JPH04313658A - Ice regenerator - Google Patents

Ice regenerator

Info

Publication number
JPH04313658A
JPH04313658A JP7951091A JP7951091A JPH04313658A JP H04313658 A JPH04313658 A JP H04313658A JP 7951091 A JP7951091 A JP 7951091A JP 7951091 A JP7951091 A JP 7951091A JP H04313658 A JPH04313658 A JP H04313658A
Authority
JP
Japan
Prior art keywords
ice
water
tank
liquid
fluorinert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7951091A
Other languages
Japanese (ja)
Inventor
Katsuya Yamashita
勝也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7951091A priority Critical patent/JPH04313658A/en
Publication of JPH04313658A publication Critical patent/JPH04313658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve an efficiency of a refrigerator, a charging ratio of ice, performance of ice thawing by supplying fluorinated liquid and water to an icemaker, precipitating ice by contact heat exchanging, supplying the liquid, the water and the ice to a separation tank, and supplying the separated water, ice to an ice water tank. CONSTITUTION:Water 7 of an ice water tank 3 and fluorinated liquid 6 of an ice water separation tank 2 are mixed in a porous tube 10 of a double tube type icemaker 1 by circulation pumps 4, 5, partial water is converted to ice by direct contact heat exchanging as mixed state flow of the fluorinated liquid, water and ice, and ice 8 and other liquids are separated by a demister 9 of the tank 2. The fluorinated liquid 6 and the ice are separated by a specific weight difference, the liquid 6 is precipitated, and the water 7 is floated. Since the water 7 is output from the tank 3 and input to the tank 2, the liquid surface of the tank 2 rises, and the ice 8 and the water 7 floated at the upper part flow to the tank 3 over a band between the tanks 2 and 3. Since only the water 7 and the ice exist in the tank 3, charging ratio of the ice can be enhanced, and the ice 8 is in a sherbet state to improve performance of ice thawing.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は空調用氷蓄熱装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device for air conditioning.

【0002】0002

【従来の技術】従来の氷蓄熱装置を有する空調システム
は、昼間に集中する冷房用電力需要を低減するために、
安価な深夜電力を利用し熱源機器の負荷を軽減させ、ビ
ル空調や地域熱供給等の比較的大容量の空調システムへ
適用されている。この氷蓄熱装置の氷の製造方法は、大
別して間接熱交換方式と直接熱交換方式との2方式があ
る。
[Prior Art] In order to reduce the demand for electricity for cooling, which is concentrated during the day, an air conditioning system having a conventional ice heat storage device has the following functions:
It uses cheap late-night electricity to reduce the load on heat source equipment, and is applied to relatively large-capacity air conditioning systems such as building air conditioning and district heat supply. There are two methods for producing ice in this ice heat storage device: an indirect heat exchange method and a direct heat exchange method.

【0003】ところで、前者の間接熱交換方式は冷却媒
体にエチレングリコール等の不凍液やフレオン等を用い
て氷蓄熱槽内に設けた製氷用伝熱管の外側または内側に
氷を生成させる方式であるので、製氷用伝熱管壁に氷を
生成させると氷の厚さが増加するに伴って氷自身の熱伝
導率が小さいため、冷却媒体から水への熱移動が減少す
ることにより氷の生成速度が遅くなり、冷却媒体を冷却
する冷凍機の効率が低下する。
By the way, the former indirect heat exchange method uses antifreeze such as ethylene glycol or Freon as a cooling medium to generate ice on the outside or inside of the ice-making heat transfer tube installed in the ice heat storage tank. When ice is formed on the wall of a heat transfer tube for ice making, as the thickness of the ice increases, the thermal conductivity of the ice itself decreases, so the rate of ice formation decreases due to the decrease in heat transfer from the cooling medium to the water. This slows down the cooling process and reduces the efficiency of the refrigerator that cools the cooling medium.

