JP2892202B2 - Ice storage device - Google Patents

Ice storage device

Info

Publication number
JP2892202B2
JP2892202B2 JP3306383A JP30638391A JP2892202B2 JP 2892202 B2 JP2892202 B2 JP 2892202B2 JP 3306383 A JP3306383 A JP 3306383A JP 30638391 A JP30638391 A JP 30638391A JP 2892202 B2 JP2892202 B2 JP 2892202B2
Authority
JP
Japan
Prior art keywords
water
refrigerant
ice
heat storage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3306383A
Other languages
Japanese (ja)
Other versions
JPH05141720A (en
Inventor
間 毅 野
孝 幸 八文字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3306383A priority Critical patent/JP2892202B2/en
Publication of JPH05141720A publication Critical patent/JPH05141720A/en
Application granted granted Critical
Publication of JP2892202B2 publication Critical patent/JP2892202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機等に使用さ
れる氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device used for an air conditioner or the like.

【0002】[0002]

【従来の技術】氷蓄熱装置を有する空気調和システム
は、昼間に集中する冷房用電力需要を低減するために、
安価な深夜電力を利用でき、かつ熱源機器容量の半減に
よる契約電力を低減できるので、ビル空調や、地域冷暖
房システム等の比較的大容量の空気調和システムへの適
用が期待されている。氷蓄熱装置は、その氷の製造方法
において、間接熱交換方式と直接熱交換方式に大別され
ており、間接熱交換方式では、製氷用伝熱管を用い、伝
熱管の内側又は外側に低温の冷媒(フロン等)又は不凍
液(通称ブライン)を流し、伝熱管の反対の壁面に氷を
生成、着氷するようにしており、直接熱交換方式では、
冷媒ガスを水中に直接吹き込むようにしている。
2. Description of the Related Art An air conditioning system having an ice heat storage device is used to reduce the power demand for cooling which is concentrated in the daytime.
Since inexpensive late-night power can be used and contract power can be reduced by halving the capacity of heat source equipment, application to relatively large-capacity air conditioning systems such as building air conditioning and district cooling and heating systems is expected. Ice heat storage devices are roughly classified into an indirect heat exchange method and a direct heat exchange method in the method of producing ice.In the indirect heat exchange method, a heat transfer tube for ice making is used. A refrigerant (Freon, etc.) or antifreeze (brine) is allowed to flow to generate ice on the wall opposite to the heat transfer tube, and to accumulate ice.
Refrigerant gas is blown directly into the water.

【0003】この直接熱交換方式は、冷凍機内の膨張弁
を出た後の低温の冷媒を水槽の水中に吹き込み、冷媒が
蒸発するときの潜熱で水を氷化するので、間接熱交換方
式に比較して冷却液(冷媒)の温度を高くすることがで
き、したがって、冷凍機の成績係数が良好となり、ま
た、水槽の中で冷媒と水の直接接触による熱交換なので
水槽中に伝熱管等を配置する必要がなく氷の充填率(I
PF)も良好となることは分かっている。しかし、直接
熱交換方式では、冷媒蒸気中に混入した水分が膨張弁で
凍結し、膨張弁の作動不良の原因となるため、蒸気通路
に水分離器を付設する必要があり、また、圧縮機の潤滑
油が水に混入し、蓄熱時に悪影響を及ぼすことがある。
In the direct heat exchange system, a low-temperature refrigerant blown out of an expansion valve in a refrigerator is blown into water in a water tank, and the latent heat generated when the refrigerant evaporates turns the water into ice. The temperature of the cooling liquid (refrigerant) can be increased in comparison with the temperature coefficient of the refrigerating machine, and the heat transfer by direct contact between the refrigerant and the water in the water tank results in a heat transfer tube. It is not necessary to arrange ice filling rate (I
PF) is also known to be good. However, in the direct heat exchange method, the water mixed in the refrigerant vapor freezes at the expansion valve and causes a malfunction of the expansion valve. Therefore, it is necessary to attach a water separator to the vapor passage. Of lubricating oil may be mixed into water and adversely affect heat storage.

【0004】このような問題点を解消するために、たと
えば、第24回日本伝熱シンポジウム講演論文集(19
87年5月)の「冷媒の直接接触伝熱を利用する氷蓄熱
装置の研究」に開示されているように、氷蓄熱を冷熱の
移送系から隔離された密閉容器内で生成して蓄熱を行う
ようにした技術手段はあるが、この方法では、蓄熱タン
クを密閉構造とする必要あり、また、氷の生成と貯蔵を
1つのタンクで行わなければならず、タンクへの氷充填
率が制限され、タンクの大型化やタンクを圧力容器とし
て設計しなけれずならない。
[0004] In order to solve such problems, for example, the 24th Japan Heat Transfer Symposium Proceedings (19)
May, 1987) “Research on Ice Thermal Storage System Using Direct Contact Heat Transfer of Refrigerant”, ice thermal storage is generated in a closed container isolated from the cold heat transfer system to store heat. Although there is a technical means to do this, this method requires that the heat storage tank be a closed structure, and that the generation and storage of ice must be performed in one tank, and the ice filling rate in the tank is limited. Therefore, the tank must be enlarged and the tank must be designed as a pressure vessel.

【0005】上記問題点を解消するものとして、特開平
1−244225号公報や特開平2−97845号公報
に開示された技術手段は知られている。上記技術手段
は、図12に示すように、製氷器1と蓄熱槽2を分離
し、製氷器1に非水溶性高比重不凍液3を収容し、蓄熱
槽2に水4を収容し、製氷器1の非水溶性高比重不凍液
3の液面3aより上方の部位と蓄熱槽2の水面4aより
上方の部位を配管5で連結し、製氷器1の液面3aより
上方の部位と蓄熱槽2の底面とを配管6で連結し、この
配管6の水循環ポンプ7より下流側で分岐した分岐管8
を製氷器1の底面に連結し、製氷器1に設けた不凍液3
を、冷凍機9、不凍液循環ポンプ10、および熱交換器
11を備えた冷凍サイクル12で冷却し、蓄熱槽2の水
を分岐管8を介して、製氷器1の冷却された不凍液中に
噴出させ、水を冷却不凍液と直接接触させて氷を析出
し、不凍液より軽い氷を不凍液の上側の水4まで浮上さ
せ、析出浮上した氷13を配管5を介して、蓄熱槽2の
水面4aより上方の位置に氷層14として貯えるように
したものである。
As means for solving the above problems, there are known technical means disclosed in JP-A-1-244225 and JP-A-2-97845. As shown in FIG. 12, the above technical means separates the ice maker 1 and the heat storage tank 2, stores the water-insoluble high-density antifreeze 3 in the ice maker 1, stores the water 4 in the heat storage tank 2, The portion above the liquid surface 3a of the water-insoluble high specific gravity antifreeze 3 and the portion above the water surface 4a of the heat storage tank 2 are connected by a pipe 5, and the portion above the liquid surface 3a of the ice maker 1 and the heat storage tank 2 And a branch pipe 8 branched from the water circulating pump 7 on the downstream side of the pipe 6.
Is connected to the bottom of the ice maker 1 and the antifreeze 3
Is cooled by a refrigeration cycle 12 including a refrigerator 9, an antifreeze circulating pump 10, and a heat exchanger 11, and water in the heat storage tank 2 is jetted into the cooled antifreeze of the ice maker 1 via the branch pipe 8. Then, water is brought into direct contact with the cooling antifreeze to precipitate ice, ice lighter than the antifreeze is floated to the water 4 above the antifreeze, and the precipitated ice 13 is passed through the pipe 5 from the water surface 4a of the heat storage tank 2 through the pipe 5. The ice layer 14 is stored at an upper position.

