク6を設ける
場合について述べたが、製氷槽1の不凍液噴出孔に連通
させて複数個のノズル7を冷媒貯溜部10に並設し、外
部のポンプ8により加圧され、冷凍機9により氷点下以
下に冷却された不凍液を各ノズル7より冷媒貯溜部の不
凍液中を通し水中に向って噴出させて水と不凍液の界面
にて泡状の液滴を発生させるようにしても、前述した各
実施の形態で述べたと同様の作用効果を得ることができ
る。
In each of the above embodiments,
Although the case where the buffer tank 6 is provided in the refrigerant storage section 10 of the ice making tank 1 has been described, a plurality of nozzles 7 are arranged in parallel with the refrigerant storage section 10 by communicating with the antifreeze liquid ejection holes of the ice making tank 1, and an external pump 8 is provided. The antifreeze liquid which has been pressurized and cooled below freezing by the refrigerator 9 is ejected from each nozzle 7 through the antifreeze liquid in the refrigerant reservoir toward the water to generate foam-like droplets at the interface between the water and the antifreeze liquid. Even if it does, the same operation and effect as described in each of the above embodiments can be obtained.

【0065】[0065]

【発明の効果】以上述べたように本発明によれば、水の
汚れに強く、水質の維持管理を軽減させることができる
と共に、氷を水槽に高充填率で生成することができる氷
製造方法及び氷蓄熱装置を提供できる。
As described above, according to the present invention, an ice manufacturing method which is resistant to water contamination, can reduce the maintenance and management of water quality, and can produce ice at a high filling rate in a water tank. And an ice heat storage device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による氷蓄熱装置の第1の実施の形態を
示す断面図。
FIG. 1 is a sectional view showing a first embodiment of an ice heat storage device according to the present invention.

【図2】同実施の形態におけるバッファタンクに設けら
れる冷媒噴出ノズルの構成を示す断面図。
FIG. 2 is a cross-sectional view showing a configuration of a refrigerant ejection nozzle provided in the buffer tank in the embodiment.

【図3】同バッファタンクに設けられる冷媒噴出ノズル
の他の構成例を示す断面図。
FIG. 3 is a sectional view showing another example of the configuration of the refrigerant ejection nozzle provided in the buffer tank.

【図4】本発明による氷蓄熱装置の第2の実施の形態を
示す断面図。
FIG. 4 is a cross-sectional view showing a second embodiment of the ice heat storage device according to the present invention.

【図5】本発明による氷蓄熱装置の第3の実施の形態を
示す断面図。
FIG. 5 is a cross-sectional view showing a third embodiment of the ice heat storage device according to the present invention.

【図6】本発明による氷製造方法において、冷媒貯溜部
より界面上に不凍液を噴き上げ液滴を発生させる状態を
示す図。
FIG. 6 is a diagram showing a state in which an antifreeze liquid is blown up from a refrigerant reservoir onto an interface to generate droplets in the ice manufacturing method according to the present invention.

【図7】同氷製造方法において、界面に発生した液滴の
薄膜に氷が生成される状態を示す図。
FIG. 7 is a view showing a state in which ice is generated in a thin film of a droplet generated at an interface in the ice manufacturing method.

【図8】同氷製造方法において、液滴が崩壊し、氷が浮
上する状態を示す図。
FIG. 8 is a diagram showing a state in which droplets collapse and ice floats in the ice manufacturing method.

