JPH10281602A - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH10281602A
JPH10281602A JP8678697A JP8678697A JPH10281602A JP H10281602 A JPH10281602 A JP H10281602A JP 8678697 A JP8678697 A JP 8678697A JP 8678697 A JP8678697 A JP 8678697A JP H10281602 A JPH10281602 A JP H10281602A
Authority
JP
Japan
Prior art keywords
ice
antifreeze
water
tank
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8678697A
Other languages
Japanese (ja)
Inventor
Koichi Goto
功一 後藤
Hitoshi Yoshino
仁 吉野
Kiyohiko Kitagawa
希代彦 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8678697A priority Critical patent/JPH10281602A/en
Publication of JPH10281602A publication Critical patent/JPH10281602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize stable ice making by suppressing choking of inside of a freezer with frozen water, and icing on the tip of jet nozzle by suppressing the entrainment of water to the antifreeze solution at the antifreeze solution storage part of an ice making tank. SOLUTION: An ice heat accumulator is provided with an ice making tank 1 storing water insoluble antifreeze solution 4 of witch specific gravity is heavier than that of water and water 2, and an antifreeze solution circulating system producing fine ice particles by heat exchanging the collected antifreeze solution with an antifreeze solution pump from the inside of the ice making tank 1 being flowed from antifreeze solution jetting nozzles 12 opened at the upper part of the boundary between the water 2 and the antifreeze solution 4 with water, after cooling it to the temperature lower that 0 deg.C with a freezer, and an antifreeze solution storing part 5 is formed with a downward recess formed on the bottom surface of the ice making tank 1 forming inclined parts 6 with an adequate angle at the parts connecting between either of the both side opening part edges of the storing part 5 and the bottom surface of the ice making tank 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シャーベット状の
微細氷粒を製造して空気調和装置等の冷熱負荷に使用す
る氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device for producing sherbet-like fine ice particles for use in a cooling load of an air conditioner or the like.

【0002】[0002]

【従来の技術】近年、産業分野、民生分野での電気エネ
ルギの消費は増加の傾向にあり、特に年間を通じての最
大電力消費は夏期昼間に発生している。この主たる原因
は冷房の普及にある。このため、電力消費の昼夜間の差
が拡大し、電力設備の負荷率が低下するという社会問題
となっている。
2. Description of the Related Art In recent years, the consumption of electric energy in the industrial field and the consumer field has been increasing, and in particular, the maximum power consumption throughout the year has occurred during the daytime in summer. The main reason for this is the spread of air conditioning. For this reason, there is a social problem that the difference in power consumption between day and night is widened and the load factor of the power equipment is reduced.

【0003】ところで、夏期の電力負荷の平準化を達成
する目的で、夜間電力により氷を製造し、昼間解氷して
冷熱を取出す氷蓄熱装置が普及し始めている。この氷蓄
熱装置は昼間の空調負荷のピーク時における電力需要の
軽減、並びに夜間オフピーク時の価格の安い時間帯にお
ける電力使用により、電力の安定供給や空調システムの
経済的運用など供給側と需要側の双方の利益、さらに炭
酸ガス発生の抑制などの社会的要求にも答え得るもので
ある。
[0003] By the way, for the purpose of leveling the power load in summer, ice heat storage devices that produce ice using nighttime electric power and thaw during the day to extract cold heat have begun to spread. This ice thermal storage system reduces power demand during peak hours of air conditioning load in the daytime and uses electricity during the off-peak hours when prices are low during nighttime peaks. It can also respond to both interests and social demands such as suppression of carbon dioxide emission.

【0004】工業プラントや高層建築等における空調シ
ステムにおいては、氷蓄熱装置の実用化が進められ、特
に最近ではダイナミック方式と呼ばれる方式、即ちシャ
ーベット状態の氷や微細氷粒を形成して水槽内に浮遊さ
せ、冷房負荷吸収後の暖められた水を還流させて混合
し、氷を溶かす方式のものが開発されている。
[0004] In an air conditioning system for an industrial plant or a high-rise building, an ice heat storage device has been put into practical use. In particular, a method called a dynamic method has recently been used, ie, sherbet-like ice or fine ice particles have been formed in a water tank. A system in which the water is floated and heated after absorbing the cooling load to reflux and mixed to melt the ice has been developed.

【0005】この氷蓄熱装置は、余剰傾向にある夜間電
力を使用して冷凍機により、水からシャーベット状の氷
を製造しておき、これを昼間溶かしてその冷熱を空調や
産業用途に利用するものである。
[0005] In this ice heat storage device, sherbet-like ice is produced from water by a refrigerator using nighttime electric power, which tends to be excessive, and is melted in the daytime to use the cold heat for air conditioning and industrial use. Things.

【0006】このような氷蓄熱装置としては、例えば特
開平5−5541号公報、特開平5−240476号公
報、特開平5−280769号公報、特開平4−236
032号公報、特開平3−140767号公報等に示さ
れているような方式のものがある。その一例を図1によ
り説明する。
As such an ice heat storage device, for example, JP-A-5-5541, JP-A-5-240476, JP-A-5-280769, and JP-A-4-236.
Nos. 032 and 3-140767. One example will be described with reference to FIG.

【0007】この方式の氷蓄熱装置は、いずれも冷凍機
13により0℃以下に冷却された非水溶性で水よりも比
重の大きな油性液体あるいは弗素系不活性液体等の不凍
液4、即ち0℃より低い凝固点を有する液を冷却媒体と
し、これを水2及びシャーベット状の氷が貯溜する製氷
槽1の下部に連通部8により連通させて設けられた製氷
筒3の頭頂部から噴出しノズル12を通して水中に噴出
させ、水2との直接接触にて熱交換することにより、水
2の一部を微細な氷7として貯蔵し、不凍液4は製氷槽
1の下部の不凍液貯溜部5より回収して不凍液ポンプ1
5により加圧した状態で冷凍機13により冷却した後、
再度製氷筒3の頭頂部から水中に噴出させるという不凍
液循環系を構成して製氷を行うようにしたものである。
The ice heat storage apparatus of this type is an antifreeze 4 such as an oil-based liquid or a fluorine-based inert liquid which is water-insoluble and has a specific gravity greater than that of water, which is cooled to 0 ° C. or lower by a refrigerator 13, ie, 0 ° C. A liquid having a lower freezing point is used as a cooling medium, and the cooling medium is jetted from the top of an ice making cylinder 3 provided by a communicating part 8 with a lower part of an ice making tank 1 in which water 2 and sherbet-like ice are stored. The water 2 is stored in the form of fine ice 7 by exchanging heat by direct contact with the water 2, and the antifreeze 4 is recovered from the antifreeze storage 5 at the bottom of the ice making tank 1. Antifreeze pump 1
After being cooled by the refrigerator 13 while being pressurized by 5,
The ice making is performed by forming an antifreeze circulating system in which the water is jetted out again from the top of the ice making cylinder 3 into the water.

【0008】この場合、製氷槽1の上部の取水部10よ
り水ポンプ18により回収した水を製氷筒3の頭頂部か
ら流入させている。なお、図1において、※部分は図示
されていない製氷筒3の頭頂部にそれぞれ接続されるこ
とを表している。
In this case, water collected by a water pump 18 from a water intake section 10 at an upper portion of the ice making tank 1 is caused to flow from the top of the ice making cylinder 3. In FIG. 1, the * parts are connected to the tops of the ice making cylinders 3 (not shown).

【0009】ところで、1つの製氷槽1に1本の製氷筒
3を接続した複数のシステムを並列に合体させると、製
氷能力が合体個数倍になるが、この場合不凍液配管が繁
雑になると共に、不凍液量が多くなるという問題があ
る。
When a plurality of systems in which one ice making cylinder 3 is connected to one ice making tank 1 are united in parallel, the ice making capacity becomes twice as many as the united number, but in this case, the antifreeze piping becomes complicated and There is a problem that the amount of antifreeze increases.

【0010】そこで、図10に示すように容積の大きな
1つの製氷槽1に複数の製氷筒3を並設して接続したシ
ステムを構成している。図10では、解氷系だけでな
く、12本の製氷筒3や不凍液4の循環系、水2の循環
系は省略し、製氷槽1の概要を示している。
Therefore, as shown in FIG. 10, a system is constructed in which a plurality of ice making cylinders 3 are connected in parallel to one large ice making tank 1. In FIG. 10, not only the thawing system, but also the twelve ice-making cylinders 3, the circulation system of the antifreeze 4, and the circulation system of the water 2 are omitted, and the outline of the ice-making tank 1 is shown.

【0011】なお、図1において、不凍液循環系及び水
循環系の※部分は、描かれていない複数の製氷筒3の頭
頂部にそれぞれ接続されている。そして、図12
(a),(b)に示すように製氷槽1の底部には不凍液
4を回収する不凍液貯溜部5が設けられている。
In FIG. 1, * parts of the antifreeze circulating system and the water circulating system are respectively connected to the tops of a plurality of ice making cylinders 3 not shown. And FIG.
As shown in (a) and (b), an antifreeze storage 5 for recovering the antifreeze 4 is provided at the bottom of the ice making tank 1.

【0012】一方、製氷筒3の頭頂部は、図11に示す
ような構造になっている。不凍液噴出ノズル12は内管
21と外管22の二重管構造をなし、不凍液噴出ノズル
12の内管21は不凍液貯溜部5に不凍液配管14a及
び14cを介して連結されている。この不凍液配管14
aには、不凍液4の流れ方向に順に不凍液ポンプ15及
び冷凍機13が設けられている。また、不凍液噴出ノズ
ル12の外管22には、不凍液配管14aの不凍液ポン
プ15と冷凍機13との間で分岐した分岐配管14bが
連結されている。
On the other hand, the top of the ice making cylinder 3 has a structure as shown in FIG. The antifreeze jet nozzle 12 has a double pipe structure of an inner pipe 21 and an outer pipe 22, and the inner pipe 21 of the antifreeze jet nozzle 12 is connected to the antifreeze storage part 5 via antifreeze pipes 14 a and 14 c. This antifreeze pipe 14
In a, an antifreeze pump 15 and a refrigerator 13 are provided in order in the flow direction of the antifreeze 4. Further, a branch pipe 14 b branched between the antifreeze pump 15 of the antifreeze pipe 14 a and the refrigerator 13 is connected to the outer pipe 22 of the antifreeze jet nozzle 12.