【0006】[0006]

【発明が解決しようとする課題】上記形式の技術手段で
は、非水溶性高比重不凍液とその上側に位置する水との
間に温度差があり、非水溶性高比重不凍液と水との界面
が氷結し、そのため、非水溶性高比重不凍液中で生成さ
れた氷が水中を上昇せず、また、氷内に非水溶性高比重
不凍液を含んだ氷が生成されると、非水溶性高比重不凍
液と水との界面に水に浮かない氷が溜まり、連続した製
氷が妨げられ、また、非水溶性高比重不凍液と水との熱
交換を効率よく行うには、非水溶性高比重不凍液貯溜部
の高さを高くする必要があり、製氷器に収容される非水
溶性高比重不凍液を多量必要とするという問題がある。
In the technical means of the above type, there is a temperature difference between the water-insoluble high-density antifreeze and the water located thereabove, and the interface between the water-insoluble high-density antifreeze and the water is reduced. The ice formed in the water-insoluble high-density antifreeze does not rise in water, and when ice containing the water-insoluble high-density antifreeze is generated in the ice, the water-insoluble high-density antifreeze is generated. Ice that does not float on water accumulates at the interface between the antifreeze and water, preventing continuous ice making.In addition, in order to efficiently exchange heat between the water-insoluble high-density antifreeze and water, the water-insoluble high-density antifreeze storage is required. It is necessary to increase the height of the section, and there is a problem that a large amount of the non-water-soluble high-density antifreeze contained in the ice maker is required.

【0007】本発明は上記した点に鑑みてなされたもの
で、非水溶性高比重不凍液の量を最小限として製氷器を
小形化し、かつ、非水溶性高比重不凍液と水との熱交換
を効率よく行うようにした氷蓄熱装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a miniaturized ice maker by minimizing the amount of a water-insoluble high-density antifreeze, and heat exchange between the water-insoluble high-density antifreeze and water. It is an object of the present invention to provide an ice heat storage device that performs the operation efficiently.

【0008】[0008]

【課題を解決するための手段】本発明の氷蓄熱装置は、
水と水より比重の重い非水溶性冷媒を収容した製氷器
と、この製氷器に連通部を介して連結された蓄熱水槽
と、製氷器の内部の非水溶性冷媒の液面より上方の水中
に配置され非水溶性冷媒を上方に向けて噴射する噴出ノ
ズルと、上記製氷器に収容した非水溶性冷媒を0℃以下
の温度に冷却し冷却した非水溶性冷媒を噴出ノズルから
上方に向けて噴射して氷を析出する冷凍サイクルと、製
氷器の側壁の冷媒液面より上方の部位と蓄熱水槽の側壁
の下部とを連結する配管とこの配管に配置した水ポンプ
を有し製氷器から蓄熱水槽に向かう水の流れを形成し冷
却した非水溶性冷媒により析出され上方に浮上する氷を
連通部を介して蓄熱水槽に送る水循環装置とを有して構
成される。
The ice heat storage device of the present invention comprises:
An ice maker containing water and a non-water-soluble refrigerant having a specific gravity greater than water, a heat storage water tank connected to the ice maker via a communication portion, and water above the liquid level of the non-water-soluble refrigerant inside the ice maker. A jet nozzle which is disposed in the nozzle and injects the water-insoluble refrigerant upward, and a water-insoluble refrigerant which is cooled by cooling the water-insoluble refrigerant accommodated in the ice maker to a temperature of 0 ° C. or less and directs upward from the jet nozzle. A refrigeration cycle for spraying ice to deposit ice, a pipe connecting a portion of the side wall of the ice maker above the refrigerant level and a lower part of the side wall of the heat storage water tank, and a water pump disposed on the pipe, and the ice maker has a A water circulating device that forms a flow of water toward the heat storage water tank and sends ice precipitated by the cooled water-insoluble refrigerant and floating upward to the heat storage water tank through the communication portion.

【0009】また、本発明の氷蓄熱装置は、水と水より
比重の重い非水溶性冷媒を収容した製氷器と、この製氷
器に隣接配置された蓄熱水槽と、上記製氷器の蓄熱水槽
の反対側で蓄熱水槽より高い位置に設けた水流落下槽
と、この水流落下槽と蓄熱水槽を結び水流落下槽の水を
層状として蓄熱水槽に導く傾斜流路部と、この傾斜流路
部に形成した冷媒吹出し口と、製氷器に設けた冷媒を0
℃以下の温度に冷却し冷却した冷媒を冷媒吹出し口から
傾斜流路部を層状に流れる水に直接噴射して氷を析出す
る冷凍サイクルとを有して構成される。
The ice heat storage device of the present invention also includes an ice maker containing water and a water-insoluble refrigerant having a specific gravity higher than that of water, a heat storage water tank disposed adjacent to the ice maker, and a heat storage water tank of the ice maker. A water flow drop tank provided at a position higher than the heat storage water tank on the opposite side, an inclined flow path portion connecting the water flow fall tank and the heat storage water tank and guiding the water of the water flow fall tank to the heat storage water tank as a layer, and formed in the inclined flow path section Refrigerant outlet and the refrigerant provided in the ice maker
And a refrigeration cycle in which ice is deposited by directly injecting the cooled refrigerant cooled to a temperature of not more than ° C from the refrigerant outlet into the water flowing in a layered manner in the inclined flow path portion.