【符号の説明】[Explanation of symbols]

1……製氷槽 2……螺旋状のフィン 3……水 4……不凍液 5……冷媒回収溝 6……バッファタンク 7……冷媒噴出ノズル 8……冷媒搬送ポンプ 9……冷凍機 10……貯溜部 11……凍結防止用温熱装置 12……螺旋状のフィン、 13……氷 14……集氷部 15……氷水搬送管 16……貯氷槽 17……氷水移送ポンプ 18……循環水供給孔 19……水搬送管 20……液滴 31,41……連通孔 32,42……給水系 33,43……搬送系 DESCRIPTION OF SYMBOLS 1 ... Ice-making tank 2 ... Helical fin 3 ... Water 4 ... Antifreeze 5 ... Refrigerant recovery groove 6 ... Buffer tank 7 ... Refrigerant ejection nozzle 8 ... Refrigerant transport pump 9 ... Refrigerator 10 ... storage unit 11 ... anti-freezing heating device 12 ... spiral fins 13 ... ice 14 ... ice collecting unit 15 ... ice water transport pipe 16 ... ice storage tank 17 ... ice water transfer pump 18 ... circulation Water supply holes 19 Water transport pipes 20 Droplets 31 41 Communication holes 32 42 Water supply systems 33 43 Transport systems