【0013】冷凍機13で0℃以下の温度に冷却された
不凍液4は、不凍液配管14cで不凍液噴出ノズル12
の内管21から製氷筒3内の水2中に吐出散布される。
他方、不凍液配管14aに導かれた不凍液4の残部は分
岐配管14bを通り、二重管構造の不凍液噴出ノズル1
2の外管22に送られる。この不凍液4は不凍液貯溜部
5より冷凍機13を通らないで、不凍液噴出ノズル12
の外管22に送られてくるので、0℃以上の温度であ
り、この0℃以上の不凍液4は噴出ノズル12の外管2
2から製氷筒3内の水2中に吐出し散布される。
The antifreeze 4 cooled to a temperature of 0 ° C. or less by the refrigerator 13 is supplied to the antifreeze jet nozzle 12 through the antifreeze pipe 14c.
Is sprayed into the water 2 in the ice making cylinder 3 from the inner pipe 21.
On the other hand, the rest of the antifreeze 4 guided to the antifreeze pipe 14a passes through the branch pipe 14b, and the antifreeze jet nozzle 1 having a double pipe structure.
2 to the outer tube 22. The antifreeze 4 does not pass through the refrigerator 13 from the antifreeze reservoir 5 and is supplied to the antifreeze jet nozzle 12.
The antifreeze 4 at a temperature of 0 ° C. or higher is sent to the outer tube 2 of the ejection nozzle 12.
The water 2 is discharged into the water 2 in the ice making cylinder 3 and dispersed.

【0014】この際、0℃以上の不凍液4の膜により、
内管21の開口端12aに付着しようとするスタティッ
ク氷を溶かし、不凍液噴出ノズル12の氷結を防ぎ、不
凍液噴出ノズル12による氷粒7の連続的な析出を可能
にしている。
At this time, a film of antifreeze 4 at 0 ° C. or higher
It melts the static ice that is going to adhere to the opening end 12a of the inner tube 21, prevents freezing of the antifreeze jet nozzle 12, and enables the antifreeze jet nozzle 12 to continuously deposit ice particles 7.

【0015】[0015]

【発明が解決しようとする課題】このような構成の氷蓄
熱装置において、製氷筒3側から連結部8を通して製氷
槽1へ流出した不凍液4は滝状になり、不凍液貯溜部5
の不凍液界面9上に落下する。この時、水2の薄い膜が
不凍液4を包む風船状の水膜球である水泡19が発生す
る。この水泡19は図12に示すように消失量と発生量
とが釣合った状態で、不凍液界面9に層を形成して存在
する。層とは別に不凍液4中に浮遊している水泡19は
不凍液4の流れにより、不凍液貯溜部5に向って流れて
行くが、界面9の泡19層に取込まれる。条件によって
は、層が薄い、あるいは小面積の場合もあるが、界面9
付近を泡19が不凍液貯溜部5の方向に流されていき、
不凍液貯溜部5の真上付近に泡19層を形成する。同時
に微小水滴20が多量に発生し、不凍液4中に浮遊す
る。1本当りの製氷筒3からの不凍液4の流量が大きい
ほど、また界面9までの滝状の流路高さが大きいほど、
水泡19や微小水滴20は多量になる。
In the ice heat storage device having such a configuration, the antifreeze 4 flowing out of the ice making cylinder 3 to the ice making tank 1 through the connecting portion 8 becomes a waterfall, and the antifreeze storage 5
On the antifreeze interface 9 At this time, a water bubble 19, which is a balloon-like water film sphere in which a thin film of the water 2 wraps the antifreeze 4, is generated. As shown in FIG. 12, the water bubbles 19 are formed in a layer at the antifreeze interface 9 in a state where the disappearance amount and the generation amount are balanced. The water bubbles 19 floating in the antifreeze 4 separately from the layer flow toward the antifreeze reservoir 5 due to the flow of the antifreeze 4, but are taken into the foam 19 layer at the interface 9. Depending on the conditions, the layer may be thin or have a small area.
In the vicinity, the foam 19 flows toward the antifreeze reservoir 5,
A bubble 19 layer is formed just above the antifreeze storage part 5. At the same time, a large amount of minute water droplets 20 are generated and float in the antifreeze 4. The larger the flow rate of the antifreeze 4 from the ice making cylinder 3 per one bottle, and the larger the height of the waterfall-shaped flow path to the interface 9,
The water bubbles 19 and the minute water droplets 20 become large.

【0016】ところで、微小水滴20が不凍液貯溜部5
への不凍液4の流れに巻込まれると、不凍液貯溜部5の
吸出口23から不凍液4と共に吸出される。また、この
水泡19が不凍液貯溜部5への不凍液4の流れに巻込ま
れ、吸出口23から不凍液4と共に吸出されることがあ
る。この時、製氷槽1を横から見た断面は図12(a)
のように、不凍液貯溜部5の真上では水泡19が集まり
層が厚くなる。不凍液4が浮遊している水泡19が泡層
に取込まれることなく、不凍液貯溜部5に流入する場合
もあるし、不凍液4の流れによって泡層から水泡19が
分離した後、不凍液貯溜部5に流入する場合もある。
Incidentally, the minute water droplets 20 are stored in the antifreeze liquid reservoir 5.
Is sucked together with the antifreeze 4 from the suction port 23 of the antifreeze storage 5 when it is caught in the flow of the antifreeze 4. Further, the water bubbles 19 may be caught in the flow of the antifreeze 4 into the antifreeze storage part 5 and may be sucked out together with the antifreeze 4 from the suction port 23. At this time, the cross section of the ice making tank 1 viewed from the side is shown in FIG.
As described above, the water bubbles 19 are collected directly above the antifreeze storage section 5, and the layer becomes thick. The water bubbles 19 in which the antifreeze 4 is floating may flow into the antifreeze reservoir 5 without being taken into the foam layer, or after the water bubbles 19 are separated from the foam layer by the flow of the antifreeze 4, the antifreeze reservoir 5 may be used. It may flow into

【0017】この場合、不凍液貯溜部5への不凍液4の
流入速度が大きい程、吸出管23が不凍液界面9から近
い程、水泡19や微小水滴20の巻込み現象が起こり易
い。即ち、製氷槽1内の不凍液4の量が少なく、不凍液
界面9までの高さが低い程、あるいは不凍液4の流量が
多い程起こり易い。
In this case, as the inflow speed of the antifreeze 4 into the antifreeze reservoir 5 increases, and as the suction pipe 23 is closer to the antifreeze interface 9, the entrapment of water bubbles 19 and minute water droplets 20 tends to occur. That is, it is more likely to occur when the amount of the antifreeze 4 in the ice making tank 1 is small and the height up to the antifreeze interface 9 is low, or when the flow rate of the antifreeze 4 is high.

【0018】さて、不凍液貯溜部5への水泡19や微小
水滴20の巻込みが多い分、不凍液貯溜部5から吸出さ
れる不凍液4と共に吸出される水泡19や微小水滴20
は多くなる。吸出された不凍液4に水分2が混入してし
まうと、冷凍機13内で不凍液4は0℃以下に冷却され
る際、不凍液4に混入している水分2が凍結してしま
う。このため、冷凍機13の熱交換器が氷詰まりしてい
き、不凍液4の流量が減少し、不凍液4も十分冷却でき
なくなるため、製氷能力が低減していく。そして、完全
に氷詰まりの状態になると、冷凍機13が正常に作動し
なくなり、氷蓄熱装置の製氷運転ができなくなってしま
う。この事象は水分の濃度が低くても発生し易く、また
氷詰まりは急速に進行するため、安定製氷を阻害する。
The water bubbles 19 and the fine water droplets 20 sucked out together with the antifreeze 4 sucked out of the antifreeze liquid storage unit 5 correspond to the large amount of the water bubbles 19 and the minute water droplets 20 getting into the antifreeze liquid storage unit 5.
Will increase. If the water 2 is mixed into the sucked antifreeze 4, the water 2 mixed in the antifreeze 4 is frozen when the antifreeze 4 is cooled to 0 ° C. or lower in the refrigerator 13. Therefore, the heat exchanger of the refrigerator 13 is clogged with ice, the flow rate of the antifreeze 4 decreases, and the antifreeze 4 cannot be sufficiently cooled, and the ice making capacity decreases. When the ice is completely clogged, the refrigerator 13 does not operate normally, and the ice storage device cannot perform the ice making operation. This phenomenon is likely to occur even when the concentration of water is low, and ice clogging progresses rapidly, which hinders stable ice making.

【0019】また、不凍液配管14aに導かれた凍結防
止用不凍液4に水分が混入すると次のようになる。0℃
以上の凍結防止用不凍液4は、二重管構造の不凍液噴出
ノズル12の外管22に送られ、噴出ノズル12の外管
22から製氷筒3内の水2中に吐出散布される際に、内
管21から吐出散布された0℃以下の低温不凍液4と接
触し、冷却されて混入している水分が氷になる。
When moisture is mixed in the antifreeze 4 for preventing freezing guided to the antifreeze pipe 14a, the following occurs. 0 ° C
The above antifreezing liquid 4 for preventing freezing is sent to the outer pipe 22 of the antifreezing liquid jet nozzle 12 having a double pipe structure, and is discharged and sprayed from the outer pipe 22 of the jet nozzle 12 into the water 2 in the ice making cylinder 3. It comes into contact with the low-temperature antifreeze 4 having a temperature of 0 ° C. or less discharged and sprayed from the inner tube 21, and is cooled to mix the water into ice.

【0020】さて、不凍液噴出ノズル12の内管21と
外管22の間の流路から吹出された凍結防止用不凍液4
が、吹出し直後に内管21の内側に曲って流れ、0℃以
下の低温不凍液4が流れる内管21の内壁付近に巻込ま
れることがある。この巻込みを抑制するために不凍液噴
出ノズル12の先端形状を工夫する技術は考えられてい
るが、完全な防止はできない。このため、混入水分は低
温不凍液4や冷却している内管21の内壁面により冷却
されて氷になり、内管21の内壁に着氷する。この着氷
したスタティック氷は不凍液4で冷却されながら水2と
接するため、成長して行き、やがては不凍液4の噴出の
障害物となり、不凍液噴出ノズル12の不凍液噴出部1
2aの先端が閉塞してしまったり、あるいは製氷筒3を
閉塞し、極めて水2が流れにくくなったりする。
Now, the antifreeze 4 for preventing freezing blown out from the flow path between the inner pipe 21 and the outer pipe 22 of the antifreeze jet nozzle 12.
However, there is a case that the air flows around the inner pipe 21 immediately after the air is blown, and is caught near the inner wall of the inner pipe 21 through which the low-temperature antifreeze 4 at 0 ° C. or lower flows. A technique of devising the tip shape of the antifreeze jet nozzle 12 to suppress the entrainment has been considered, but cannot completely prevent it. For this reason, the mixed water is cooled by the low-temperature antifreeze 4 and the inner wall surface of the cooling inner tube 21 to become ice, and ice is deposited on the inner wall of the inner tube 21. The iced static ice comes in contact with the water 2 while being cooled by the antifreeze 4, so that it grows and eventually becomes an obstacle to the ejection of the antifreeze 4, and the antifreeze jetting portion 1 of the antifreeze jet nozzle 12.
The tip of 2a is closed, or the ice making cylinder 3 is closed, and the water 2 becomes extremely difficult to flow.