【0010】[0010]

【0011】[0011]

【作用】本発明の氷蓄熱装置では、製氷器に設けた水よ
り比重の重い非水溶性冷媒を、冷凍サイクルにより0℃
以下の温度に冷却し、冷却した冷媒を製氷器の内部に配
置した噴出ノズルより製氷器に収容された水に噴射する
ことで、冷却冷媒を水に直接接触し、水より析出された
氷を水中を浮上させ、浮上した氷を蓄熱水槽に貯えるよ
うにする。
In the ice heat storage device of the present invention, a water-insoluble refrigerant having a higher specific gravity than water provided in an ice maker is cooled to 0 ° C. by a refrigeration cycle.
Cooled to the temperature below, the cooled refrigerant is injected into the water contained in the ice maker from the ejection nozzle arranged inside the ice maker, the cooling refrigerant is brought into direct contact with the water, and the ice precipitated from the water is removed. Float the water and store the floating ice in a thermal storage tank.

【0012】また、本発明の氷蓄熱装置では、製氷器に
設けた水より比重の重い非水溶性冷媒を、冷凍サイクル
により0℃以下の温度に冷却し、冷却した冷媒を傾斜流
路部に形成した冷媒吹出し口より噴き出すようにし、こ
の冷媒吹出し口よりでる冷却冷媒を、傾斜流路部を層状
に流れる水に直接噴射することで氷を析出し、析出した
氷を、傾斜流路部を流れる水とともに蓄熱水槽に導き、
氷を蓄熱水槽に貯えるようにする。
Further, in the ice heat storage device of the present invention, a water-insoluble refrigerant having a higher specific gravity than water provided in the ice maker is cooled to a temperature of 0 ° C. or less by a refrigeration cycle, and the cooled refrigerant is supplied to the inclined flow path. Ice is deposited from the formed refrigerant outlet, and ice is precipitated by directly injecting the cooling refrigerant from the refrigerant outlet into the water flowing in a layered manner in the inclined flow path part, and the precipitated ice is passed through the inclined flow path part. Guided to the thermal storage tank with flowing water,
Store ice in a thermal storage tank.

【0013】[0013]

【0014】[0014]

【実施例】以下本発明の実施例を図面につき説明する。
図1は本発明による氷蓄熱装置の全体構成を示し、この
氷蓄熱装置の製氷器20の底部21には、水より比重の
重い非水溶性冷媒22を収容する冷媒貯溜部23が形成
されている。この冷媒貯溜部23は、製氷器20の側壁
部24の下端まで上方に傾斜した傾斜面25で連なり、
製氷器20の水中に噴出され、水中を降下する非水溶性
冷媒22を、傾斜面25に落下させ、落下した冷媒22
を、傾斜面25に沿って冷媒貯溜部23に導くようにし
ている。上記製氷器20の内部の冷媒液面22aより上
方の位置に配置した噴出ノズル26は、図2および図3
に示すように、製氷器20の側壁部24に隣接して水平
方向に延びるように配置されている。ノズル部26a
は、図4に示すように噴出ノズル26の長手方向に間隔
を置いて複数配置されている。上記噴出ノズル26は、
冷媒配管28により冷媒貯溜部23に連結され、この冷
媒配管28に配置された冷凍サイクルを構成する冷凍機
29および循環ポンプ30により、0℃以下の温度に冷
却された冷媒22を噴出ノズル26のノズル部26aか
ら斜め上方に向けて噴射する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
FIG. 1 shows an entire configuration of an ice heat storage device according to the present invention. A refrigerant storage portion 23 for containing a non-water-soluble refrigerant 22 having a higher specific gravity than water is formed at a bottom portion 21 of an ice maker 20 of the ice heat storage device. I have. The refrigerant reservoir 23 is connected to the lower end of the side wall 24 of the ice maker 20 by an inclined surface 25 inclined upward,
The water-insoluble refrigerant 22 spouted into the water of the ice maker 20 and descending in the water is dropped on the inclined surface 25, and the dropped refrigerant 22
Is guided to the refrigerant reservoir 23 along the inclined surface 25. The jet nozzle 26 disposed at a position higher than the refrigerant liquid level 22a inside the ice maker 20 is shown in FIGS.
As shown in FIG. 2, the ice maker 20 is arranged so as to extend in the horizontal direction adjacent to the side wall 24. Nozzle part 26a
Are arranged at intervals in the longitudinal direction of the ejection nozzle 26 as shown in FIG. The jet nozzle 26 is
The refrigerant 22 cooled to a temperature of 0 ° C. or lower is discharged from the ejection nozzle 26 by a refrigerator 29 and a circulating pump 30 which are connected to a refrigerant reservoir 23 by a refrigerant pipe 28 and constitute a refrigeration cycle arranged in the refrigerant pipe 28. Injects obliquely upward from the nozzle portion 26a.

【0015】一方、上記製氷器20に隣接して配置した
蓄熱水槽31は、水流の案内部を兼ねる連通部32を介
して製氷器20に連結されている。上記蓄熱水槽31の
側壁33の下部と製氷器20の噴出ノズル26より上方
の部位とは配管34によって連結され、この配管34に
設けた水循環ポンプ35により蓄熱水槽31に収容され
た水36を製氷器20に送るようにしている。
On the other hand, a heat storage water tank 31 arranged adjacent to the ice maker 20 is connected to the ice maker 20 via a communication part 32 also serving as a water flow guide part. The lower part of the side wall 33 of the heat storage water tank 31 and a portion above the ejection nozzle 26 of the ice maker 20 are connected by a pipe 34, and the water 36 stored in the heat storage water tank 31 is made by the water circulating pump 35 provided in the pipe 34. To the vessel 20.

【0016】上記水より比重の重い非水溶性冷媒22と
しては、比重量が水の1.7〜1.8倍で、凝固点が−
50℃程度のフロリナート液が選定される。フロリナー
ト液は、無色・透明・無臭・不活性な液体で、完全にフ
ッ素化された構造をしており、炭素原子Cとフッ素原子
Fのみの結合である。このフロリナート液12は炭素原
子Cとフッ素原子Fの結合数に応じて、沸点と凝固点
(流動点と同じ)は異なるが、凝固点が−20℃以下の
ものがほとんどである。そして、比重量も0℃付近では
1.7〜1.8kg/lで氷の2倍程度であり、水のフ
ロリナートへの溶解性は、温度10℃で7.2ppm と少
なく不溶と考えても問題がなく、水槽内に水とフロリナ
ートを一緒に入れると、両者は完全に分離しフロリナー
トが底に沈殿し水がその上に浮くことになる。
The water-insoluble refrigerant 22, which has a higher specific gravity than water, has a specific weight of 1.7 to 1.8 times that of water and a freezing point of-
A florinate solution of about 50 ° C. is selected. The florinate liquid is a colorless, transparent, odorless, and inert liquid, has a completely fluorinated structure, and is a bond of only carbon atoms C and fluorine atoms F. The boiling point and the freezing point (the same as the pour point) of the Fluorinert liquid 12 differ depending on the number of bonds between the carbon atoms C and the fluorine atoms F, but most of them have a freezing point of −20 ° C. or less. Also, the specific weight is 1.7 to 1.8 kg / l at about 0 ° C., which is about twice that of ice, and the solubility of water in fluorinert is as low as 7.2 ppm at a temperature of 10 ° C. When there is no problem, when water and florinate are put together in the water tank, they are completely separated from each other, florinate is settled to the bottom, and the water floats on it.