【0004】そこで、氷蓄熱槽内に伝熱管を配置する場
合には、伝熱管の外側に氷が生成するので、伝熱管の本
数を増加させて氷蓄熱槽の効率を向上させようとすると
、伝熱管の増加分だけ水槽内での伝熱管の占有率が高く
なり、氷の充填率が減少することになる。他方、伝熱管
の本数を少なくしても伝熱管に着氷する厚さを増すと、
氷の生成速度が遅くなるばかりだけでなく、解氷時には
着氷部の融けやすい部分が生じて全体として氷厚が不均
一となるため効率が低下すると共に、再度伝熱管に着氷
する際には着氷部から着氷を開始するため厚い部分がさ
らに厚くなりついには氷と氷とが接触して伝熱管が曲が
ったり破損するといった事故を生じることがある。
[0004] Therefore, when heat transfer tubes are placed in an ice heat storage tank, ice forms on the outside of the heat transfer tubes, so if an attempt is made to increase the number of heat transfer tubes to improve the efficiency of the ice heat storage tank, As the number of heat exchanger tubes increases, the occupation rate of the heat exchanger tubes in the water tank increases, and the filling rate of ice decreases. On the other hand, even if the number of heat exchanger tubes is reduced, if the thickness of ice on the heat exchanger tubes increases,
Not only does the rate of ice formation slow down, but when the ice melts, some parts of the ice are easily melted, making the ice thickness uneven as a whole, reducing efficiency. Because icing starts from the icing part, the thicker parts become even thicker, and eventually the ice comes into contact with each other, which can lead to accidents such as bending or damage of the heat exchanger tubes.

【0005】また、この間接熱交換方式の一種として、
製氷用の伝熱管を通して冷却するのであるが、被冷却液
に水を選び、この水がある流速で流せば0℃以下でも凍
結しないという現象を利用した連続流れの過冷却水を用
いる方式がある。この方式は過冷却水の連続流れを蓄熱
水槽に戻す際に衝突板を設け、運動エネルギーを消滅さ
せ、過冷却水の一部を氷粒として析出させ、蓄熱槽に蓄
えるものであり、シャーペット状の氷を蓄熱水槽に貯蔵
することができる。従って、蓄熱水槽内は氷粒と水だけ
なので氷の充填率は高い。
[0005] Also, as a type of this indirect heat exchange method,
Ice is cooled through heat transfer tubes for ice making, and there is a method that uses continuous flow supercooled water that takes advantage of the phenomenon that if water is selected as the liquid to be cooled and the water is allowed to flow at a certain flow rate, it will not freeze even at temperatures below 0°C. . In this method, when the continuous flow of supercooled water is returned to the heat storage tank, a collision plate is installed to eliminate the kinetic energy, and some of the supercooled water is precipitated as ice particles and stored in the heat storage tank. ice can be stored in a thermal storage tank. Therefore, since there are only ice particles and water in the heat storage water tank, the filling rate of ice is high.

【0006】しかし、この過冷却水の連続流れを作り出
す過程において淀みなく水を流す必要があるため直管し
か使用できず、その直管の中でも入口から水流を一様に
する部分と冷却液により冷却する部分とが必要で、その
直管の長さを長くせざる得ず、過冷却器自身が長大にな
ってしまう。また、過冷却水の流量変化に伴い、その温
度制御が難しい上、現実には冷却液として冷媒を使用す
ることは、蒸発熱伝達に起因する管内冷結・閉塞を生じ
る恐れがあるので、冷却液としてブライン使用せざる得
ず、冷凍機の成績係数は良くない。その上、この過冷却
水中に微小な混在物が含まれるだけで、それを核として
、凍結が生じるので循環する水の清浄度が問題となる。
However, in the process of creating a continuous flow of supercooled water, it is necessary to flow the water without stagnation, so only straight pipes can be used. Since a cooling section is required, the length of the straight pipe must be increased, and the supercooler itself becomes long. Furthermore, as the flow rate of supercooled water changes, it is difficult to control its temperature, and in reality, using a refrigerant as a cooling liquid may cause cooling or blockage in the pipes due to evaporative heat transfer. Brine must be used as the liquid, and the coefficient of performance of the refrigerator is not good. Moreover, even the presence of minute particles in this supercooled water causes freezing, which poses a problem in the cleanliness of the circulating water.