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 内部に水が貯溜され、底部に水よりも比
重が大きく非水溶性で氷点下より低い温度の凝固点を有
する不凍液を貯溜させる冷媒貯溜部が形成された製氷槽
の冷媒貯溜部の底部よりポンプにより加圧された不凍液
を冷凍機により冷却して噴出させ、この冷媒貯溜部の底
部より冷媒貯溜部に噴出した不凍液を氷点下より低い温
度に保ちながら冷媒中から水中に向って噴出する際に、
不凍液と水との界面にて泡状の液滴を発生させることに
より、この液滴の薄膜に氷を生成させ、且つこの液滴が
崩壊または界面の不凍液に吸収されるときに液滴の中に
蓄えられた冷熱の放出により水と熱交換しながら氷を連
続的に生成することを特徴とする氷製造方法。
1. A refrigerant storage portion of an ice-making tank in which water is stored, and a refrigerant storage portion is formed at a bottom portion for storing an antifreeze having a specific gravity larger than water, a water-insoluble property, and a freezing point having a temperature below freezing. The antifreeze liquid pressurized by the pump from the bottom is cooled by a refrigerator and jetted out, and the antifreeze jetted from the bottom of the refrigerant storage section to the refrigerant storage section is jetted toward the water from inside the refrigerant while keeping the temperature below the freezing point. At that time,
By generating foamy droplets at the interface between the antifreeze and water, ice is formed in the thin film of the droplets, and when the droplets collapse or are absorbed by the antifreeze at the interface, the droplets form A method for producing ice continuously while exchanging heat with water by releasing cold stored in the ice.
【請求項2】 内部に水が貯溜され、底部に水よりも比
重が大きく非水溶性で氷点下より低い温度の凝固点を有
する不凍液を貯溜させる冷媒貯溜部が形成され、且つ底
面に前記冷媒貯溜部に貯溜する不凍液を外部に回収する
不凍液回収口及び外部より不凍液を噴出する不凍液噴出
孔を設けた製氷槽と、この製氷槽の底面に有する前記不
凍液回収口より回収される不凍液を加圧するポンプと、
このポンプにより加圧された不凍液を冷却する冷凍機
と、前記製氷槽の前記不凍液噴出孔を通して流入する前
記冷凍機により氷点下以下に冷却された不凍液を冷媒貯
溜部の不凍液中から水中に向って噴出させて前記水と不
凍液の界面にて泡状の液滴を発生させることで液滴の薄
膜に氷を生成させるノズルとにより構成され、前記液滴
が崩壊または界面の不凍液に吸収されるときに液滴の中
に蓄えられた冷熱を界面上に放出させて水と熱交換をす
る製氷装置を備えたことを特徴とする氷蓄熱装置。
2. A coolant storage portion for storing water therein, a coolant storage portion for storing an antifreeze having a specific gravity larger than water, a water-insoluble property and a freezing point at a temperature below freezing below the freezing point is formed at a bottom portion, and the coolant storage portion at a bottom surface. An ice making tank provided with an anti-freezing liquid collecting port for collecting the anti-freezing liquid stored outside and an anti-freezing liquid jetting hole for jetting the anti-freezing liquid from the outside, and a pump for pressurizing the anti-freezing liquid collected from the anti-freezing liquid collecting port provided on the bottom surface of the ice making tank. ,
A refrigerator for cooling the antifreeze liquid pressurized by the pump; and an antifreeze liquid cooled to below freezing by the refrigerator flowing through the antifreeze liquid outlet of the ice making tank, from the antifreeze liquid in the refrigerant reservoir toward water. A nozzle that generates ice on the thin film of the droplet by generating a bubble-like droplet at the interface between the water and the antifreeze, and when the droplet collapses or is absorbed by the antifreeze at the interface. An ice heat storage device, comprising: an ice making device that exchanges heat with water by releasing cold stored in droplets onto an interface.
【請求項3】 内部に水が貯溜され、底部に水よりも比
重が大きく非水溶性で氷点下より低い温度の凝固点を有
する不凍液を貯溜させる冷媒貯溜部が形成され、且つ底
面に前記冷媒貯溜部に貯溜する不凍液を外部に回収する
不凍液回収口及び外部より不凍液を噴出する不凍液噴出
孔を設けた製氷槽と、この製氷槽の底面に有する前記不
凍液回収口より回収される不凍液を加圧するポンプと、
このポンプにより加圧された不凍液を冷却する冷凍機
と、前記製氷槽の底部に設置され、且つ前記不凍液噴出
孔を通して流入する前記冷凍機により氷点下以下に冷却
された不凍液を蓄えるバッファタンクと、このバッファ
タンクに設けられ、バッファタンク内に蓄えられた不凍
液を冷媒貯溜部の不凍液中から水中に向って噴出させて
前記水と不凍液の界面にて泡状の液滴を発生させること
で液滴の薄膜に氷を生成させる複数個のノズルとにより
構成され、前記液滴が崩壊または界面の不凍液に吸収さ
れるときに液滴の中に蓄えられた冷熱を界面上に放出さ
せて水と熱交換をする製氷装置を備えたことを特徴とす
る氷蓄熱装置。
3. A refrigerant storage portion for storing water therein, a refrigerant storage portion for storing an antifreeze having a specific gravity larger than water, a water-insoluble property, and a freezing point at a temperature below freezing below the freezing point is formed at a bottom portion, and the refrigerant storage portion on a bottom surface. An ice making tank provided with an anti-freezing liquid collecting port for collecting the anti-freezing liquid stored in the outside and an anti-freezing liquid jetting hole for jetting the anti-freezing liquid from the outside, and a pump for pressurizing the anti-freezing liquid collected from the anti-freezing liquid collecting port provided on the bottom surface of the ice making tank. ,