【0021】本発明は上記のような事情に鑑みてなされ
たもので、不凍液貯溜部における不凍液への水の巻込み
により起きる冷凍機内の水分の凍結詰まりと不凍液噴出
ノズル先端の着氷を抑制し、もって安定製氷を実現でき
ると共に、不凍液の充填量を低減できる氷蓄熱装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and suppresses the freezing of water in a refrigerator caused by entrainment of water in antifreeze in an antifreeze storage portion and icing at the tip of an antifreeze jet nozzle. Accordingly, it is an object of the present invention to provide an ice heat storage device capable of realizing stable ice making and reducing the filling amount of antifreeze.

【0022】[0022]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により氷蓄熱装置を構成す
るものである。請求項1に対応する発明は、非水溶性で
水より比重の大きな不凍液と水とを収容した製氷槽と、
この製氷槽内から不凍液ポンプにより回収した前記不凍
液を冷凍機により0℃より低い温度に冷却した後、前記
水と前記不凍液の界面より上方の位置に開口した不凍液
噴出ノズルから流入させ、水との熱交換により微細な氷
粒を製造する不凍液循環系とを具備し、前記製氷槽の底
面の一部に下方に凹む不凍液貯溜部を形成すると共に、
この不凍液貯溜部の両側開口端から前記製氷槽の底面に
連接する部分に斜め下方に傾斜する傾斜部を形成する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an ice heat storage device using the following means. The invention corresponding to claim 1 is an ice making tank containing water and a non-water-soluble antifreeze having a higher specific gravity than water and water.
After cooling the antifreeze recovered from the inside of the ice making tank by an antifreeze pump to a temperature lower than 0 ° C. by a refrigerator, the antifreeze is allowed to flow from an antifreeze jet nozzle opened above the interface between the water and the antifreeze, and to be mixed with water. An antifreeze circulating system for producing fine ice particles by heat exchange, and forming an antifreeze storage portion that is recessed downward on a part of the bottom surface of the ice making tank,
An inclined portion that is inclined obliquely downward is formed at a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze storage portion.

【0023】請求項2に対応する発明は、非水溶性で水
より比重の大きな不凍液と水とを収容した製氷槽と、こ
の製氷槽内から不凍液ポンプにより回収した前記不凍液
を冷凍機により0℃より低い温度に冷却した後、前記水
と前記不凍液の界面より上方の位置に開口した不凍液噴
出ノズルから流入させ、水との熱交換により微細な氷粒
を製造する不凍液循環系と、前記製氷槽と上部で連通さ
せて設けられ、前記製氷槽から移動した氷を貯わえる貯
氷槽の取水口より取水された水を水ポンプにより前記製
氷槽内部に流入させる水循環系とを具備し、前記製氷槽
の底面の一部に下方に凹む不凍液貯溜部を形成すると共
に、この不凍液貯溜部の両側開口端から前記製氷槽の底
面に連接する部分に斜め下方に傾斜する傾斜面を形成す
る。
According to a second aspect of the present invention, there is provided an ice-making tank containing water-insoluble, antifreeze having a specific gravity greater than that of water and water, and the antifreeze recovered from the ice-making tank by an antifreeze pump at 0.degree. After cooling to a lower temperature, the antifreeze circulating system flows through an antifreeze jet nozzle opened above the interface between the water and the antifreeze to produce fine ice particles by heat exchange with water, and the ice making tank. A water circulation system provided in communication with an upper portion of the ice making tank, wherein water taken from an intake port of the ice storage tank for storing ice moved from the ice making tank flows into the ice making tank by a water pump. An antifreeze liquid storage portion that is recessed downward is formed in a part of the bottom surface of the tank, and an inclined surface that is inclined obliquely downward is formed at a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze liquid storage portion.

【0024】請求項3に対応する発明は、請求項1又は
請求項2に対応する発明の氷蓄熱装置において、不凍液
噴出ノズルを水と不凍液の界面より上方の位置に不凍液
が水平方向に噴出されるように設ける。
According to a third aspect of the present invention, in the ice heat storage device according to the first or second aspect, the antifreeze is jetted horizontally to the antifreeze jet nozzle at a position above an interface between water and the antifreeze. To be provided.

【0025】請求項4に対応する発明は、鉛直に設けら
れ、且つ頭頂部より水及び非水溶性で水よりも比重の大
きな0℃より低い温度の不凍液を流入させて微細な氷粒
を生成する製氷筒と、この製氷筒の下部に連通させて鉛
直に設けられ、前記製氷筒の下部に流下する水及び氷粒
を上昇させる製氷槽と、この製氷槽の取水口より取水さ
れた水を水ポンプにより前記製氷筒の頭頂部より内部に
流入させる水循環系と、前記製氷筒の下部に流下した不
凍液を回収して不凍液ポンプにより前記製氷筒の頭頂部
より内部に流入させる不凍液循環系とを具備し、前記製
氷槽の底面の一部に下方に凹む不凍液貯溜部を形成する
と共に、この不凍液貯溜部の両側開口端から前記製氷槽
の底面に連接する部分に斜め下方に傾斜する傾斜部を形
成する。
According to a fourth aspect of the present invention, fine ice particles are generated by flowing water and an antifreeze liquid having a specific gravity lower than water and having a specific gravity lower than that of water at a temperature lower than 0 ° C., which is provided vertically. An ice-making cylinder, an ice-making tank which is provided vertically in communication with the lower part of the ice-making cylinder, raises water flowing down to the lower part of the ice-making cylinder and raises ice particles, and water taken from an intake port of the ice-making tank. A water circulation system that allows the water pump to flow into the interior of the ice making cylinder from the top, and an antifreeze circulation system that collects the antifreeze flowing down to the lower part of the ice making cylinder and flows into the interior from the top of the ice making cylinder by the antifreeze pump. An antifreeze liquid storage portion is formed on a part of the bottom surface of the ice making tank. The antifreeze liquid storage portion is formed with a downwardly sloping portion. Form.

【0026】請求項5に対応する発明は、鉛直に設けら
れ、且つ頭頂部より水及び非水溶性で水よりも比重の大
きな0℃より低い温度の不凍液を流入させて微細な氷粒
を生成する製氷筒と、この製氷筒の下部に連通させて鉛
直に設けられ、前記製氷筒の下部に流下する水及び氷粒
を上昇させる製氷槽と、この製氷槽の上部に連通させて
設けられ前記製氷槽から移動した氷を貯める貯氷槽と、
この貯氷槽の取水口より取水された水を水ポンプにより
前記製氷筒の頭頂部より内部に流入させる水循環系と、
前記製氷筒の下部に流下した不凍液を回収して不凍液ポ
ンプにより前記製氷筒の頭頂部より内部に流入させる不
凍液循環系とを具備し、前記製氷槽の底面の一部に下方
に凹む不凍液貯溜部を形成すると共に、この不凍液貯溜
部の両側開口端から前記製氷槽の底面に連接する部分に
斜め下方に傾斜する傾斜部を形成する。
According to a fifth aspect of the present invention, fine ice particles are generated by flowing water and an antifreeze solution having a specific gravity lower than water, which is lower than 0 ° C., from the top of the head. An ice making cylinder, an ice making tank which is provided vertically in communication with the lower part of the ice making cylinder, and an ice making tank which raises water and ice particles flowing down the lower part of the ice making cylinder, and which is provided in communication with an upper part of the ice making tank. An ice storage tank for storing ice moved from the ice making tank,
A water circulation system for flowing water taken from the water intake of the ice storage tank into the inside of the ice making cylinder from the top by a water pump,
An antifreeze circulating system for collecting the antifreeze flowing down to the lower portion of the ice making cylinder and flowing the antifreeze into the inside of the ice making cylinder from the top by an antifreeze pump; and an antifreeze storage portion recessed downward at a part of the bottom surface of the ice making tank. And an inclined portion that is inclined obliquely downward from the opening ends on both sides of the antifreeze storage portion to the bottom surface of the ice making tank.

【0027】請求項6に対応する発明は、鉛直に設けら
れ、且つ頭頂部より水及び非水溶性で水よりも比重の大
きな0℃より低い温度の不凍液を流入させて微細な氷粒
を生成する製氷筒と、この製氷筒の下部に連通させて鉛
直に設けられ、前記製氷筒の下部に流下する水及び氷粒
を上昇させる製氷槽と、この製氷槽の上部に連通させて
接続され前記水及び氷の二相流を所定の箇所に搬送する
搬送配管と、この搬送配管を通して搬送され開口端部よ
り流下する水及び氷の二相流を貯溜する氷蓄熱水槽と、
この氷蓄熱水槽の取水口より取水された水を水ポンプに
より前記製氷筒の頭頂部より内部に流入させる水循環系
と、前記製氷槽の下部に流下した不凍液を回収して不凍
液ポンプにより前記製氷筒の頭頂部より内部に流入させ
る不凍液循環系とを備え、前記製氷筒、前記不凍液回収
部、前記製氷槽及び前記搬送配管をそれぞれ密閉状態に
して一体的に結合した氷蓄熱装置において、前記製氷槽
の底面の一部に下方に凹む不凍液貯溜部を形成すると共
に、この不凍液貯溜部の両側開口端から前記製氷槽の底
面に連接する部分に斜め下方に傾斜する傾斜部を形成す
る。
According to a sixth aspect of the present invention, fine ice particles are generated by flowing water and an antifreeze solution having a specific gravity lower than water, which is water-insoluble and less than water, at a temperature lower than 0 ° C., which is provided vertically. An ice making cylinder, an ice making tank that is provided vertically in communication with the lower part of the ice making cylinder, and raises water and ice particles flowing down to the lower part of the ice making cylinder, and is connected and connected to the upper part of the ice making tank. A transport pipe that transports a two-phase flow of water and ice to a predetermined location, and an ice heat storage water tank that stores a two-phase flow of water and ice that is transported through the transport pipe and flows down from an open end,
A water circulation system for allowing water taken from an intake port of the ice storage water tank to flow into the inside of the ice making cylinder from the top by a water pump, and collecting the antifreeze liquid flowing down to the lower part of the ice making tank, and using the antifreeze liquid pump to collect the antifreeze liquid; An antifreeze circulating system that flows into the interior from the top of the ice storage tank, wherein the ice making cylinder, the antifreeze collection part, the ice making tank, and the transport pipe are each sealed and integrally connected, and the ice making tank is An antifreeze liquid storage portion is formed on a part of the bottom surface of the ice making tank, and an inclined portion inclined obliquely downward is formed at a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze liquid storage portion.

【0028】請求項7に対応する発明は、請求項2又は
請求項5に対応する発明の氷蓄熱装置において、製氷槽
を複数備え、且つ貯氷槽に対して異なる位置から氷が移
送可能に隣接させて設ける。
According to a seventh aspect of the present invention, there is provided the ice heat storage device according to the second or fifth aspect, wherein a plurality of ice-making tanks are provided, and the ice storage tank is adjacent to the ice storage tank so that ice can be transferred from different positions. To be provided.