【0007】一方、後者の直接熱交換方式は直接低温の
冷却媒体を氷蓄熱槽内に循環させて氷を生成させる方式
であり、水と氷とが氷蓄熱槽内に生成させるため、冷凍
機の効率は向上するが水の中に冷却媒体ガス及び圧縮機
用の潤滑油が入るため、水と冷却媒体ガスとが反応して
腐食性のガスを発生したり、冷却媒体自身の物性が変化
するといった現象を生じる。その上、実際には冷媒中に
含まれる潤滑油を水槽中に混入させることができないの
で、冷媒と潤滑油の分離が必要であり、逆に水槽中で蒸
発する冷媒ガス中に含まれる水分が圧縮機内で悪影響を
引き起こすため、冷媒ガス中の水分除去も必要である。 また、この蒸発器でもある氷蓄熱槽は高圧容器となって
しまうので、大型化に向かない。
On the other hand, the latter direct heat exchange method generates ice by directly circulating a low-temperature cooling medium into the ice storage tank. Although the efficiency of the cooling medium improves, since the cooling medium gas and lubricating oil for the compressor enter the water, the water and the cooling medium gas may react and generate corrosive gas, or the physical properties of the cooling medium itself may change. This phenomenon occurs. Furthermore, since the lubricating oil contained in the refrigerant cannot actually be mixed into the water tank, it is necessary to separate the refrigerant and lubricating oil, and conversely, the water contained in the refrigerant gas that evaporates in the water tank is Moisture removal from the refrigerant gas is also necessary as it causes adverse effects within the compressor. Furthermore, the ice heat storage tank, which is also an evaporator, becomes a high-pressure container, so it is not suitable for upsizing.

【0008】[0008]

【発明が解決しようとする課題】上述したように、氷蓄
熱の製造方法は直接熱交換方式と間接熱交換方式とに大
別されるが、各々次のごとき欠点をもっている。すなわ
ち、 (1)伝熱管の表面で製氷・着氷する方式は、冷凍機の
成績係数の低下、氷の充填率が低い、解氷性能が悪い、
伝熱管の破損等の欠点がある。 (2)過冷却水の連続流れを利用する方式は、過冷却器
の長大化、過冷却水の清浄度、過冷却水の温度制御の難
しさ等の欠点がある。 (3)冷媒液(ガス)を直接水中に吹き込む方式は、腐
食性ガスの発生、油及び水分の分離の必要性、高圧容器
となる等の欠点がある。
As mentioned above, methods for producing ice heat storage are broadly classified into direct heat exchange methods and indirect heat exchange methods, each of which has the following drawbacks. In other words, (1) The method of making and depositing ice on the surface of heat transfer tubes causes a decrease in the coefficient of performance of the refrigerator, a low ice filling rate, and poor ice-melting performance.
There are drawbacks such as damage to heat exchanger tubes. (2) A method using a continuous flow of supercooled water has drawbacks such as the length of the supercooler, the cleanliness of the supercooled water, and the difficulty in controlling the temperature of the supercooled water. (3) The method of directly blowing refrigerant liquid (gas) into water has drawbacks such as the generation of corrosive gas, the necessity of separating oil and water, and the need for a high-pressure container.

【0009】本発明は上記欠点を解決するためになされ
たもので、その目的は、冷凍機の効率及び氷の充填率向
上並に解氷性能の向上を図り、さらに腐食性ガスが発生
せず、冷媒自身の物性の変化しない、新規な氷蓄熱装置
を提供することにある。 [発明の構成]
The present invention was made in order to solve the above-mentioned drawbacks, and its purpose is to improve the efficiency and ice filling rate of the refrigerator, as well as the ice-melting performance, and also to avoid generating corrosive gases. The object of the present invention is to provide a new ice heat storage device in which the physical properties of the refrigerant itself do not change. [Structure of the invention]