A refrigerator that cools the antifreeze liquid pressurized by the pump, a buffer tank that is installed at the bottom of the ice making tank, and stores the antifreeze liquid that has been cooled to below freezing by the refrigerator that flows in through the antifreeze liquid ejection hole, The antifreeze stored in the buffer tank is ejected toward the water from the antifreeze in the refrigerant reservoir to generate bubble-like droplets at the interface between the water and the antifreeze, thereby forming a droplet. A plurality of nozzles for generating ice on the thin film, wherein when the droplets collapse or are absorbed by the antifreeze at the interface, the cold stored in the droplets is released onto the interface to exchange heat with water. An ice heat storage device provided with an ice making device that performs the following.
【請求項4】 請求項2又は請求項3記載の氷蓄熱装置
において、冷媒貯溜部の不凍液と水との界面近傍の製氷
槽内周面に凍結防止用温熱装置を配置したことを特徴と
する氷蓄熱装置。
4. The ice heat storage device according to claim 2, wherein a heating device for preventing freezing is disposed on an inner peripheral surface of the ice making tank near an interface between the antifreeze and the water in the refrigerant storage portion. Ice storage device.
【請求項5】 請求項4記載の氷蓄熱装置において、凍
結防止用温熱装置は冷媒貯溜部の不凍液と水との界面近
傍に浮上するものである氷蓄熱装置。
5. The ice thermal storage device according to claim 4, wherein the anti-freezing thermal device floats near an interface between the antifreeze and the water in the refrigerant storage section.
【請求項6】 請求項2又は請求項3記載の氷蓄熱装置
において、製氷槽は円筒状に構成され、その内周面に流
下する循環水に旋回流を与える螺旋状のフィンを設けた
ことを特徴とする氷蓄熱装置。
6. The ice heat storage device according to claim 2, wherein the ice making tank is formed in a cylindrical shape, and spiral fins are provided on an inner peripheral surface of the ice making tank to give a swirling flow to circulating water flowing down. An ice heat storage device characterized by the above-mentioned.
【請求項7】 請求項2又は請求項3記載の氷蓄熱装置
において、製氷槽内のバッファタンク上方に生成された
氷を集める逆ロート状の集氷部を配置し、この集氷部の
内周面に氷水搬送のための上昇旋回流を形成するフィン
を設けたことを特徴とする氷蓄熱装置。
7. The ice heat storage device according to claim 2, further comprising an inverted funnel-shaped ice collecting unit for collecting the generated ice above the buffer tank in the ice making tank. An ice heat storage device, wherein fins for forming an upward swirling flow for conveying ice water are provided on a peripheral surface.
【請求項8】 請求項2又は請求項3記載の氷蓄熱装置
において、バッファタンク上面に設けられる複数個のノ
ズルは中央部に不凍液噴出孔を有し、その周囲部を断熱
層として構成したことを特徴とする氷蓄熱装置。
8. The ice heat storage device according to claim 2, wherein the plurality of nozzles provided on the upper surface of the buffer tank have an antifreeze liquid ejection hole in a central portion, and a peripheral portion thereof is configured as a heat insulating layer. An ice heat storage device characterized by the above-mentioned.
【請求項9】 請求項2又は請求項3記載の氷蓄熱装置
において、バッファタンク上面に設けられる複数個のノ
ズルは先端が鈍頭体に形成され、且つ中央部に不凍液噴
出孔を有し、その周囲部を断熱層として構成したことを
特徴とする氷蓄熱装置。
9. The ice heat storage device according to claim 2, wherein the plurality of nozzles provided on the upper surface of the buffer tank have a blunt body at the tip, and have an antifreeze ejection hole at the center. An ice heat storage device comprising a heat insulating layer around the periphery.
【請求項10】 請求項2又は請求項3記載の氷蓄熱装
置において、バッファタンク上面に設けられる複数個の
ノズルは管体の上部を球形の噴出部として構成され、こ
の球形部分にヒータを内蔵したことを特徴とする氷蓄熱
装置。
10. The ice heat storage device according to claim 2, wherein the plurality of nozzles provided on the upper surface of the buffer tank are configured such that the upper part of the tube is a spherical ejection part, and the spherical part has a built-in heater. An ice heat storage device, characterized in that:
【請求項11】 内部に水が貯溜され、底部に水よりも
比重が大きく非水溶性で氷点下より低い温度の凝固点を
有する不凍液を貯溜させる冷媒貯溜部が形成され、且つ
底面に前記冷媒貯溜部に貯溜する不凍液を外部に回収す
る不凍液回収口及び外部より不凍液を噴出する不凍液噴
出孔を設けた製氷槽と、この製氷槽の底面に有する前記
不凍液回収口より回収される不凍液を加圧するポンプ
と、このポンプにより加圧された不凍液を冷却する冷凍
機と、前記製氷槽の前記不凍液噴出孔を通して流入する
前記冷凍機により氷点下以下に冷却された不凍液を冷媒
貯溜部の不凍液中から水中に向って噴出させて前記水と
不凍液の界面にて泡状の液滴を発生させるノズルとによ
り構成され、前記液滴が崩壊または界面の不凍液に吸収
されるときに液滴の中に蓄えられた冷熱が放出するとき
水との熱交換により氷を生成する複数の製氷装置を横並
び又は垂直方向に多段に設置して前記ポンプ及び冷凍機