【0029】上記請求項1乃至請求項7に対応する発明
の氷蓄熱装置にあっては、不凍液貯溜部に流入する不凍
液は、不凍液貯溜部5の両側開口端から製氷槽の底面に
連接する部分に傾斜部が形成されているので、不凍液貯
溜部に流入する不凍液の流路断面積が増加した分、流入
流速が低減され、また円滑なスムーズな流れになるた
め、浮遊している水泡や微小水滴が不凍液貯溜部に流入
しにくい。また、流速が低減された分だけ水と不凍液の
界面付近に存在する水泡が分離されにくい。これによ
り、不凍液貯溜部への水泡や微小水滴の巻込みが低減さ
れ、その分不凍液貯溜部から吸出される水泡や微小水滴
が減少する。
In the ice heat storage device according to the first to seventh aspects of the present invention, the antifreeze flowing into the antifreeze storage portion is connected to the bottom of the ice making tank from both open ends of the antifreeze storage portion 5. Since the inclined section is formed in the antifreeze liquid storage section, the increase in the cross-sectional area of the flow path of the antifreeze liquid reduces the flow velocity of the antifreeze liquid, and the flow becomes smooth and smooth. Water droplets are less likely to flow into the antifreeze reservoir. Further, water bubbles existing near the interface between water and the antifreeze liquid are less likely to be separated by the reduced flow velocity. As a result, the entrapment of water bubbles and fine water droplets into the antifreeze liquid storage portion is reduced, and the water bubbles and fine water droplets sucked out of the antifreeze liquid storage portion are reduced accordingly.

【0030】従って、不凍液貯溜部における不凍液への
水の巻込みにより起きる冷凍機内の水分の凍結詰まりと
不凍液噴出ノズル先端の着氷を抑制し、もって安定製氷
を実現できると共に、不凍液の充填量を低減できる。
Therefore, it is possible to suppress freezing and clogging of the water inside the refrigerator caused by entrainment of water into the antifreeze in the antifreeze reservoir and to prevent icing at the tip of the antifreeze jet nozzle, thereby realizing stable ice making and reducing the amount of antifreeze filling. Can be reduced.

【0031】[0031]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1及び図2は本発明による氷蓄熱
装置の第1の実施の形態を示す全体の概略構成図であ
る。図2では解氷系だけでなく、12本の製氷筒3や不
凍液循環系、水循環系を省略して製氷槽1の概要を示し
ている。なお、図1の※部分は図示されていない製氷筒
3の頭頂部にそれぞれ接続されることを表している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 are general schematic diagrams showing a first embodiment of an ice heat storage device according to the present invention. FIG. 2 shows an outline of the ice making tank 1 omitting the ice making system, the twelve ice making cylinders 3, the antifreeze circulating system, and the water circulating system. Note that the * parts in FIG. 1 indicate that they are connected to the top of the ice making cylinder 3 (not shown).

【0032】図1及び図2において、1は内部に水2を
貯溜する細長い縦型の製氷槽、3はこの製氷槽1に隣接
して鉛直に設けられた製氷筒で、この製氷筒3の底部は
製氷槽1の下部に連結部8により連結されている。
1 and 2, reference numeral 1 denotes an elongated vertical ice-making tank for storing water 2 therein, and 3 denotes an ice-making cylinder provided vertically adjacent to the ice-making tank 1. The bottom part is connected to the lower part of the ice making tank 1 by a connecting part 8.

【0033】上記製氷槽1の底面の一部に下方に凹む不
凍液貯溜部5が形成され、この不凍液貯溜部5には不凍
液4が回収される。この不凍液貯溜部5は図3(a),
(b)に示すように液体貯溜部5の両側開口端から製氷
槽1の底面に連接する部分を適宜角度で下方に傾斜する
傾斜部6として形成されている。この傾斜部6は連続面
であっても、曲面であってもよく、さらに複数の段差部
を有する構成の何ずれでもよい。
An antifreeze reservoir 5 is formed at a part of the bottom surface of the ice making tank 1 and is recessed downward. The antifreeze 4 is collected in the antifreeze reservoir 5. This antifreeze reservoir 5 is shown in FIG.
As shown in (b), a portion connected to the bottom surface of the ice making tank 1 from both open ends of the liquid storage portion 5 is formed as an inclined portion 6 inclined downward at an appropriate angle. The inclined portion 6 may be a continuous surface or a curved surface, and may have any of a plurality of steps.

【0034】そして、製氷槽1の上部には取水部10が
形成され、この取水部10近傍の下方に金網11が設け
られている。さらに、製氷筒3の頭頂部には不凍液噴出
ノズル12が設けられている。
A water intake 10 is formed in the upper part of the ice making tank 1, and a wire net 11 is provided below the water intake 10. Further, an antifreeze jet nozzle 12 is provided at the top of the ice making cylinder 3.

【0035】一方、13は冷凍機で、この冷凍機13と
製氷槽1の底部の不凍液貯溜部5との間は配管14aに
より接続され、その途中には不凍液ポンプ15が設けら
れている。この不凍液ポンプ15は製氷槽1の底部の不
凍液貯溜部5に回収された不凍液4を冷凍機13を経由
し、配管14cを通して製氷筒3の上部に設けられた低
温不凍液吹出口12aに導かれる。冷凍機13の流入側
の配管14aにはバルブ16aが設けられ、冷凍機13
と低温不凍液吹出口12aとを結ぶ配管14cに流量計
17bが設けられている。
On the other hand, a refrigerator 13 is connected by a pipe 14a between the refrigerator 13 and the antifreeze reservoir 5 at the bottom of the ice making tank 1, and an antifreeze pump 15 is provided in the middle thereof. The antifreeze pump 15 guides the antifreeze 4 collected in the antifreeze storage part 5 at the bottom of the ice making tank 1 via the refrigerator 13 to the low temperature antifreeze outlet 12a provided at the upper part of the ice making cylinder 3 through the pipe 14c. A valve 16a is provided in the piping 14a on the inflow side of the refrigerator 13,
A flow meter 17b is provided on a pipe 14c connecting the low-temperature antifreeze outlet 12a and the low-temperature antifreeze outlet 12a.

【0036】また、製氷槽10の上部に設けられた取水
口10より水ポンプ18により配管14dを介して取水
し、この水をポンプ吐出口より配管14eを通して製氷
筒3の上部に設けられた最外周部に位置する水吹出口1
2cに送水される。この場合、配管14eにはバルブ1
6cと流量計17cが設けられている。
Further, water is taken in from the water intake port 10 provided in the upper part of the ice making tank 10 by a water pump 18 via a pipe 14d, and the water is taken out of the pump discharge port through a pipe 14e and provided in the upper part of the ice making cylinder 3 in the upper part. Water outlet 1 located on the outer periphery
Water is sent to 2c. In this case, the valve 14 is connected to the pipe 14e.
6c and a flow meter 17c are provided.

【0037】上記不凍液噴出ノズル12は、二重管構造
にし、内管21に0℃以下の不凍液4を流し、内管21
と外管22の間に0℃以上の不凍液4を流すように冷凍
機13や不凍液ポンプ15、その他からなる不凍液循環
系に接続されている。
The antifreeze jet nozzle 12 has a double-pipe structure. The antifreeze 4 at 0 ° C. or lower flows through the inner pipe 21.
An antifreeze circulating system including a refrigerator 13, an antifreeze pump 15, and the like is connected so that the antifreeze 4 at 0 ° C. or higher flows between the outer tube 22 and the outer tube 22.

【0038】一方、製氷筒3の頭頂部は、図11に示す
ような構造になっている。不凍液噴出ノズル12は内管
21と外管22の二重構造をなし、不凍液噴出ノズル1
2の内管21は不凍液貯溜部5の不凍液吸出口23に不
凍液配管14a及び14cを介して連結されている。こ
の不凍液配管14aには、不凍液4の流れ方向に順に不
凍液ポンプ15及び冷凍機13が設けられている。ま
た、不凍液噴出ノズル12の外管22には、不凍液配管
14aの不凍液ポンプ15と冷凍機13との間で分岐し
た分岐配管14bが連結されている。
On the other hand, the top of the ice making cylinder 3 has a structure as shown in FIG. The antifreeze jet nozzle 12 has a double structure of an inner pipe 21 and an outer pipe 22, and the antifreeze jet nozzle 1
The second inner pipe 21 is connected to the antifreeze suction port 23 of the antifreeze storage part 5 via antifreeze pipes 14a and 14c. An antifreeze pump 15 and a refrigerator 13 are sequentially provided in the antifreeze pipe 14 a in the flow direction of the antifreeze 4. Further, a branch pipe 14 b branched between the antifreeze pump 15 of the antifreeze pipe 14 a and the refrigerator 13 is connected to the outer pipe 22 of the antifreeze jet nozzle 12.

【0039】冷凍機13で0℃以下の温度に冷却された
不凍液4は、不凍液配管14cで不凍液噴出ノズル12
の内管21から製氷筒3内の水2中に吐出散布される。
他方、不凍液配管14aに導かれた不凍液4の残部は分
岐配管14bを通り、二重管構造の不凍液噴出ノズル1
2の外管22に送られる。この不凍液4は不凍液貯溜部
5より冷凍機13を通らないで、不凍液噴出ノズル12
の外管22に送られてくるので、0℃以上の温度であ
り、この0℃以上の不凍液4は噴出ノズル12の外管2
2から製氷筒3内の水2中に吐出し散布される。
The antifreeze 4 cooled to a temperature of 0 ° C. or lower by the refrigerator 13 is supplied to the antifreeze jet nozzle 12 through the antifreeze pipe 14 c.
Is sprayed into the water 2 in the ice making cylinder 3 from the inner pipe 21.
On the other hand, the rest of the antifreeze 4 guided to the antifreeze pipe 14a passes through the branch pipe 14b, and the antifreeze jet nozzle 1 having a double pipe structure.
2 to the outer tube 22. The antifreeze 4 does not pass through the refrigerator 13 from the antifreeze reservoir 5 and is supplied to the antifreeze jet nozzle 12.
The antifreeze 4 at a temperature of 0 ° C. or higher is sent to the outer tube 2 of the ejection nozzle 12.
The water 2 is discharged into the water 2 in the ice making cylinder 3 and dispersed.

【0040】この際、0℃以上の不凍液4の膜により、
内管21の開口端12aに付着しようとするスタティッ
ク氷を溶かし、不凍液噴出ノズル12の氷結を防ぎ、不
凍液噴出ノズル12による氷粒7の連続的な析出を可能
にしている。
At this time, the film of antifreeze 4 at 0 ° C. or higher
It melts the static ice that is going to adhere to the opening end 12a of the inner tube 21, prevents freezing of the antifreeze jet nozzle 12, and enables the antifreeze jet nozzle 12 to continuously deposit ice particles 7.