【0010】0010

【課題を解決するための手段】本発明は、上記目的を達
成するために、製氷器と、比重量が水の1.5倍以上,
凝固点が−20℃以下でかつ水に不溶解な冷却媒体であ
るフロリナート液と、フロリナート液と水とを分離貯留
する分離槽と、水と氷を貯留する氷水槽とからなり、前
記フロリナート液と水とをポンプで前記製氷器に供給し
て直接接触熱交換により氷を析出させるとともにフロリ
ナート液と水と氷を前記分離槽に供給し、該分離槽で分
離された水と氷を前記氷水槽に供給するように構成した
ことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an ice maker, an ice maker whose specific weight is at least 1.5 times that of water,
It consists of Fluorinert liquid, which is a cooling medium with a freezing point of -20°C or less and is insoluble in water, a separation tank that separates and stores Fluorinert liquid and water, and an ice water tank that stores water and ice. Water is supplied to the ice maker by a pump to precipitate ice by direct contact heat exchange, and the Fluorinert liquid, water and ice are supplied to the separation tank, and the water and ice separated in the separation tank are transferred to the ice water tank. It is characterized in that it is configured to supply

【0011】[0011]

【作用】冷却媒体として用いられるフロリナート液は、
無色・透明・無臭・不活発な液体であり、完全にフッ素
化された構造をしており、炭素原子Cとフッ素原子Fと
の結合体で、この結合数に応じて沸騰点と凝固点は異な
るが、凝固点は−20℃以下のものがほとんどである。 比重量も0℃付近では水の1.7倍以上もあり、氷の約
2倍程度あり、さらに水への溶解性は温度10℃で7.
2ppmとかなり少ないため、水と混合しても完全に分
離してフロリナート液が沈殿し水が浮くこととなり、両
者を混ぜ合わせるには強力な攪拌が必要である。
[Action] Fluorinert liquid used as a cooling medium is
It is a colorless, transparent, odorless, and inert liquid, and has a completely fluorinated structure. It is a combination of carbon atoms C and fluorine atoms F, and the boiling point and freezing point differ depending on the number of bonds. However, most of them have a freezing point of -20°C or lower. Its specific weight is more than 1.7 times that of water at around 0℃, about twice that of ice, and its solubility in water is 7.
Since the amount is quite low at 2 ppm, even if it is mixed with water, it will completely separate and the Fluorinert solution will precipitate and the water will float, so strong stirring is required to mix the two.

【0012】この冷却媒体(フロリナート液)の特性を
利用して、水と0℃以下のフロリナート液とを二重管式
製氷器にて混ぜ合わせることで、フロリナート液・水・
氷との混相流として流し、3種の媒体を分離するための
分離槽で氷を表面に浮上させ、この氷を別の貯槽に氷水
槽として貯えることで、解氷性が良く、氷の充填率の高
い氷蓄熱槽を実現することができる。また、製氷器を二
重管式とし、内管内に被冷却媒体である水(または0℃
以上のフロリナート液)を通し、外管と内管の間に0℃
以下のフロリナート液を供給し、内管に設けた多数の小
孔からこの0℃以下のフロリナート液を供給することに
より、混相流中の水・氷が内管内壁に付着するのを防止
し、フロリナート液・水・氷の安定した混相流を流すこ
とができる。
[0012] Utilizing the characteristics of this cooling medium (Florinat liquid), by mixing water and Fluorinert liquid below 0°C in a double pipe ice maker, the Fluorinert liquid, water,
It flows as a multiphase flow with ice, floats the ice to the surface in a separation tank to separate the three types of media, and stores this ice in a separate storage tank as an ice water tank. It is possible to realize an ice heat storage tank with a high efficiency. In addition, the ice maker is of a double-tube type, with water (or 0°C
Fluorinert solution) is passed between the outer tube and the inner tube at 0℃.
By supplying the following Fluorinert liquid and supplying this Fluorinert liquid at a temperature of 0°C or less through a large number of small holes provided in the inner tube, water and ice in the multiphase flow are prevented from adhering to the inner wall of the inner tube. A stable multiphase flow of Fluorinert liquid, water, and ice can flow.