【0017】しかして、蓄熱水槽31に収容された水3
6は、配管34を通り製氷器20に送られ、この製氷器
20から連通部32を介して蓄熱水槽31に戻る循環路
を形成し、製氷器20の底部21に設けた冷媒貯溜部2
3の冷媒22は、冷媒配管28を通り、冷媒配管28に
配置した冷凍サイクルを構成する冷凍機29により0℃
以下の温度に冷却され、冷却された冷媒22は、循環ポ
ンプ30により強制流として噴出ノズル26に送られ、
この噴出ノズル26のノズル部26から斜め上方に向け
て噴射される。ノズル部26から噴射された冷却冷媒2
2は、製氷器20に収容された水と直接接触して熱交換
され、冷却冷媒22に接触する水36は氷粒37となり
水中を上昇し、水中を上昇した氷粒37は製氷器20の
水とともに連通部32を介して蓄熱水槽31に戻り、蓄
熱水槽31の水面に層状をなして貯えられる。この場
合、生成された氷粒37はただちに蓄熱水槽31に運ば
れるので、噴出ノズル26は噴出ノズル26のノズル部
26aの周辺での氷粒37の再付着が防止され、ノズル
部26aの噴出口が凍結して閉じてしまうことはない。
また、水と熱交換された冷媒22は、水より比重の重い
非水溶性を有するので、水と分離し、製氷器20の水中
を降下し底部傾斜面25に落下し、落下した冷媒は底部
傾斜面25に沿って流下して冷媒貯溜部23に戻される
ことになる。
The water 3 stored in the heat storage water tank 31
6 forms a circulation path which is sent to the ice maker 20 through the pipe 34 and returns from the ice maker 20 to the heat storage water tank 31 through the communication part 32, and the refrigerant storage part 2 provided at the bottom 21 of the ice maker 20.
The refrigerant 22 of No. 3 passes through a refrigerant pipe 28 and is cooled to 0 ° C. by a refrigerator 29 constituting a refrigeration cycle arranged in the refrigerant pipe 28.
The cooled refrigerant 22 cooled to the following temperature is sent to the ejection nozzle 26 as a forced flow by the circulation pump 30,
It is jetted obliquely upward from the nozzle portion 26 of the jet nozzle 26. Cooling refrigerant 2 injected from nozzle part 26
2 is in direct contact with the water contained in the ice maker 20 to exchange heat, and the water 36 in contact with the cooling refrigerant 22 becomes ice particles 37 and rises in the water. The water is returned to the heat storage water tank 31 via the communicating portion 32 together with the water, and is stored in a layered form on the water surface of the heat storage water tank 31. In this case, the generated ice particles 37 are immediately conveyed to the heat storage water tank 31, so that the ejection nozzle 26 prevents the ice particles 37 from re-adhering around the nozzle portion 26 a of the ejection nozzle 26, and the ejection port of the nozzle portion 26 a Will not freeze and close.
Further, since the refrigerant 22 that has been heat-exchanged with water has water-insolubility having a specific gravity greater than that of water, it is separated from the water, descends in the water of the ice maker 20, and falls on the bottom inclined surface 25. It flows down along the inclined surface 25 and is returned to the refrigerant reservoir 23.

【0018】図5は本発明の変形例を示し、この変形例
では、蓄熱水槽31の底部と製氷器20の噴出ノズル2
6より下流側の部位とを配管40で連結し、この配管4
0に設けた水ポンプにより、噴出ノズル26付近に滞っ
た氷塊37を溶かし、氷塊37を製氷器20の水ととも
に連通部32を介して蓄熱水槽31に戻すようにし、こ
れにより、連続した製氷を妨げないようにするととも
に、注ぎ込まれた水を冷媒22に接触させることで、冷
媒の戻り温度を高め、熱交換をより効率よく行うように
する。
FIG. 5 shows a modification of the present invention. In this modification, the bottom of the heat storage water tank 31 and the ejection nozzle 2 of the ice maker 20 are shown.
6 and a part downstream thereof is connected by a pipe 40, and this pipe 4
With the water pump provided at 0, the ice blocks 37 stagnating in the vicinity of the ejection nozzle 26 are melted, and the ice blocks 37 are returned to the heat storage water tank 31 through the communication section 32 together with the water of the ice maker 20. In addition to preventing the coolant from being hindered, the returned temperature of the coolant is increased by bringing the poured water into contact with the coolant 22, so that heat exchange is performed more efficiently.