【0041】なお、図示していないが、夜間の製氷が完
了し、昼間の冷房負荷時に氷7を溶かす解氷系が製氷槽
1に付加されている。また、不凍液4として弗素とカー
ボンの2元素かななる液体(例えば商品名:フロリナー
ト等)を用いてもよい。
Although not shown, an ice melting system for melting the ice 7 at the time of cooling in the daytime is added to the ice making tank 1 after the ice making at night is completed. Further, as the antifreeze 4, a liquid (for example, trade name: Fluorinert) which is two elements of fluorine and carbon may be used.

【0042】次に上記のように構成された氷蓄熱装置の
作用を述べる。製氷運転中、冷凍機13により氷点下ま
で冷却された低温不凍液4は噴出口12aより製氷筒3
の内部に流出し、水2と混合される。この時、低温不凍
液4の周囲には相対的に低速な噴出し速度を有する水2
が噴出口12cより流出している。
Next, the operation of the ice heat storage device configured as described above will be described. During the ice making operation, the low-temperature antifreeze 4 cooled to a temperature below the freezing point by the refrigerator 13 is supplied to the ice making cylinder 3 from the jet port 12a.
And mixed with water 2. At this time, around the low-temperature antifreeze 4, water 2 having a relatively low jet velocity is provided.
Flows out from the jet port 12c.

【0043】このようにして、噴出口12aより流出し
た低温不凍液4は噴出口12bより流出した不凍液4と
一緒に水2中を下降しつつ周囲の水2と熱交換を行う。
この熱交換により析出された氷7と不凍液4がある程度
下降すると互いに相対速度はあるが、それぞれ一定速度
となり製氷筒3の内部を鉛直に下降する。この場合、水
2は不凍液4により冷却され、一部に氷7の析出を観察
するようになる。
As described above, the low-temperature antifreeze 4 flowing out of the jet port 12a exchanges heat with the surrounding water 2 while descending in the water 2 together with the antifreeze 4 flowing out of the jet port 12b.
When the ice 7 and the antifreeze 4 deposited by the heat exchange descend to some extent, they have a relative speed to each other, but at a constant speed, respectively, and descend vertically inside the ice making cylinder 3. In this case, the water 2 is cooled by the antifreeze 4 and the precipitation of ice 7 is partially observed.

【0044】このように不凍液4の有する冷熱は氷7の
凝固熱として蓄えられ、水温がほぼ0℃の状態のまま不
凍液4は0℃まで昇温される。製氷筒3の下部に下降し
た氷7を含む水2の流れは、製氷槽1との連結部8によ
り鉛直方向から水平方向に変換され、円滑に製氷槽1に
導かれる。この連結部8を通して製氷槽1に導かれた氷
7は、上部へ向う水2の流れと共にゆっくり製氷槽1内
部を上昇し、氷7自身の浮力と対流効果によりシャーベ
ット状態の氷7として貯溜される。
Thus, the cold heat of the antifreeze 4 is stored as the heat of solidification of the ice 7, and the temperature of the antifreeze 4 is raised to 0 ° C. while the water temperature is almost 0 ° C. The flow of the water 2 containing the ice 7 descending to the lower part of the ice making cylinder 3 is converted from the vertical direction to the horizontal direction by the connecting part 8 with the ice making tank 1, and is guided to the ice making tank 1 smoothly. The ice 7 guided to the ice making tank 1 through the connecting portion 8 slowly rises inside the ice making tank 1 with the flow of the water 2 going upward, and is stored as sherbet ice 7 due to the buoyancy of the ice 7 itself and the convection effect. You.

【0045】この場合、製氷槽1の上部に蓄えられた氷
7は金網11により取水口10からの吸込みが防止さ
れ、水面を広く覆う形で浮遊する。また、取水口10の
近傍には金網11がフィルタとして設けられているの
で、取水口10より配管14d,14eを通して製氷筒
3の内部に氷7が供給されることはなく、また製氷槽1
の上部には密度の高いシャーベット状の氷7を蓄えるこ
とができる。
In this case, the ice 7 stored in the upper part of the ice making tank 1 is prevented from being sucked from the water intake port 10 by the wire net 11, and floats in a form that widely covers the water surface. In addition, since the wire net 11 is provided as a filter near the intake port 10, the ice 7 is not supplied from the intake port 10 into the ice making cylinder 3 through the pipes 14d and 14e.
A high density sherbet-like ice 7 can be stored in the upper part of the table.

【0046】ここで、製氷筒3の底部より連結部8を通
して製氷槽1の底部に形成された不凍液貯溜部5に流入
する際の作用を述べる。不凍液貯溜部5に流入する不凍
液4は、図3(a)に示すように不凍液貯溜部5の両側
開口端から製氷槽1の底面に連接する部分に傾斜部6が
形成されているので、不凍液貯溜部5に流入する不凍液
4の流路断面積が増加した分、流入流速が低減され、ま
た円滑なスムーズな流れになる。このため、浮遊してい
る水泡19や微小水滴20が液体貯溜部5に流入しにく
い。また、流速が低減された分水2と不凍液4の界面9
付近に存在する水泡19が分離しにくくなる。これによ
り、不凍液貯溜部5への水泡19や微小水滴20の巻込
みが低減され、その分不凍液貯溜部5から吸出される水
泡19や微小水滴20が減少する。
Here, an operation when the ice flows from the bottom of the ice making cylinder 3 to the antifreeze storage part 5 formed at the bottom of the ice making tank 1 through the connecting part 8 will be described. The antifreeze 4 flowing into the antifreeze storage 5 has an inclined portion 6 formed at a portion connected to the bottom surface of the ice making tank 1 from both open ends of the antifreeze storage 5 as shown in FIG. As the cross-sectional area of the antifreeze 4 flowing into the reservoir 5 increases, the flow velocity of the antifreeze 4 is reduced, and the flow becomes smooth and smooth. For this reason, the floating water bubbles 19 and the minute water droplets 20 do not easily flow into the liquid storage portion 5. Also, the interface 9 between the water separation 2 and the antifreeze 4 whose flow velocity has been reduced.
Water bubbles 19 present in the vicinity are less likely to be separated. Thereby, the entanglement of the water bubbles 19 and the minute water droplets 20 into the antifreeze solution storage unit 5 is reduced, and the water bubbles 19 and the minute water droplets 20 sucked out from the antifreeze solution storage unit 5 are reduced accordingly.

【0047】その結果、冷凍機13内にて、不凍液4中
に含まれた水分2が凍結して起こる冷凍機13の氷詰り
と不凍液噴出ノズル12の先端にて凍結防止用不凍液4
に含まれる水分2が凍結して起こる不凍液噴出ノズル1
2の先端部の着氷が抑制される。
As a result, in the refrigerator 13, the water 2 contained in the antifreeze 4 is frozen and the ice clogging of the refrigerator 13 occurs.
Antifreeze nozzle 1 caused by freezing of water 2 contained in water
Icing at the tip of No. 2 is suppressed.

【0048】また、不凍液界面9をより低くしても、水
泡19や微小水滴20が吸出されにくくなるので、氷蓄
熱装置に充填する不凍液4の量を低減することができ
る。図4及び図5は、本発明による氷蓄熱装置の第2の
実施の形態を示す概略構成図であり、それぞれ図1、図
2と同一部品には同一符号を付して説明を省略する。図
5では、解氷系だけでなく、12本の製氷筒3や不凍液
循環系、水循環系を省略し、製氷槽1と貯氷槽29の概
要を示している。なお、図4の※部分は図示されていな
い製氷筒3の頭頂部にそれぞれ接続されることを表して
いる。
Further, even if the antifreeze interface 9 is made lower, the water bubbles 19 and minute water droplets 20 are less likely to be sucked out, so that the amount of the antifreeze 4 to be filled in the ice heat storage device can be reduced. FIGS. 4 and 5 are schematic configuration diagrams showing a second embodiment of the ice heat storage device according to the present invention. The same components as those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. FIG. 5 shows the outline of the ice making tank 1 and the ice storage tank 29, omitting the twelve ice making cylinders 3, the antifreeze circulating system, and the water circulating system in addition to the ice melting system. Note that the * parts in FIG. 4 indicate that they are connected to the top of the ice making cylinder 3 (not shown).

【0049】第2の実施の形態では、図4及び図5に示
すように製氷槽1と上部で連通する貯氷槽29を設け、
この貯氷槽29に製氷槽1から移動したシャーベット状
の氷32を溜めるようにし、また貯氷槽29の下部に取
水口10を設け、この取水口10から搬送ポンプ18に
より取水された水を配管14dを通して製氷筒3の頭頂
部より内部に流入させ、さらに不凍液貯溜部5として図
3(a),(b)に示すように液体貯溜部5の両側開口
端から製氷槽1の底面に連接する部分に適宜角度で下方
に傾斜する傾斜部6を形成したもので、それ以外は図1
及び図2と同じ構成である。
In the second embodiment, as shown in FIGS. 4 and 5, an ice storage tank 29 communicating with the ice making tank 1 at an upper portion is provided.
In this ice storage tank 29, the sherbet-shaped ice 32 moved from the ice making tank 1 is stored, and an intake port 10 is provided in a lower part of the ice storage tank 29. Water taken from the intake port 10 by the transport pump 18 is supplied to a pipe 14d. 3A and 3B, an antifreeze liquid storage portion 5 is connected to the bottom surface of the ice making tank 1 from both open ends of the liquid storage portion 5 as shown in FIGS. In FIG. 1, an inclined portion 6 inclined downward at an appropriate angle is formed.
2 and FIG.

【0050】このような構成の氷蓄熱装置においては、
製氷槽1にシャーベット状の氷7が貯まっていき、この
氷7が製氷槽1と貯氷槽29の間の壁30より上の位置
まで貯まると、その氷7は壁30を通り越して製氷槽1
と貯氷槽29の間の流路31を通過し、貯氷槽29に落
下する。この時、水2の一部も貯氷槽29に移動させる
ようにしてもよい。そして、貯氷槽29内に氷32が貯
蔵される。
In the ice heat storage device having such a configuration,
The sherbet-like ice 7 accumulates in the ice-making tank 1, and when the ice 7 accumulates to a position above the wall 30 between the ice-making tank 1 and the ice storage tank 29, the ice 7 passes through the wall 30 and becomes free from the ice-making tank 1.
It passes through the flow path 31 between the ice storage tank 29 and falls into the ice storage tank 29. At this time, a part of the water 2 may be moved to the ice storage tank 29. Then, the ice 32 is stored in the ice storage tank 29.

【0051】また、貯氷槽29内の氷32の下方には解
氷運転時に融解してできた水2が存在しているので、こ
の水2を貯氷槽29の取水口10より取水し、搬送ポン
プ18により製氷筒3の頭頂部より内部に流入させる。
Further, since water 2 formed by melting during the deicing operation exists below the ice 32 in the ice storage tank 29, the water 2 is taken from the water intake port 10 of the ice storage tank 29 and transported. The ice is made to flow from the top of the ice making cylinder 3 into the inside by the pump 18.