【0013】[0013]

【実施例】以下、本発明の実施例を図を参照して説明す
る。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

【0014】図1は、本発明の一実施例の構成図である
。同図に示すように、氷蓄熱装置は製氷器1、氷水分離
槽2、氷水槽3および冷凍機11を主たる構成としてい
る。氷水分離槽2はフロリナート液6と水7が分離貯留
されており、氷水槽3には水7と氷8が貯留されている
。製氷器1は二重管方式で、内管は多数の小孔を設けた
多孔管10となっている。氷水分離槽2の下部からフロ
リナート液6を抽出し、フロリナート液循環ポンプ4に
より冷凍機11を通って製氷器1に供給され、一部の冷
却しないフロリナート液6は製氷器1・水の循環ライン
に直接供給される構成となっている。また冷凍機11を
通ったフロリナート液6は製氷器1の外管の外側から供
給され、内管の小孔を通って内管内に供給される構成と
なっている。氷水槽3に貯留されている水7は水循環ポ
ンプ5により、製氷器1の内管内に供給される。製氷器
1の内管内では、水供給口21からの水(または0℃以
上のフロリナート液と水との混合液)と内管である多孔
管10の小孔からの0℃以下のフロリナート液とが集ま
り、一部の水を氷に変換し、氷水分離槽2に落下供給す
る。氷水分離槽2では上部にデミスタ9が設けられてお
り、氷8と他の液体、水7・フロリナート液6とを分離
し、最上部に浮遊した氷8及び水7を堰を超えて氷水槽
3に搬送する構成となっている。
FIG. 1 is a block diagram of an embodiment of the present invention. As shown in the figure, the ice heat storage device mainly includes an ice maker 1, an ice water separation tank 2, an ice water tank 3, and a refrigerator 11. In the ice-water separation tank 2, Fluorinert liquid 6 and water 7 are separated and stored, and in the ice-water tank 3, water 7 and ice 8 are stored. The ice maker 1 is of a double tube type, and the inner tube is a perforated tube 10 with a large number of small holes. The Fluorinert liquid 6 is extracted from the lower part of the ice-water separation tank 2 and is supplied to the ice maker 1 through the refrigerator 11 by the Fluorinert liquid circulation pump 4, and the part of the Fluorinert liquid 6 that is not cooled is passed through the ice maker 1 and the water circulation line. The configuration is such that it is directly supplied to the Further, the Fluorinert liquid 6 that has passed through the refrigerator 11 is supplied from the outside of the outer tube of the ice maker 1, and is supplied into the inner tube through a small hole in the inner tube. Water 7 stored in the ice water tank 3 is supplied into the inner pipe of the ice maker 1 by a water circulation pump 5. In the inner tube of the ice maker 1, water (or a mixture of Fluorinert liquid and water at 0°C or higher) flows from the water supply port 21, and Fluorinert liquid at 0°C or lower flows from the small holes of the porous tube 10, which is the inner tube. Some of the water is converted into ice, which is then dropped and supplied to the ice-water separation tank 2. A demister 9 is installed at the top of the ice-water separation tank 2, which separates the ice 8 from other liquids, water 7, and Fluorinert liquid 6, and sends the ice 8 and water 7 floating at the top over the weir to the ice-water tank. 3.