【0019】図6に示す氷蓄熱装置は、水より比重の重
い非水溶性冷媒22を冷媒貯溜部23に収容した製氷器
50とこの製氷器50に隣接配置した蓄熱水槽51を備
え、製氷器50の一端側に設けた隔壁52は蓄熱水槽5
1の側壁より上方に位置している。製氷器50の他端側
に設けた水流落下槽53は、上記隔壁52より相当高い
位置にあり、この水流落下槽53と隔壁52との間に
は、水流落下槽51の水54を層状として落下させる傾
斜流路部54が配設されている。この傾斜流路部54に
は、水の流れ方向に間隔を置いて複数の冷媒吹出し口5
5が形成されている。複数の冷媒吹出し口55のうちの
最端側に位置する冷媒吹出し口55の上流側には冷媒流
落槽56が、また下流側には冷媒回収槽57が配置され
ている。上記冷媒吹出し口55と冷媒貯溜部23は冷媒
配管58により連結されている。冷媒配管58には、冷
凍サイクルを構成する冷凍機29および循環ポンプ60
が配置されている。冷凍機29は冷媒貯溜部23から冷
媒配管58に導かれる冷媒を0℃以下の温度に冷却す
る。一方、上記蓄熱水槽51の底面には冷媒回収部61
が形成されている。この冷媒回収部61は底面の最も低
い位置にあり、側壁から冷媒回収部61まで傾斜面62
で連なっている。この冷媒回収部61は、配管63およ
びポンプ64を介して冷媒貯溜部23に連結されてい
る。また、蓄熱水槽51の底面の最も高い部位には開口
65が形成されている。この開口65は配管66および
ポンプ67を介して水流落下槽53に連結されている。
The ice heat storage device shown in FIG. 6 includes an ice maker 50 containing a water-insoluble refrigerant 22 having a specific gravity greater than that of water in a refrigerant storage portion 23, and a heat storage water tank 51 disposed adjacent to the ice maker 50. The partition wall 52 provided at one end of the heat storage water tank 5
1 is located above the side wall. The water flow drop tank 53 provided on the other end side of the ice making device 50 is located at a position considerably higher than the partition wall 52, and the water 54 of the water flow drop tank 51 is layered between the water flow drop tank 53 and the partition wall 52. An inclined channel portion 54 to be dropped is provided. The inclined flow passage 54 has a plurality of refrigerant outlets 5 at intervals in the water flow direction.
5 are formed. A refrigerant flow-down tank 56 is disposed upstream of the refrigerant outlet 55 located at the end of the plurality of refrigerant outlets 55, and a refrigerant recovery tank 57 is disposed downstream of the refrigerant outlet 55. The refrigerant outlet 55 and the refrigerant reservoir 23 are connected by a refrigerant pipe 58. The refrigerant pipe 58 includes a refrigerator 29 and a circulation pump 60 that constitute a refrigeration cycle.
Is arranged. The refrigerator 29 cools the refrigerant guided from the refrigerant reservoir 23 to the refrigerant pipe 58 to a temperature of 0 ° C. or less. On the other hand, on the bottom surface of the heat storage water tank 51, a refrigerant recovery unit 61 is provided.
Are formed. The refrigerant recovery unit 61 is located at the lowest position on the bottom surface, and the inclined surface 62 extends from the side wall to the refrigerant recovery unit 61.
It is connected by. The refrigerant recovery section 61 is connected to the refrigerant storage section 23 via a pipe 63 and a pump 64. An opening 65 is formed at the highest portion of the bottom surface of the heat storage water tank 51. This opening 65 is connected to the water flow falling tank 53 via a pipe 66 and a pump 67.

【0020】しかして、蓄熱水槽51に収容された水
は、蓄熱水槽51の底面に設けた開口65から配管66
を通り水流落下槽53に導かれ、この水流落下槽53か
ら傾斜流路部54を層状として落下する。これと同時
に、冷媒貯溜部23の冷媒22は、冷媒配管58を通り
冷媒配管58に設けた冷凍機29により0℃以下の温度
に冷却され、冷却された冷媒22は、循環ポンプ60に
より強制流として冷媒吹出し口55から層状として落下
する水流に直接接触し水との間で熱交換され、冷却冷媒
22に接触する水54は、氷塊(粒)57となり層状と
して落下する水流とともに隔壁52に当たり、水より軽
い氷塊57は、この隔壁52を越える水とともに蓄熱水
槽51に貯えられる。水より重い冷媒は、層状として落
下する水流の下側を流れ、隔壁52に当たり逆流し、こ
の隔壁52の近くに設けた冷媒回収槽57に回収され、
この冷媒回収槽57から製氷器50の冷媒貯溜部23に
戻される。また、隔壁52を越えた蓄熱水槽51に導か
れた冷媒は、水より重いので、水中を降下し、底面に達
し、底面の傾斜面62に沿って冷媒回収部61に至り、
ここから配管63を介して冷媒貯溜部23に戻される。
なお、蓄熱水槽51の底面に形成した傾斜面62をテフ
ロン被膜でコーティングすると冷媒の回収が確実にな
る。
The water stored in the heat storage water tank 51 is supplied to the pipe 66 through the opening 65 provided on the bottom surface of the heat storage water tank 51.
, And is guided to the water flow fall tank 53, and falls from the water flow fall tank 53 with the inclined flow path 54 as a layer. At the same time, the refrigerant 22 in the refrigerant reservoir 23 is cooled to a temperature of 0 ° C. or lower by the refrigerator 29 provided in the refrigerant pipe 58 through the refrigerant pipe 58, and the cooled refrigerant 22 is forcedly flowed by the circulation pump 60. As a result, the water 54 that comes into direct contact with the water flow falling as a layer from the refrigerant outlet 55 and exchanges heat with the water, contacts the cooling refrigerant 22, becomes ice blocks (particles) 57 and hits the partition 52 together with the water flow that falls as a layer, Ice blocks 57 lighter than water are stored in the heat storage water tank 51 together with the water that passes through the partition walls 52. The refrigerant that is heavier than water flows below the water flow that falls as a layer, hits the partition wall 52, flows backward, and is collected in a refrigerant recovery tank 57 provided near the partition wall 52,
The refrigerant is returned from the refrigerant recovery tank 57 to the refrigerant storage section 23 of the ice maker 50. Also, the refrigerant guided to the heat storage water tank 51 over the partition wall 52 is heavier than water, so descends in the water, reaches the bottom surface, reaches the refrigerant recovery unit 61 along the inclined surface 62 of the bottom surface,
From here, it is returned to the refrigerant reservoir 23 via the pipe 63.
When the inclined surface 62 formed on the bottom surface of the heat storage water tank 51 is coated with a Teflon film, the recovery of the refrigerant is ensured.

【0021】図7は図6の実施例の変形例を示し、この
変形例では、傾斜流路部54は、図示しない作動装置に
より傾斜角度を水流の速さに応じて可変になっており、
また、傾斜流路部54の上面の冷媒吹出し口55の間に
半円状凸部または矩形状68を設けることで波型または
階段状とし、水と冷媒の接触面積を増大することで熱交
換効率の向上を図っている。また、傾斜流路部54にヒ
ータ69を配置することで、冷媒の温度制御を図ること
が可能となる。このように構成すると、析出した氷は、
生成段階で流下するので、ノズル付近の着氷がなく、効
率よく氷の充填ができる。
FIG. 7 shows a modification of the embodiment shown in FIG. 6. In this modification, the inclination angle of the inclined flow passage 54 is made variable by an actuator (not shown) in accordance with the speed of the water flow.
Further, a semicircular convex portion or a rectangular shape 68 is provided between the refrigerant outlets 55 on the upper surface of the inclined flow passage portion 54 so as to have a corrugated or stepped shape, and the heat exchange area is increased by increasing the contact area between water and the refrigerant. Improving efficiency. In addition, by arranging the heater 69 in the inclined flow passage 54, it is possible to control the temperature of the refrigerant. With this configuration, the precipitated ice is
Since it flows down at the generation stage, there is no icing near the nozzle, and ice can be efficiently filled.