【0052】一方、不凍液貯溜部5に流入する不凍液4
は、図5に示すように不凍液貯溜部5の両側開口端から
製氷槽1の底面に連接する部分に傾斜部6が形成されて
いるので、不凍液貯溜部5に流入する不凍液4の流路断
面積が増加した分、流入流速が低減され、また円滑なス
ムーズな流れになるため、浮遊している水泡や微小水滴
が液体貯溜部5に流入しにくくなる。また、流速が低減
された分水2と不凍液4の界面9付近に存在する水泡が
剥ぎ取られにくくなる。よって、不凍液貯溜部5への水
泡や微小水滴の巻込みが低減され、その分不凍液貯溜部
5から吸出される水泡や微小水滴が減少する。
On the other hand, the antifreeze 4 flowing into the antifreeze storage 5
As shown in FIG. 5, since the inclined portion 6 is formed at a portion connected to the bottom surface of the ice making tank 1 from the open ends on both sides of the antifreeze reservoir 5, the flow path of the antifreeze 4 flowing into the antifreeze reservoir 5 is cut off. The increase in the area reduces the inflow flow velocity and makes the flow smooth and smooth, so that the floating water bubbles and minute water droplets are less likely to flow into the liquid reservoir 5. Further, water bubbles existing near the interface 9 between the water separation 2 and the antifreeze 4 whose flow velocity has been reduced are less likely to be peeled off. Therefore, the entrapment of water bubbles and fine water droplets into the antifreeze liquid storage unit 5 is reduced, and the water bubbles and fine water droplets sucked out of the antifreeze liquid storage unit 5 are reduced accordingly.

【0053】また、上記のような構成の氷蓄熱装置にあ
っては、貯氷槽29に貯蔵されるシャーベット状の氷3
2は氷32の上方から次々と注がれ、重力により圧縮さ
れるので、氷充填率が高くなる。その結果、氷貯蔵部分
の体積や敷地面積に対する実質的貯蔵氷の量、即ち貯蔵
冷熱量が大きくできる。
In the ice heat storage device having the above-described configuration, the sherbet-like ice 3 stored in the ice storage tank 29 is used.
2 is poured one after another from above the ice 32 and is compressed by gravity, so that the ice filling rate increases. As a result, it is possible to increase the substantial amount of stored ice with respect to the volume of the ice storage portion and the site area, that is, the amount of stored cold energy.

【0054】なお、貯氷槽29への氷7の落下位置が一
か所に集中しないように分散させてようにしてもよい。
さらに、壁30の部分に回転扉を設置し、ある程度氷7
が製氷槽1に貯まったら、回転扉を回転駆動させ、製氷
槽1から貯氷槽29に氷7を移送するようにしてもよ
い。
Incidentally, the ice 7 may be dispersed so that the falling position of the ice 7 into the ice storage tank 29 is not concentrated in one place.
In addition, a revolving door is installed on the wall 30 so that ice
When the ice is stored in the ice making tank 1, the revolving door may be driven to rotate to transfer the ice 7 from the ice making tank 1 to the ice storage tank 29.

【0055】図6は本発明による氷蓄熱装置の第3の実
施の形態を示す概略構成図であり、図1と同一部品には
同一符号を付して説明を省略する。なお、図6の※部分
は図示されていない製氷筒3の頭頂部にそれぞれ接続さ
れることを表している。
FIG. 6 is a schematic configuration diagram showing a third embodiment of the ice heat storage device according to the present invention. The same parts as those in FIG. Note that the * parts in FIG. 6 indicate that they are connected to the top of the ice making cylinder 3 (not shown).

【0056】第3の実施の形態では、図6に示すように
製氷槽1の上部、つまり下流側に水2及び氷7の二相流
を所定の箇所に搬送する搬送配管33の一端部を接続
し、この搬送配管33を通して搬送された水2及び氷7
の二相流を貯溜する氷蓄熱水槽34を設け、この氷蓄熱
水槽34の取水口より水2を取水し、搬送ポンプ18に
より製氷筒3の頭頂部より内部に流入させ、また製氷槽
1の底部に有する不凍液貯溜部5の不凍液吸出口23よ
り不凍液4を不凍液ポンプ15により吸出して製氷筒3
の頭頂部より不凍液噴出ノズル12を通して流入させる
構成とし、さらに不凍液貯溜部5として図3(a),
(b)に示すように液体貯溜部5の両側開口端から製氷
槽1の底面に連接する部分に適宜角度で下方に傾斜する
傾斜部6を形成するものである。
In the third embodiment, as shown in FIG. 6, one end of a transport pipe 33 for transporting a two-phase flow of water 2 and ice 7 to a predetermined location on the upper part of the ice making tank 1, that is, on the downstream side. And the water 2 and the ice 7 conveyed through the conveying pipe 33
An ice heat storage water tank 34 for storing the two-phase flow is provided, water 2 is taken in from an intake port of the ice heat storage water tank 34, and the water 2 is flowed into the inside from the top of the ice making cylinder 3 by the transport pump 18. The antifreeze 4 is sucked by the antifreeze pump 15 from the antifreeze suction port 23 of the antifreeze storage 5 at the bottom, and the ice making cylinder 3
3A, the antifreeze reservoir 5 is formed as an antifreeze storage nozzle 5.
As shown in FIG. 2B, an inclined portion 6 which is inclined downward at an appropriate angle is formed at a portion connected to the bottom of the ice making tank 1 from both open ends of the liquid storage portion 5.

【0057】この場合、製氷槽1及び製氷筒3は製氷部
35を構成している。このような構成の氷蓄熱装置にお
いては、製氷槽1から氷蓄熱水槽34に至る間は密閉状
態になっているので、距離が隔たっていても一定の冷熱
量を保存したまま目的の場所に搬送することができる。
In this case, the ice making tank 1 and the ice making cylinder 3 constitute an ice making part 35. In the ice heat storage device having such a configuration, since the space from the ice making tank 1 to the ice heat storage water tank 34 is in a sealed state, the ice heat storage device is transported to a target place while maintaining a constant amount of cold heat even if the distance is long. can do.

【0058】一方、不凍液貯溜部5に流入する不凍液4
は、第1の実施の形態と同様に不凍液貯溜部5の両側開
口端から製氷槽1の底面に連接する部分に傾斜部6が形
成されているので、不凍液貯溜部5に流入する不凍液4
の流路断面積が増加した分、流入流速が低減され、また
円滑なスムーズな流れになるため、浮遊している水泡や
微小水滴が液体貯溜部5に流入しにくくなる。また、流
速が低減された分水2と不凍液4の界面9付近に存在す
る水泡が分離しにくくなる。よって、不凍液貯溜部5へ
の水泡や微小水滴の巻込みが低減され、その分不凍液貯
溜部5から吸出される水泡や微小水滴が減少する。
On the other hand, the antifreeze 4 flowing into the antifreeze storage 5
In the same manner as in the first embodiment, since the inclined portion 6 is formed at a portion connected to the bottom surface of the ice making tank 1 from both open ends of the antifreeze reservoir 5, the antifreeze 4 flowing into the antifreeze reservoir 5 is formed.
Since the flow cross-sectional area is increased, the inflow velocity is reduced and the flow becomes smooth and smooth, so that floating water bubbles and minute water droplets are less likely to flow into the liquid storage portion 5. Further, water bubbles existing near the interface 9 between the water separation 2 and the antifreeze 4 whose flow velocity has been reduced become difficult to separate. Therefore, the entrapment of water bubbles and fine water droplets into the antifreeze liquid storage unit 5 is reduced, and the water bubbles and fine water droplets sucked out of the antifreeze liquid storage unit 5 are reduced accordingly.

【0059】図7は本発明による氷蓄熱装置の第4の実
施の形態を示す概略構成図であり、図1と同一部品には
同一符号を付して説明を省略する。なお、図7の※部分
は図示されていない製氷筒3の頭頂部にそれぞれ接続さ
れることを表している。
FIG. 7 is a schematic configuration diagram showing a fourth embodiment of the ice heat storage device according to the present invention. The same components as those in FIG. Note that the * parts in FIG. 7 indicate that they are connected to the top of the ice making cylinder 3 (not shown).

【0060】前述した第1の実施の形態乃至第3の実施
の形態では、製氷槽1と製氷筒3とを連結部により連結
する構成とし、且つ不凍液4を製氷筒3の頭頂部より下
向きに噴出させるようにしたが、第4の実施の形態では
図7に示すように製氷筒を兼ねた製氷槽1とし、この製
氷槽1内に非水溶性で水2より比重の大きな不凍液4と
水2とを収容し、製氷槽1の底部に形成された不凍液貯
溜部5より不凍液ポンプ15により回収した不凍液4を
冷凍機13で0℃より低い温度に冷却した後、水2と不
凍液4の界面9より上方位置に開口した不凍液噴出ノズ
ル12より水平方向に流入させ、微細な氷粒7を生成す
る不凍液循環系を構成する。また、製氷槽1の上部と下
部の不凍液界面9より上方位置との間を配管14dによ
り連通差せ、この配管14dに設けられた水ポンプ18
により水2を循環させる水循環系を構成する。
In the above-described first to third embodiments, the ice making tank 1 and the ice making cylinder 3 are connected by the connecting part, and the antifreeze 4 is directed downward from the top of the ice making cylinder 3. In the fourth embodiment, as shown in FIG. 7, an ice-making tank 1 serving also as an ice-making cylinder is provided. After the antifreeze 4 collected by the antifreeze pump 15 from the antifreeze reservoir 5 formed at the bottom of the ice making tank 1 is cooled to a temperature lower than 0 ° C. by the refrigerator 13, the interface between the water 2 and the antifreeze 4 An antifreeze circulating system that generates fine ice particles 7 by flowing horizontally from an antifreeze jet nozzle 12 that is opened at a position higher than 9 is formed. A pipe 14d connects the upper part of the ice-making tank 1 and the lower part of the antifreeze liquid interface 9 above the antifreeze liquid interface 9, and a water pump 18 provided in the pipe 14d is provided.
Constitutes a water circulation system for circulating the water 2.

【0061】ここで、上記不凍液噴出ノズル12は、二
重管構造で、内管21に0℃より低い温度の不凍液4を
流し、内管21と外管22の間に0℃より高い温度の不
凍液を流すような循環系を構成している。また、製氷槽
1の底部に有する不凍液貯溜部5は、図3(a),
(b)に示す第1の実施の形態と同様に液体貯溜部5の
両側開口端から製氷槽1の底面に連接する部分に適宜角
度で下方に傾斜する傾斜部6が形成される。
Here, the antifreeze jet nozzle 12 has a double pipe structure, and allows the antifreeze 4 having a temperature lower than 0 ° C. to flow through the inner pipe 21 and a temperature higher than 0 ° C. between the inner pipe 21 and the outer pipe 22. It has a circulating system that allows antifreeze to flow. In addition, the antifreeze storage part 5 provided at the bottom of the ice making tank 1 is shown in FIG.
As in the first embodiment shown in FIG. 2B, an inclined portion 6 inclined downward at an appropriate angle is formed at a portion connected to the bottom of the ice making tank 1 from both open ends of the liquid storage portion 5.