【0015】図2は、図1の氷蓄熱装置の製氷器の概略
図であり、図3(a)および(b)はその製氷器の詳細
図である。図2に示すように、製氷器1は二重管式にな
っており、内管は多数の小孔、フロリナート供給孔19
を設けた多孔管10となっている。外管には長手方向に
複数のノズルが設けてあり、冷却用のフロリナート液と
非冷却用フロリナート液とを仕切り板18で分割された
外管と内管の間の部分に供給する構造となっている。上
流側には非冷却用フロリナート供給ノズル17を設置し
た非冷却用フロリナート液供給部15を、下流側には冷
却用フロリナート供給ノズル16を設置した冷却用フロ
リナート供給部14を形成している。内管の端部は水供
給管13と接続されており、多孔管10のフロリナート
供給孔19から入ってきた非冷却用フロリナートと水と
が混在しながら流れる水流助走部12を通って、更に冷
却用フロリナートと混在しながら熱交換し、下流の混相
流吐出口22から氷水分離槽2へ硫下する構造となって
いる。また、図3(b)に示すように、フロリナート供
給部から内管内へ通ずるフロリナート供給孔19は内管
の接線方向に向かって開孔する構造となっている。
FIG. 2 is a schematic diagram of the ice maker of the ice heat storage device of FIG. 1, and FIGS. 3(a) and 3(b) are detailed diagrams of the ice maker. As shown in FIG. 2, the ice maker 1 is of a double-tube type, and the inner tube has many small holes and a Fluorinert supply hole 19.
It is a porous pipe 10 provided with. The outer tube is provided with a plurality of nozzles in the longitudinal direction, and has a structure in which the Fluorinert liquid for cooling and the Fluorinert liquid for non-cooling are supplied to the part between the outer tube and the inner tube divided by the partition plate 18. ing. A non-cooling Fluorinert liquid supply section 15 having a non-cooling Fluorinert supply nozzle 17 installed is formed on the upstream side, and a cooling Fluorinert liquid supply section 14 having a cooling Fluorinert supply nozzle 16 installed on the downstream side. The end of the inner tube is connected to the water supply pipe 13, and the non-cooling Fluorinert and water that have entered from the Fluorinert supply hole 19 of the porous pipe 10 flow through the water flow run-up section 12, and are further cooled. It has a structure in which it exchanges heat while being mixed with Fluorinert, and sulfurizes it from the downstream multiphase flow discharge port 22 to the ice-water separation tank 2. Further, as shown in FIG. 3(b), the Fluorinert supply hole 19 leading from the Fluorinert supplying portion to the inside of the inner tube is structured to open toward the tangential direction of the inner tube.

【0016】本実施例の氷蓄熱装置は上記のように構成
されているので、氷水槽3の水7と氷水分離槽2のフロ
リナート液6を各々循環ポンプ4と5により、二重管式
である製氷器1における内管である多孔管10で混在さ
せ、直接接触熱交換により一部の水を氷に変換し、フロ
リナート液・水・氷の混相流として流し、氷水分離槽2
に落し込み、デミスタ9で氷8と他の液体とを分離する
。その下のフロリナート液6と水7とは、その比重差で
自然に分離し、下部にフロリナート液6が沈殿し、上部
に水7が浮く。フロリナート液6は氷水分離槽2から出
て、氷水分離槽2に戻るが、水7は氷水槽1から出て、
氷水分離槽2に戻るので、氷水分離槽2の液面は上昇し
、上部に浮遊している氷8と水7が、氷水分離槽2と氷
水槽3との間の堰を越えて氷水槽3に流れ込む。このよ
うにして氷8を氷水槽3に安定に貯蔵することができる
Since the ice heat storage device of this embodiment is constructed as described above, the water 7 in the ice water tank 3 and the Fluorinert liquid 6 in the ice water separation tank 2 are circulated by circulation pumps 4 and 5, respectively, in a double pipe type. Some of the water is mixed in the porous tube 10, which is the inner tube of a certain ice maker 1, and is converted into ice by direct contact heat exchange, which flows as a multiphase flow of Fluorinert liquid, water, and ice.
ice 8 and other liquids are separated using a demister 9. The Fluorinert liquid 6 and water 7 below are naturally separated due to the difference in specific gravity, and the Fluorinert liquid 6 precipitates in the lower part, and the water 7 floats in the upper part. The Fluorinert liquid 6 comes out of the ice-water separation tank 2 and returns to the ice-water separation tank 2, but the water 7 comes out of the ice-water tank 1,
As it returns to the ice-water separation tank 2, the liquid level in the ice-water separation tank 2 rises, and the ice 8 and water 7 floating at the top cross the weir between the ice-water separation tank 2 and the ice-water tank 3 and flow into the ice-water tank. Flows into 3. In this way, the ice 8 can be stably stored in the ice water tank 3.