【0022】図8に示す氷蓄熱装置は、水より比重の重
い非水溶性冷媒22を冷媒貯溜部70に収容した製氷槽
71とこの製氷槽71に隣接配置した蓄熱水槽72を備
え、この冷媒貯溜部70の下面は、製氷槽71の側壁の
下端まで上方に傾斜した傾斜面73で連なり、製氷槽7
1の水中を降下する非水溶性冷媒22を傾斜面73に沿
って冷媒貯溜部70に導くようにしている。また、製氷
槽71の水中には、水平方向に延びるように噴出ノズル
74,74が配置されている。これら2つの噴出ノズル
74は、図9に示すように、製氷槽71の側壁に沿って
ノズル部74aが対向するように平行配置されている。
また、図9に示すように、製氷槽71の上部中央部には
集氷装置75が蓄熱水槽72の方向に延びるように配置
されている。この集氷装置75は、製氷槽71の水中に
おいて生成された氷結晶76を水とともに隣接配置した
蓄熱水槽72に送り込む。この集氷装置75の上面に集
氷流落溝を流れ方向に直交する方向に設けると、集氷効
率が上りかつポンプ出力を低く設定できる。
The ice heat storage device shown in FIG. 8 includes an ice making tank 71 containing a water-insoluble refrigerant 22 having a specific gravity greater than that of water in a refrigerant storage section 70, and a heat storage water tank 72 arranged adjacent to the ice making tank 71. The lower surface of the storage unit 70 is connected by an inclined surface 73 that is inclined upward to the lower end of the side wall of the ice making tank 71,
The first water-insoluble refrigerant 22 descending in the water is guided to the refrigerant reservoir 70 along the inclined surface 73. In the water of the ice making tank 71, ejection nozzles 74, 74 are arranged so as to extend in the horizontal direction. As shown in FIG. 9, these two ejection nozzles 74 are arranged in parallel so that the nozzle portions 74a face each other along the side wall of the ice making tank 71.
Further, as shown in FIG. 9, an ice collecting device 75 is arranged at the upper central portion of the ice making tank 71 so as to extend in the direction of the heat storage water tank 72. The ice collecting device 75 sends the ice crystals 76 generated in the water of the ice making tank 71 together with the water to the heat storage water tank 72 disposed adjacently. If an ice collecting flow-down groove is provided on the upper surface of the ice collecting device 75 in a direction perpendicular to the flow direction, the ice collecting efficiency increases and the pump output can be set low.

【0023】一方、上記噴出ノズル74は、冷媒配管7
7により冷媒貯溜部70の底部に連結され、この冷媒配
管77に配置された冷凍サイクルを構成する冷凍機29
および循環ポンプ30により、冷媒貯溜部70の冷媒を
0℃以下の温度に冷却し、冷却した冷媒22を噴出ノズ
ル74のノズル部74aから水平方向に向けて噴射する
ようにしている。蓄熱水槽72の底面に形成された冷媒
回収部78は、底面の最も低い位置にあり、側壁から冷
媒回収部78まで傾斜面79で連なっている。この冷媒
回収部78は、配管80およびポンプ81を介して冷媒
貯溜部70に連結されている。また、蓄熱水槽51の底
面の最も高い部位に形成された開口82は配管83およ
びポンプ84を介して循環水供給口85に連結されてい
る。なお、図8で符号86は冷媒戻り管、87は生成さ
れた氷結晶76を効率よく蓄熱水槽72に送るための堰
である。
On the other hand, the jet nozzle 74 is connected to the refrigerant pipe 7.
The refrigerator 29 is connected to the bottom of the refrigerant storage section 70 by a pipe 7 and constitutes a refrigeration cycle disposed in the refrigerant pipe 77.
The circulating pump 30 cools the refrigerant in the refrigerant storage 70 to a temperature of 0 ° C. or lower, and the cooled refrigerant 22 is jetted horizontally from the nozzle 74 a of the jet nozzle 74. The refrigerant recovery portion 78 formed on the bottom surface of the heat storage water tank 72 is located at the lowest position on the bottom surface, and is continuous from the side wall to the refrigerant recovery portion 78 on an inclined surface 79. The refrigerant recovery unit 78 is connected to the refrigerant storage unit 70 via a pipe 80 and a pump 81. An opening 82 formed at the highest portion of the bottom surface of the heat storage water tank 51 is connected to a circulating water supply port 85 via a pipe 83 and a pump 84. In FIG. 8, reference numeral 86 denotes a refrigerant return pipe, and 87 denotes a weir for efficiently transmitting the generated ice crystals 76 to the heat storage water tank 72.

【0024】しかして、製氷槽71に設けた冷媒貯溜部
70の冷媒22は、冷媒配管77を通り、冷媒配管77
に配置した冷凍サイクルを構成する冷凍機29により0
℃以下の温度に冷却され、冷却された冷媒22は、循環
ポンプ30により強制流として噴出ノズル74に送ら
れ、この噴出ノズル74のノズル部74aから水平方向
噴射される。ノズル部74aから噴射された冷却冷媒2
2は、製氷槽71の水と直接接触して熱交換され、冷却
冷媒22に接触する水は氷塊(粒)76となる。この氷
塊(粒)76は水より軽いので、図9に示すように水中
を上昇し、水中を上昇した氷塊37は、集氷装置75に
集められ、水とともに隣接配置した蓄熱水槽72に送ら
れる。
The refrigerant 22 in the refrigerant reservoir 70 provided in the ice making tank 71 passes through the refrigerant pipe 77 and passes through the refrigerant pipe 77.
0 by the refrigerator 29 constituting the refrigeration cycle
The cooled refrigerant 22 cooled to a temperature of not more than ° C. is sent to the ejection nozzle 74 as a forced flow by the circulation pump 30, and is ejected horizontally from the nozzle portion 74 a of the ejection nozzle 74. Cooling refrigerant 2 injected from nozzle part 74a
2 is in direct contact with the water in the ice-making tank 71 and exchanges heat, and the water in contact with the cooling refrigerant 22 becomes ice blocks (particles) 76. Since the ice blocks (grains) 76 are lighter than water, they rise in the water as shown in FIG. 9, and the ice blocks 37 that have risen in the water are collected in the ice collecting device 75 and sent to the heat storage water tank 72 arranged adjacently with the water. .