を各製氷装置に共通に接続して不凍液循環系を構成した
ことを特徴とする氷蓄熱装置。
11. A coolant storage portion for storing water therein, a coolant storage portion for storing an antifreeze having a specific gravity larger than water, a water-insoluble property, and a freezing point at a temperature below freezing below the freezing point is formed at a bottom portion, and the coolant storage portion on a bottom surface. An ice making tank provided with an anti-freezing liquid collecting port for collecting the anti-freezing liquid stored outside and an anti-freezing liquid jetting hole for jetting the anti-freezing liquid from the outside, and a pump for pressurizing the anti-freezing liquid collected from the anti-freezing liquid collecting port provided on the bottom surface of the ice making tank. A refrigerator that cools the antifreeze liquid pressurized by the pump, and the antifreeze liquid cooled to below freezing by the refrigerator that flows through the antifreeze liquid ejection hole of the ice making tank from the antifreeze liquid in the refrigerant storage unit to the water. A nozzle that generates a bubble-like droplet at the interface between the water and the antifreeze by ejecting the droplet. A plurality of ice making devices that generate ice by exchanging heat with water when cold stored in the ice is released are installed side by side or in multiple stages in the vertical direction, and the pump and the refrigerator are connected in common to each ice making device to form an antifreeze. An ice heat storage device comprising a circulation system.
【請求項12】 内部に水が貯溜され、底部に水よりも
比重が大きく非水溶性で氷点下より低い温度の凝固点を
有する不凍液を貯溜させる冷媒貯溜部が形成され、且つ
底面に前記冷媒貯溜部に貯溜する不凍液を外部に回収す
る不凍液回収口及び外部より不凍液を噴出する不凍液噴
出孔を設けた製氷槽と、この製氷槽の底面に有する前記
不凍液回収口より回収される不凍液を加圧するポンプ
と、このポンプにより加圧された不凍液を冷却する冷凍
機と、前記製氷槽の底部に設置され、且つ前記不凍液噴
出孔を通して流入する前記冷凍機により氷点下以下に冷
却された不凍液を蓄えるバッファタンクと、このバッフ
ァタンクに設けられ、バッファタンク内に蓄えられた不
凍液を冷媒貯溜部の不凍液中から水中に向って噴出させ
て前記水と不凍液の界面にて泡状の液滴を発生させる複
数個のノズルとにより構成され、前記液滴が崩壊または
界面の不凍液に吸収されるときに液滴の中に蓄えられた
冷熱が放出するとき水との熱交換により氷を生成する複
数の製氷装置を横並び又は垂直方向に多段に設置して前
記ポンプ及び冷凍機を各製氷装置に共通に接続して不凍
液循環系を構成したことを特徴とする氷蓄熱装置。
12. A coolant storage portion for storing water therein, a coolant storage portion for storing an antifreeze having a specific gravity larger than water, a water-insoluble property, and a freezing point at a temperature below freezing below the freezing point is formed at a bottom portion, and the coolant storage portion on a bottom surface. An ice making tank provided with an anti-freezing liquid collecting port for collecting the anti-freezing liquid stored outside and an anti-freezing liquid jetting hole for jetting the anti-freezing liquid from the outside, and a pump for pressurizing the anti-freezing liquid collected from the anti-freezing liquid collecting port provided on the bottom surface of the ice making tank. A refrigerator that cools the antifreeze liquid pressurized by the pump, a buffer tank that is installed at the bottom of the ice making tank, and stores the antifreeze liquid that has been cooled to below freezing by the refrigerator that flows in through the antifreeze liquid ejection hole, The antifreeze stored in the buffer tank is jetted out of the antifreeze in the refrigerant reservoir toward the water, so that a boundary between the water and the antifreeze is provided. A plurality of nozzles that generate foam-like droplets on the surface, and water is released when the cold stored in the droplets is released when the droplets collapse or are absorbed by the antifreeze at the interface. A plurality of ice making devices that produce ice by heat exchange are arranged side by side or vertically in multiple stages, and the pump and the refrigerator are connected in common to each ice making device to constitute an antifreeze circulation system. Heat storage device.
JP8384497A 1996-05-27 1997-04-02 Ice making method and ice heat storage device Pending JPH1047823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8384497A JPH1047823A (en) 1996-05-27 1997-04-02 Ice making method and ice heat storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-131822 1996-05-27
JP13182296 1996-05-27
JP8384497A JPH1047823A (en) 1996-05-27 1997-04-02 Ice making method and ice heat storage device