【0062】このような構成の氷蓄熱装置においては、
構成が簡単になり、また装置据付面積が大きくてもよい
が、装置全体の高さを低くしたい場合に適している。一
方、不凍液貯溜部5に流入する不凍液4は、第1の実施
の形態と同様に不凍液貯溜部5の両側開口端から製氷槽
1の底面に連接する部分に傾斜部6が形成されているの
で、第1の実施の形態と同様に不凍液貯溜部5への水泡
や微小水滴の巻込みが低減され、その分不凍液貯溜部5
から吸出される水泡や微小水滴を減少させることができ
る。
In the ice heat storage device having such a configuration,
Although the configuration is simple and the installation area of the apparatus may be large, it is suitable when the height of the entire apparatus is to be reduced. On the other hand, since the antifreeze 4 flowing into the antifreeze storage 5 has the inclined portion 6 formed at a portion connected to the bottom surface of the ice making tank 1 from both open ends of the antifreeze storage 5 as in the first embodiment. In the same manner as in the first embodiment, the entrapment of water bubbles and minute water droplets into the antifreeze storage part 5 is reduced, and the antifreeze storage part 5 is accordingly reduced.
Water bubbles and fine water droplets sucked out of the water can be reduced.

【0063】図8は本発明による氷蓄熱装置の第5の実
施の形態を示す概略構成図であり、図7と同一部品には
同一符号を付して説明を省略する。なお、図8の※部分
は図示されていない製氷筒3の頭頂部にそれぞれ接続さ
れることを表している。
FIG. 8 is a schematic configuration diagram showing a fifth embodiment of the ice heat storage device according to the present invention. The same components as those in FIG. Note that the * parts in FIG. 8 indicate that they are connected to the top of the ice making cylinder 3 (not shown).

【0064】第8の実施の形態では、図7の構成に加え
て第2の実施の形態で説明した貯水槽29を設けたもの
である。このような構成の氷蓄熱装置とすれば、第2の
実施の形態及び第4の実施の形態で述べたのと同様の作
用効果が得られる。
In the eighth embodiment, the water storage tank 29 described in the second embodiment is provided in addition to the configuration shown in FIG. With the ice heat storage device having such a configuration, the same operation and effect as those described in the second embodiment and the fourth embodiment can be obtained.

【0065】また、第6の実施の形態として、図7に示
す構成に図6に示す搬送配管33と氷蓄熱水槽34を設
ける構成とすることにより、第3の実施の形態及び第4
の実施の形態で述べたと同様の作用効果が得られる。
As a sixth embodiment, the configuration shown in FIG. 7 is provided with a transport pipe 33 and an ice heat storage water tank 34 shown in FIG.
The same operation and effect as described in the embodiment can be obtained.

【0066】図9は本発明による氷蓄熱装置の第7の実
施の形態を示す概略構成図であり、図2、図5と同一部
品には同一符号を付して説明を省略する。図9では、解
氷系だけでなく、12本の製氷筒3や不凍液循環系、水
循環系は省略し、製氷槽1と貯氷槽29の概要を示して
いる。
FIG. 9 is a schematic diagram showing a seventh embodiment of the ice heat storage device according to the present invention. The same parts as those in FIGS. 2 and 5 are denoted by the same reference numerals, and description thereof is omitted. FIG. 9 omits not only the ice-making system but also 12 ice-making cylinders 3, an antifreeze circulating system, and a water circulating system, and shows an outline of the ice-making tank 1 and the ice storage tank 29.

【0067】第7の実施の形態では、第2の実施の形態
で説明した図4に示す氷蓄熱装置に関して、製氷槽1を
もう一つ設ける構成としたものである。即ち、製氷槽1
で製造されたシャーベット状の氷32は水2と共に、貯
氷槽29に移送されるが、この移送位置の反対側に移送
位置を持つように、もう一つの製氷槽1を設ける。
In the seventh embodiment, another ice making tank 1 is provided for the ice heat storage device shown in FIG. 4 described in the second embodiment. That is, ice making tank 1
Is transferred to the ice storage tank 29 together with the water 2, and another ice making tank 1 is provided so as to have a transfer position opposite to the transfer position.

【0068】このような構成とすれば、製氷槽1が一つ
の時は移送位置から遠い場所はシャーベット状の氷32
が貯まりにくいことがあったが、二つの製氷槽1から貯
氷槽29にシャーベット状の氷32を移送すると、貯氷
槽29により均一にシャーベット状の氷32を貯められ
る。
With this configuration, when the number of the ice making tanks 1 is one, a place far from the transfer position is a sherbet-like ice 32.
However, when the sherbet-shaped ice 32 is transferred from the two ice-making tanks 1 to the ice storage tank 29, the sherbet-shaped ice 32 can be uniformly stored in the ice storage tank 29.

【0069】なお、二つ目の製氷槽1の位置を一つ目の
製氷槽1の反対側の位置にしなくても一つのみのときよ
りは均一になる。また、製氷槽の個数を増やし、その個
数分の方向からシャーベット状の氷32を移送させても
よい。
It is to be noted that, even if the second ice-making tank 1 is not located at a position opposite to the first ice-making tank 1, the second ice-making tank 1 is more uniform than when only one ice-making tank 1 is provided. Alternatively, the number of ice-making tanks may be increased, and the sherbet-shaped ice 32 may be transferred from the number of directions.

【0070】[0070]

【発明の効果】以上述べたように本発明によれば、不凍
液貯溜部における不凍液への水の巻込みにより起きる冷
凍機内の水分の凍結詰まりと不凍液噴出ノズル先端の着
氷を抑制し、もって安定製氷を実現できると共に、不凍
液の充填量を低減できる氷蓄熱装置を提供することがで
きる。
As described above, according to the present invention, freezing of water in the refrigerator caused by entrainment of water in the antifreeze in the antifreeze storage part and icing at the tip of the antifreeze jet nozzle are suppressed, thereby achieving stability. It is possible to provide an ice heat storage device capable of realizing ice making and reducing the filling amount of antifreeze.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による氷蓄熱装置の第1の実施の形態及
び従来例を説明するための構成図。
FIG. 1 is a configuration diagram illustrating a first embodiment and a conventional example of an ice heat storage device according to the present invention.

【図2】本発明の第1の実施の形態の全体構成を示す概
略図。
FIG. 2 is a schematic diagram showing the entire configuration of the first embodiment of the present invention.

【図3】同実施の形態における不凍液貯溜部付近の概略
構成図。
FIG. 3 is a schematic configuration diagram in the vicinity of an antifreeze storage section in the embodiment.

【図4】本発明による氷蓄熱装置の第2の実施の形態を
示す構成図。
FIG. 4 is a configuration diagram showing a second embodiment of the ice heat storage device according to the present invention.

【図5】同実施の形態の全体構成を示す概略図。FIG. 5 is a schematic diagram showing the overall configuration of the embodiment.

【図6】本発明による氷蓄熱装置の第3の実施の形態を
示す構成図。
FIG. 6 is a configuration diagram showing a third embodiment of the ice heat storage device according to the present invention.

【図7】本発明による氷蓄熱装置の第4の実施の形態を
示す構成図。
FIG. 7 is a configuration diagram showing a fourth embodiment of the ice heat storage device according to the present invention.

【図8】本発明による氷蓄熱装置の第5の実施の形態を
示す構成図。
FIG. 8 is a configuration diagram showing a fifth embodiment of the ice heat storage device according to the present invention.

【図9】本発明による氷蓄熱装置の第7の実施の形態の
全体構成を示す概略図。
FIG. 9 is a schematic diagram showing an overall configuration of an ice heat storage device according to a seventh embodiment of the present invention.

【図10】従来の氷蓄熱装置の全体構成を示す概略図。FIG. 10 is a schematic diagram showing the overall configuration of a conventional ice heat storage device.

【図11】従来装置の製氷筒上部を示す構成図。FIG. 11 is a configuration diagram showing an upper part of an ice making cylinder of a conventional apparatus.

【図12】従来装置の貯溜部付近を示す構成図。FIG. 12 is a configuration diagram showing the vicinity of a storage unit of a conventional device.

【符号の説明】[Explanation of symbols]

1……製氷槽 2……水 3……製氷筒 4……不凍液 5……不凍液貯溜部 6……傾斜部 7……シャーベット状の氷 8……連結部 9……界面 10……取水部 11……金網 12……不凍液噴出ノズル 13……冷凍機 14a〜14e……配管 15……不凍液ポンプ 16a〜16c……弁 17a〜17c……流量計 18……水ポンプ 19……水泡 20……微小水滴 21……内管 22……外管 23……不凍液吸出口 29……貯溜槽 30……壁 31……流路 32……シャーベット状氷 33……搬送配管 34……氷蓄熱水槽 DESCRIPTION OF SYMBOLS 1 ... Ice making tank 2 ... Water 3 ... Ice making cylinder 4 ... Antifreeze liquid 5 ... Antifreeze liquid storage part 6 ... Inclination part 7 ... Sherbet-like ice 8 ... Connection part 9 ... Interface 10 ... Water intake part 11 Wire mesh 12 Antifreeze jet nozzle 13 Refrigerator 14a to 14e Piping 15 Antifreeze pump 16a to 16c Valve 17a to 17c Flow meter 18 Water pump 19 Water bubble 20 ... minute water droplets 21 ... inner tube 22 ... outer tube 23 ... antifreeze suction port 29 ... storage tank 30 ... wall 31 ... flow path 32 ... sherbet-like ice 33 ... ... transfer pipe 34 ... ... ice storage water tank