【0017】また、製氷器1では、二重管式で内管に接
続方向の小さな開孔19を長手方向に一様に設けること
で、内管内の流れを旋回流に保ちながら、0℃以下のフ
ロリナート液を供給するので、直接接触熱交換により析
出した氷と水を内管内壁及びフロリナート供給孔19に
付着させることなく、フロリナート液・水・氷の混相流
を流すことができ、析出した氷はすべて氷水分離槽2に
供給することができる。そして、内管端部の水流助走部
12を設け、0℃以上のフロリナートを供給し、その水
流助走部12の下流部での0℃以下のフロリナート液と
水との急激なる接触を防止することができるので、安定
に粒状の氷を析出することができる。
[0017] Furthermore, the ice maker 1 is of a double-tube type, and small openings 19 are uniformly provided in the connection direction in the inner tube in the longitudinal direction, thereby maintaining the flow in the inner tube in a swirling manner while keeping the temperature below 0°C. Fluorinert liquid is supplied, so a multiphase flow of Fluorinert liquid, water, and ice can be flowed without causing the ice and water precipitated by direct contact heat exchange to adhere to the inner wall of the inner tube and the Fluorinert supply hole 19. All ice can be supplied to the ice-water separation tank 2. A water flow run-up section 12 is provided at the end of the inner pipe to supply Fluorinert at 0°C or higher, and prevent sudden contact between the Fluorinert liquid at 0C or lower and water downstream of the water flow run-up section 12. As a result, granular ice can be deposited stably.

【0018】上記したように、本実施例によると、二重
管式の製氷器1でフロリナート液6・水7・氷8との安
定した混相流を形成することができかつ粒状の氷を析出
できるので、氷水分離槽2でシャーベット状の氷を堆積
することができる。さらに、氷水分離槽2内の水容積が
増加するので、液面上部の水と浮遊している氷は氷水槽
3との堰を越えて、氷水槽3に氷8を蓄積することがで
きる。氷水槽3に入ってくるのは、氷水分離槽2の最上
部の水と浮遊している氷だけなので、氷水槽3には水7
と氷8しか存在せず、氷水槽3内での氷の充填率は高く
することができ、氷水槽3の氷8はシャーベット状で解
け易く、従来から使用されてきた上部からの水噴霧等で
容易に解氷できるので、解氷性能も良好である。
As described above, according to this embodiment, a stable multiphase flow of Fluorinert liquid 6, water 7, and ice 8 can be formed in the double-tube ice maker 1, and granular ice can be precipitated. Therefore, sherbet-like ice can be deposited in the ice-water separation tank 2. Further, since the volume of water in the ice-water separation tank 2 increases, the water above the liquid level and the floating ice can cross the weir between the ice-water tank 3 and accumulate ice 8 in the ice-water tank 3. What enters the ice water tank 3 is only the water at the top of the ice water separation tank 2 and the floating ice, so there is 7 water in the ice water tank 3.
The filling rate of ice in the ice tank 3 can be increased, and the ice 8 in the ice tank 3 is sherbet-like and easily melts. The ice-melting performance is also good because the ice can be easily melted.

【0019】また、フロリナート液6を直接冷凍機に供
給するので、冷凍機の成績係数は良好である。さらに、
フロリナート液6と水7と強制対流の混合直接接触熱交
換なので熱交換性能も非常に良好である。その上、製氷
器1内の内管ではフロリナート供給孔19が接線方向に
開孔してあるため、混相流が旋回流に流れ、比重量の小
さい水や氷は中心部を流れるため内管壁面に水や氷の付
着は防止できるので、小孔の閉塞や内管流路の変形はな
い。
Furthermore, since the Fluorinert liquid 6 is directly supplied to the refrigerator, the coefficient of performance of the refrigerator is good. moreover,
Since direct contact heat exchange is performed by mixing Fluorinert liquid 6 and water 7 with forced convection, the heat exchange performance is also very good. Furthermore, since the Fluorinert supply hole 19 is opened in the tangential direction in the inner tube of the ice maker 1, the multiphase flow flows in a swirling flow, and water and ice with small specific weight flow through the center, so that the inner tube wall surface Since water and ice can be prevented from adhering to the tube, there is no blockage of small holes or deformation of the inner tube flow path.