【0025】一方、噴出ノズル74から噴射された冷却
冷媒22は、水より比重の重い非水溶性を有するので、
水と分離して水中を降下し、底部傾斜面73に落下し、
底部傾斜面25に沿って流下して冷媒貯溜部70に戻さ
れる。また、集氷装置75に導かれた冷媒22は、堰8
7により受け止められ、冷媒戻り管86および底部傾斜
面73を介して冷媒貯溜部70に戻される。
On the other hand, the cooling refrigerant 22 jetted from the jet nozzle 74 has a non-water solubility which is heavier than water.
Separate from the water and descend in the water, fall on the bottom slope 73,
It flows down along the bottom inclined surface 25 and is returned to the refrigerant reservoir 70. The refrigerant 22 guided to the ice collecting device 75 is supplied to the weir 8
7 and is returned to the refrigerant reservoir 70 via the refrigerant return pipe 86 and the bottom inclined surface 73.

【0026】図10に示す本発明の変形例では、製氷槽
71の外壁に設けた冷媒吹出し口90にヒータ91を設
置することで、製氷槽71の内部の凍結を防止し、循環
水供給口92の供給角度を斜め上方にすることで水の対
流を高め、冷媒と水との接触を図るようにし、また、集
氷装置93のチャンネル部94の断面形状を半円形ない
しV形とすることで、浮上する氷塊(粒)76の着氷を
防ぐようにしている。
In a modified example of the present invention shown in FIG. 10, a heater 91 is provided at a refrigerant outlet 90 provided on the outer wall of an ice making tank 71 to prevent the inside of the ice making tank 71 from freezing and to provide a circulating water supply port. The convection of water is increased by making the supply angle of 92 a diagonally upward direction so that the coolant and the water are brought into contact with each other. The channel 94 of the ice collecting device 93 has a semicircular or V-shaped cross section. Thus, icing of the floating ice blocks (grains) 76 is prevented.

【0027】図11に示す本発明の変形例では、製氷槽
71に設けた集氷装置75と蓄熱水槽72とを傾斜角度
5度ないし20度とした搬送ダクト100で連結するこ
とで、集められた氷塊76を、動力手段を利用すること
なく重力の作用で水とともに蓄熱水槽72に送り込む。
In a modification of the present invention shown in FIG. 11, ice is collected by connecting an ice collecting device 75 provided in an ice making tank 71 and a heat storage water tank 72 by a transfer duct 100 having an inclination angle of 5 to 20 degrees. The ice blocks 76 are sent to the heat storage water tank 72 together with water by the action of gravity without using power means.

【0028】[0028]

【発明の効果】この出願の請求項1に係る発明は、冷却
冷媒を製氷器の内部に配置した噴出ノズルより上方に向
けて製氷器に収容された水に噴射することで氷を析出
し、析出し浮上する氷を直ちに蓄熱水槽に水とともに運
ぶ構成とすることで、氷と水との界面との氷結の発生を
防ぎ、かつ製氷器の構造を小形化できる。この出願の請
求項2に係る発明は、冷媒吹出し口より冷却冷媒を傾斜
流路部を層状に流れる水に直接噴射することで氷を析出
し、析出した氷を、傾斜流路部を流れる水とともに蓄熱
水槽に導く構成にすることで、製氷器の内部に氷が滞留
することがなく、氷充填率が向上しかつ製氷器の構造を
小形化できる。
According to the invention of claim 1 of the present application, ice is precipitated by injecting a cooling refrigerant upward from a jet nozzle disposed inside the ice maker into water contained in the ice maker, By adopting a configuration in which ice that precipitates and floats is immediately transported together with water to the heat storage tank, the occurrence of icing at the interface between ice and water can be prevented, and the structure of the icemaker can be reduced in size. The invention according to claim 2 of the present application is directed to depositing ice by directly injecting the cooling refrigerant from the refrigerant outlet into the water flowing in a layered manner in the inclined flow path portion, and separating the deposited ice into water flowing through the inclined flow path portion. In addition, by adopting a configuration in which the ice is guided to the heat storage water tank, ice does not stay inside the ice maker, the ice filling rate is improved, and the structure of the ice maker can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による氷蓄熱装置の第一実施例を示す
図。
FIG. 1 is a diagram showing a first embodiment of an ice heat storage device according to the present invention.

【図2】同氷蓄熱装置の製氷器の断面図。FIG. 2 is a sectional view of an ice maker of the ice heat storage device.

【図3】製氷器に設けた噴出ノズル部分の断面図。FIG. 3 is a cross-sectional view of a jet nozzle portion provided in the ice maker.

【図4】図3の4−4線に沿った断面図。FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

【図5】本発明による氷蓄熱装置の第一実施例の変形例
を示す図。
FIG. 5 is a diagram showing a modification of the first embodiment of the ice heat storage device according to the present invention.

【図6】本発明による氷蓄熱装置の第二実施例を示す
図。
FIG. 6 is a view showing a second embodiment of the ice heat storage device according to the present invention.

【図7】本発明による氷蓄熱装置の第一実施例の変形例
を示す図。
FIG. 7 is a diagram showing a modification of the first embodiment of the ice heat storage device according to the present invention.

【図8】本発明による氷蓄熱装置の第三実施例を示す
図。
FIG. 8 is a diagram showing a third embodiment of the ice heat storage device according to the present invention.

【図9】同氷蓄熱装置の製氷槽の断面図。FIG. 9 is a sectional view of an ice making tank of the ice heat storage device.

【図10】本発明による氷蓄熱装置の第三実施例の変形
例を示す図。
FIG. 10 is a view showing a modification of the third embodiment of the ice heat storage device according to the present invention.

【図11】本発明による氷蓄熱装置の第三実施例の変形
例を示す図。
FIG. 11 is a view showing a modification of the third embodiment of the ice heat storage device according to the present invention.