Publications (1)

Publication Number Publication Date
JPH1047823A true JPH1047823A (en) 1998-02-20

Family

ID=26424889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8384497A Pending JPH1047823A (en) 1996-05-27 1997-04-02 Ice making method and ice heat storage device

Country Status (1)

Country Link
JP (1) JPH1047823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878740A (en) * 2011-07-11 2013-01-16 上海酒店设备股份有限公司 Ice-making machine with automatic cleaning function
JP2018505760A (en) * 2015-01-13 2018-03-01 クライオビューティーCryobeauty Method and apparatus for cosmetically treating dark spots on skin by cryogenic cell selective cryogenic treatment
CN107816772A (en) * 2017-11-24 2018-03-20 江苏高菱蓄能科技有限公司 A kind of automatic adaptation cushion cold accumulating pond

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878740A (en) * 2011-07-11 2013-01-16 上海酒店设备股份有限公司 Ice-making machine with automatic cleaning function
JP2018505760A (en) * 2015-01-13 2018-03-01 クライオビューティーCryobeauty Method and apparatus for cosmetically treating dark spots on skin by cryogenic cell selective cryogenic treatment
JP2020199398A (en) * 2015-01-13 2020-12-17 クライオノヴ・ファルマCryonove Pharma Method and device for cosmetically treating dark spots on skin by means of cryo-cyto-selective cryogenic treatment
CN107816772A (en) * 2017-11-24 2018-03-20 江苏高菱蓄能科技有限公司 A kind of automatic adaptation cushion cold accumulating pond

Similar Documents

Publication Publication Date Title
TWI460382B (en) Ice melting apparatus in a heat storage system by ice utilizing supercooled water
JPH1047823A (en) Ice making method and ice heat storage device
JPS6314021A (en) Cold heat accumulating facility for air conditioning
JPH04106380A (en) Ice making device
CN100485292C (en) Transparent ice making device
JPH0942715A (en) Ice thermal storage apparatus
JP2696046B2 (en) Latent heat storage device
JPH03244985A (en) Ice making device
CN219063628U (en) Ice cold accumulation system
CN102183109A (en) Method and device for making granular ices
JPH0914703A (en) Ice heat accumulating device
JP2002168483A (en) Ice storing method and ice storage device
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
JPH02118374A (en) Making of ice and heat accumulating device for ice
JPH05141720A (en) Ice storage heat device
JP2000337668A (en) Ice storage method and device
JPH04240366A (en) Ice heat accumulating device
JPH06300326A (en) Chilled water extracting device for ice cold reservoir
CN106560666A (en) Heat Storage System And Heat Storage Method
JP2004205127A (en) Low temperature air layer forming system with cold heat storage floor and its operating method
JP2953827B2 (en) Ice storage device
JPH04174229A (en) Ice heat storage device
JP2502029B2 (en) Ice heat storage device
JPH10281602A (en) Ice heat storage device
JPH02110231A (en) Ice-making method and ice heat-accumulator