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非水溶性で水より比重の大きな不凍液と
水とを収容した製氷槽と、この製氷槽内から不凍液ポン
プにより回収した前記不凍液を冷凍機により0℃より低
い温度に冷却した後、前記水と前記不凍液の界面より上
方の位置に開口した不凍液噴出ノズルから流入させ、水
との熱交換により微細な氷粒を製造する不凍液循環系と
を具備し、 前記製氷槽の底面の一部に下方に凹む不凍液貯溜部を形
成すると共に、この不凍液貯溜部の両側開口端から前記
製氷槽の底面に連接する部分に斜め下方に傾斜する傾斜
部を形成したことを特徴とする氷蓄熱装置。
1. An ice-making tank containing water-insoluble, antifreeze having a higher specific gravity than water and water, and the antifreeze recovered from the ice-making tank by an antifreeze pump is cooled to a temperature lower than 0 ° C. by a refrigerator. An antifreeze circulating system that flows through an antifreeze jet nozzle opened above the interface between the water and the antifreeze to produce fine ice particles by heat exchange with water. An ice heat storage device, wherein an antifreeze liquid storage portion that is recessed downward is formed in the portion, and an inclined portion that is inclined obliquely downward is formed at a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze liquid storage portion. .
【請求項2】 非水溶性で水より比重の大きな不凍液と
水とを収容した製氷槽と、この製氷槽内から不凍液ポン
プにより回収した前記不凍液を冷凍機により0℃より低
い温度に冷却した後、前記水と前記不凍液の界面より上
方の位置に開口した不凍液噴出ノズルから流入させ、水
との熱交換により微細な氷粒を製造する不凍液循環系
と、前記製氷槽と上部で連通させて設けられ、前記製氷
槽から移動した氷を貯わえる貯氷槽の取水口より取水さ
れた水を水ポンプにより前記製氷槽内部に流入させる水
循環系とを具備し、 前記製氷槽の底面の一部に下方に凹む不凍液貯溜部を形
成すると共に、この不凍液貯溜部の両側開口端から前記
製氷槽の底面に連接する部分に斜め下方に傾斜する傾斜
部を形成したことを特徴とする氷蓄熱装置。
2. An ice-making tank containing water-insoluble, antifreeze having a higher specific gravity than water and water, and the antifreeze recovered from the ice-making tank by an antifreeze pump is cooled to a temperature lower than 0 ° C. by a refrigerator. An antifreeze circulating system that flows through an antifreeze jet nozzle opened above the interface between the water and the antifreeze and produces fine ice particles by heat exchange with water, and is provided in communication with the ice making tank at an upper portion. A water circulation system for flowing water taken from an intake port of an ice storage tank that stores ice moved from the ice making tank into the ice making tank by a water pump, and a part of a bottom surface of the ice making tank. An ice heat storage device, comprising: an antifreeze solution storage portion that is recessed downward; and an inclined portion that is inclined obliquely downward from a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze solution storage portion.
【請求項3】 請求項1又は請求項2記載の氷蓄熱装置
において、不凍液噴出ノズルを水と不凍液の界面より上
方の位置に不凍液が水平方向に噴出されるように設けた
ことを特徴とする氷蓄熱装置。
3. The ice heat storage device according to claim 1, wherein the antifreeze jet nozzle is provided at a position above an interface between the water and the antifreeze so that the antifreeze is jetted horizontally. Ice storage device.
【請求項4】 鉛直に設けられ、且つ頭頂部より水及び
非水溶性で水よりも比重の大きな0℃より低い温度の不
凍液を流入させて微細な氷粒を生成する製氷筒と、この
製氷筒の下部に連通させて鉛直に設けられ、前記製氷筒
の下部に流下する水及び氷粒を上昇させる製氷槽と、こ
の製氷槽の取水口より取水された水を水ポンプにより前
記製氷筒の頭頂部より内部に流入させる水循環系と、前
記製氷筒の下部に流下した不凍液を回収して不凍液ポン
プにより前記製氷筒の頭頂部より内部に流入させる不凍
液循環系とを具備し、 前記製氷槽の底面の一部に下方に凹む不凍液貯溜部を形
成すると共に、この不凍液貯溜部の両側開口端から前記
製氷槽の底面に連接する部分に斜め下方に傾斜する傾斜
部を形成したことを特徴とする氷蓄熱装置。
4. An ice-making cylinder which is provided vertically and in which water and a water-insoluble and non-freezing liquid having a specific gravity lower than that of water and having a temperature lower than 0 ° C. are introduced from the top of the head to generate fine ice particles, and the ice-making cylinder. An ice-making tank which is provided vertically in communication with the lower part of the cylinder and raises water and ice particles flowing down to the lower part of the ice-making cylinder; and A water circulation system for flowing in from the top of the ice making cylinder, and an antifreeze liquid circulation system for collecting the antifreeze flowing down to the lower part of the ice making cylinder and flowing it into the inside of the ice making cylinder from the top of the ice making cylinder by an antifreeze pump. A part of the bottom surface is formed with an antifreeze liquid storage part that is recessed downward, and an inclined part that is inclined obliquely downward is formed at a part that is connected to the bottom surface of the ice making tank from both open ends of the antifreeze liquid storage part. Ice storage device.
【請求項5】 鉛直に設けられ、且つ頭頂部より水及び
非水溶性で水よりも比重の大きな0℃より低い温度の不
凍液を流入させて微細な氷粒を生成する製氷筒と、この
製氷筒の下部に連通させて鉛直に設けられ、前記製氷筒
の下部に流下する水及び氷粒を上昇させる製氷槽と、こ
の製氷槽の上部に連通させて設けられ前記製氷槽から移
動した氷を貯める貯氷槽と、この貯氷槽の取水口より取
水された水を水ポンプにより前記製氷筒の頭頂部より内
部に流入させる水循環系と、前記製氷筒の下部に流下し
た不凍液を回収して不凍液ポンプにより前記製氷筒の頭
頂部より内部に流入させる不凍液循環系とを具備し、 前記製氷槽の底面の一部に下方に凹む不凍液貯溜部を形
成すると共に、この不凍液貯溜部の両側開口端から前記
製氷槽の底面に連接する部分に斜め下方に傾斜する傾斜
部を形成したことを特徴とする氷蓄熱装置。
5. An ice-making cylinder which is provided vertically and which allows water and a water-insoluble and antifreeze liquid having a specific gravity lower than that of water and lower than 0 ° C. to flow in from the top of the head to generate fine ice particles, and the ice-making cylinder. An ice-making tank that is provided vertically in communication with the lower part of the cylinder and raises water and ice particles flowing down to the lower part of the ice-making cylinder; and ice that is provided in communication with the upper part of the ice-making tank and moves from the ice-making tank. An ice storage tank for storing the water, a water circulation system for allowing water taken from an intake port of the ice storage tank to flow in from the top of the ice making cylinder by a water pump, and an antifreeze liquid pump for collecting an antifreeze liquid flowing down to a lower part of the ice making cylinder. An antifreeze circulating system that allows the antifreeze liquid to flow into the inside from the top of the ice making cylinder is formed.A part of the bottom surface of the ice making tank is formed with an antifreeze storage portion that is recessed downward. Connected to the bottom of the ice making tank Ice thermal storage apparatus characterized by forming the inclined portion inclined obliquely downward to the portion that.
【請求項6】 鉛直に設けられ、且つ頭頂部より水及び
非水溶性で水よりも比重の大きな0℃より低い温度の不
凍液を流入させて微細な氷粒を生成する製氷筒と、この
製氷筒の下部に連通させて鉛直に設けられ、前記製氷筒
の下部に流下する水及び氷粒を上昇させる製氷槽と、こ
の製氷槽の上部に連通させて接続され前記水及び氷の二
相流を所定の箇所に搬送する搬送配管と、この搬送配管
を通して搬送され開口端部より流下する水及び氷の二相
流を貯溜する氷蓄熱水槽と、この氷蓄熱水槽の取水口よ
り取水された水を水ポンプにより前記製氷筒の頭頂部よ
り内部に流入させる水循環系と、前記製氷槽の下部に流
下した不凍液を回収して不凍液ポンプにより前記製氷筒
の頭頂部より内部に流入させる不凍液循環系とを備え、
前記製氷筒、前記不凍液回収部、前記製氷槽及び前記搬
送配管をそれぞれ密閉状態にして一体的に結合した氷蓄
熱装置において、 前記製氷槽の底面の一部に下方に凹む不凍液貯溜部を形
成すると共に、この不凍液貯溜部の両側開口端から前記
製氷槽の底面に連接する部分に斜め下方に傾斜する傾斜
部を形成したことを特徴とする氷蓄熱装置。
6. An ice-making cylinder which is provided vertically and which allows water and a water-insoluble and antifreeze liquid having a specific gravity lower than that of water, which is lower than 0 ° C., to flow in from the top of the head to generate fine ice particles. An ice-making tank which is provided vertically in communication with the lower part of the cylinder and raises water and ice particles flowing down to the lower part of the ice-making cylinder; and a two-phase flow of the water and ice which is connected and connected to the upper part of the ice-making tank. Piping, a cooling water tank that stores a two-phase flow of water and ice that is conveyed through the transfer pipe and flows down from the opening end, and water that is withdrawn from an intake port of the cooling water tank. A water circulation system that allows the water to flow into the interior from the top of the ice making cylinder by a water pump, and an antifreeze circulation system that collects the antifreeze flowing down to the lower part of the ice making tank and flows into the interior from the top of the ice making cylinder by the antifreeze pump. With
In the ice heat storage device in which the ice making cylinder, the antifreeze liquid collecting part, the ice making tank, and the transport pipe are each integrally connected in a sealed state, an antifreeze liquid storing part which is recessed downward is formed in a part of the bottom surface of the ice making tank. An ice heat storage device characterized in that an inclined portion that is inclined obliquely downward is formed at a portion connected to the bottom surface of the ice making tank from both open ends of the antifreeze storage portion.
【請求項7】 請求項2又は請求項5記載の氷蓄熱装置
において、製氷槽を複数備え、且つ貯氷槽に対して異な
る位置から氷が移送可能に隣接させて設けたことを特徴
とする氷蓄熱装置。
7. The ice heat storage device according to claim 2, wherein a plurality of ice making tanks are provided, and ice is provided adjacent to the ice storage tank so that ice can be transferred from different positions. Heat storage device.
JP8678697A 1997-04-04 1997-04-04 Ice heat storage device Pending JPH10281602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8678697A JPH10281602A (en) 1997-04-04 1997-04-04 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8678697A JPH10281602A (en) 1997-04-04 1997-04-04 Ice heat storage device

Publications (1)

Publication Number Publication Date
JPH10281602A true JPH10281602A (en) 1998-10-23

Family

ID=13896449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8678697A Pending JPH10281602A (en) 1997-04-04 1997-04-04 Ice heat storage device

Country Status (1)

Country Link
JP (1) JPH10281602A (en)

Similar Documents

Publication Publication Date Title
US5598712A (en) Latent heat accumulation system
JPH10281602A (en) Ice heat storage device
JPH10311634A (en) Ice heat storage system
JP2696046B2 (en) Latent heat storage device
JPH10311633A (en) Ice heat storage system
JP2892202B2 (en) Ice storage device
US5481882A (en) Latent heat accumulation system
JP2502029B2 (en) Ice heat storage device
JPH1047823A (en) Ice making method and ice heat storage device
JP2680498B2 (en) Latent heat storage device
JPH1054631A (en) Ice thermal storage unit
JP4781731B2 (en) Snow and ice energy utilization system using snow accumulation site
KR960015827B1 (en) Latent heat accumulation system
JPH04297769A (en) Ice heat storage device
KR20030061575A (en) Ice storage tank of cooling thermal energy storage system
JPH05280769A (en) Latent heat accumulating device
JPH0719545A (en) Latent heat-accumulator
JPH1123117A (en) Ice heat storage apparatus
JP3486020B2 (en) Ice storage device
JPH07103518A (en) Ice heat accumulator
JPH05248666A (en) Ice heat storage device
JP3292502B2 (en) Ice storage device
JPH0949650A (en) Thawing system for ice heat storage
JPH09178227A (en) Ice heat storage tank
JPH10325657A (en) Ice thermal storage device