【図12】従来の氷蓄熱装置を示す図。FIG. 12 is a diagram showing a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

20 製氷器 22 冷媒 22a 冷媒液面 26 噴出ノズル 29 冷凍機 31 蓄熱水槽 32 連通部 34 配管 35 水ポンプ 50 製氷器 51 蓄熱水槽 53 水流落下槽 54 傾斜流路部 55 冷媒吹出し口 70 製氷槽 72 蓄熱水槽 74 噴出ノズル 75 集氷装置 DESCRIPTION OF SYMBOLS 20 Ice maker 22 Refrigerant 22a Refrigerant liquid level 26 Injection nozzle 29 Refrigerator 31 Heat storage water tank 32 Communication part 34 Pipe 35 Water pump 50 Ice maker 51 Heat storage water tank 53 Water flow fall tank 54 Inclined flow path part 55 Refrigerant outlet 70 Ice maker 72 Heat storage Water tank 74 Spout nozzle 75 Ice collector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−140767(JP,A) 特開 昭64−38578(JP,A) 特開 昭48−47158(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24C 1/00 F24F 1/00 102 ────────────────────────────────────────────────── (5) References JP-A-3-140767 (JP, A) JP-A-64-38578 (JP, A) JP-A-48-47158 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) F24C 1/00 F24F 1/00 102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水と水より比重の重い非水溶性冷媒を収容
した製氷器と、この製氷器に連通部を介して連結された
蓄熱水槽と、製氷器の内部の非水溶性冷媒の液面より上
方の水中に配置され非水溶性冷媒を上方に向けて噴射す
る噴出ノズルと、上記製氷器に収容した非水溶性冷媒を
0℃以下の温度に冷却し冷却した非水溶性冷媒を噴出ノ
ズルから上方に向けて噴射して氷を析出する冷凍サイク
ルと、製氷器の側壁の冷媒液面より上方の部位と蓄熱水
槽の側壁の下部とを連結する配管とこの配管に配置した
水ポンプを有し製氷器から蓄熱水槽に向かう水の流れを
形成し冷却した非水溶性冷媒により析出され上方に浮上
する氷を連通部を介して蓄熱水槽に送る水循環装置とを
有する氷蓄熱装置。
An ice maker containing water and a water-insoluble refrigerant having a specific gravity higher than that of water, a heat storage water tank connected to the ice maker via a communicating portion, and a liquid of the water-insoluble refrigerant inside the ice maker. A jet nozzle that is disposed in water above the surface and jets the water-insoluble refrigerant upward, and jets the cooled water-insoluble refrigerant by cooling the water-insoluble refrigerant contained in the ice maker to a temperature of 0 ° C or less. A refrigeration cycle in which ice is deposited by spraying upward from the nozzle, a pipe connecting a portion of the side wall of the ice maker above the coolant level and a lower part of the side wall of the heat storage water tank, and a water pump arranged in this pipe. An ice heat storage device comprising: a water circulating device that forms a flow of water from an ice maker to a heat storage water tank, and sends ice that is precipitated by a cooled non-water-soluble refrigerant and floats upward to a heat storage water tank through a communication portion.
【請求項2】水と水より比重の重い非水溶性冷媒を収容
した製氷器と、この製氷器に隣接配置された蓄熱水槽
と、上記製氷器の蓄熱水槽の反対側で蓄熱水槽より高い
位置に設けた水流落下槽と、この水流落下槽と蓄熱水槽
を結び水流落下槽の水を層状として蓄熱水槽に導く傾斜
流路部と、この傾斜流路部に形成した冷媒吹出し口と、
製氷器に設けた冷媒を0℃以下の温度に冷却し冷却した
冷媒を冷媒吹出し口から傾斜流路部を層状に流れる水に
直接噴射して氷を析出する冷凍サイクルとを有する氷蓄
熱装置。
2. An ice maker containing water and a water-insoluble refrigerant having a higher specific gravity than water, a heat storage water tank disposed adjacent to the ice maker, and a position higher than the heat storage water tank on the opposite side of the heat storage water tank of the ice maker. A water flow drop tank provided in the inclined flow path portion that connects the water flow fall tank and the heat storage water tank and guides the water in the water flow fall tank to the heat storage water tank in a layered manner, a refrigerant outlet formed in the inclined flow path section,
An ice heat storage device having a refrigeration cycle that cools a refrigerant provided in an ice maker to a temperature of 0 ° C. or less and directly injects the cooled refrigerant from a refrigerant outlet to water flowing in a layered manner in a slanted flow path to deposit ice.
JP3306383A 1991-11-21 1991-11-21 Ice storage device Expired - Lifetime JP2892202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306383A JP2892202B2 (en) 1991-11-21 1991-11-21 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306383A JP2892202B2 (en) 1991-11-21 1991-11-21 Ice storage device

Publications (2)

Publication Number Publication Date
JPH05141720A JPH05141720A (en) 1993-06-08
JP2892202B2 true JP2892202B2 (en) 1999-05-17

Family

ID=17956365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306383A Expired - Lifetime JP2892202B2 (en) 1991-11-21 1991-11-21 Ice storage device

Country Status (1)

Country Link
JP (1) JP2892202B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507447B2 (en) * 2001-05-09 2010-07-21 Jfeエンジニアリング株式会社 How to remove hydrate slurry
JP4917467B2 (en) * 2006-03-31 2012-04-18 三機工業株式会社 Refrigerator system
JP2014066517A (en) * 2014-01-24 2014-04-17 Tokyo Denki Univ Ice heat storage device
CN109677103A (en) * 2019-03-05 2019-04-26 昆山侨通印务有限公司 A kind of offset press water tank water temperature underground cooling system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338533B2 (en) * 1971-10-20 1978-10-16
JPH03140767A (en) * 1989-10-25 1991-06-14 Daikin Ind Ltd Ice heat accumulator

Also Published As

Publication number Publication date
JPH05141720A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP2892202B2 (en) Ice storage device
EP0564342A1 (en) Tube bundles for heat exchange and container for production and storage of ice, with at least one bundle
US3759048A (en) Reversible cycle ice maker
JP2009222257A (en) Refrigerator with ice maker
JP2696046B2 (en) Latent heat storage device
JP2953827B2 (en) Ice storage device
JPH04174229A (en) Ice heat storage device
KR960015827B1 (en) Latent heat accumulation system
JPH1047823A (en) Ice making method and ice heat storage device
JPH10311634A (en) Ice heat storage system
US2262657A (en) Refrigeration
SU1695077A1 (en) Cooling battery
JP3541165B2 (en) Ice storage type cooling device
JP2680498B2 (en) Latent heat storage device
JPH04297769A (en) Ice heat storage device
JPH04313658A (en) Ice regenerator
SU1331458A1 (en) Accumulator of natural cold for cooling milk at stock-raising farms
JPH10311633A (en) Ice heat storage system
JP3708230B2 (en) Non-frost heat exchange method and cooling device using the same method
JP3486020B2 (en) Ice storage device
JP3337017B2 (en) Heat storage device
JP2000337668A (en) Ice storage method and device
JPH05346242A (en) Ice accumulator
JPH10325657A (en) Ice thermal storage device
JPH0313767A (en) Ice making method and device