【0020】[0020]

【発明の効果】以上説明したように本発明の氷蓄熱装置
によれば、次の効果を有する。
[Effects of the Invention] As explained above, the ice heat storage device of the present invention has the following effects.

【0021】(1)フロリナート液と水との強制対流接
触混合によりフロリナート液と水との熱交換性能は高い
上、フロリナート液を冷凍機の冷却管で直接冷却するの
で、冷凍機の成績係数が高い。 (2)製氷器内で粒状の氷が析出するので、それを氷水
槽で堆積させても解氷性能が良好である。 (3)氷水槽自体は、従来からの水槽と同じものなので
、氷の充填率も高く、大型化も容易である。 (4)フロリナート液は揮発性が低く、氷水分離槽でフ
ロリナート液の上部に恒常的に水があるので、補充する
必要がない。
(1) Due to the forced convection contact mixing of the Fluorinert liquid and water, the heat exchange performance between the Fluorinert liquid and water is high, and since the Fluorinert liquid is directly cooled by the cooling pipe of the refrigerator, the coefficient of performance of the refrigerator is low. expensive. (2) Since granular ice is precipitated in the ice maker, the ice-melting performance is good even if it is deposited in an ice bath. (3) Since the ice water tank itself is the same as a conventional water tank, it has a high ice filling rate and can be easily enlarged. (4) Fluorinert liquid has low volatility and there is always water above the Fluorinert liquid in the ice-water separation tank, so there is no need to replenish it.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の全体構成図。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】図1の製氷器の概略図。FIG. 2 is a schematic diagram of the ice maker shown in FIG. 1.

【図3】同図(a)は製氷器内管の斜視図、同図(b)
は製氷器内管の断面図。
[Figure 3] Figure 3 (a) is a perspective view of the inner tube of the ice maker, Figure 3 (b)
is a cross-sectional view of the inner tube of the ice maker.

【符号の説明】 1…製氷器、2…氷水分離槽、3…氷水槽、4…フロリ
ナート循環ポンプ、5…水循環ポンプ、6…フロリナー
ト液、7…水、8…氷、9…デミスタ、10…フロリナ
ート供給多孔管、11…冷凍機、12…水流助走部、1
3…水供給管、14…冷却用フロリナート供給部、15
…非冷却用フロリナート供給部、16…冷却用フロリナ
ート供給ノズル、17…非冷却用フロリナート供給ノズ
ル、18…冷却用と非冷却用フロリナート仕切板、19
…フロリナート供給孔、20…フロリナートと水混相流
路、21…水供給口、22…混相流吐出口。
[Explanation of symbols] 1... Ice maker, 2... Ice water separation tank, 3... Ice water tank, 4... Fluorinert circulation pump, 5... Water circulation pump, 6... Fluorinert liquid, 7... Water, 8... Ice, 9... Demister, 10 ... Fluorinert supply porous pipe, 11 ... Refrigerator, 12 ... Water flow run-up section, 1
3... Water supply pipe, 14... Fluorinert supply section for cooling, 15
...Fluorinert supply unit for non-cooling, 16...Fluorinert supply nozzle for cooling, 17...Fluorinert supply nozzle for non-cooling, 18...Fluorinert partition plate for cooling and non-cooling, 19
... Fluorinert supply hole, 20... Fluorinert and water mixed phase flow path, 21... Water supply port, 22... Multiphase flow outlet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  製氷器と、比重量が水の1.5倍以上
,凝固点が−20℃以下でかつ水に不溶解な冷却媒体で
あるフロリナート液と、フロリナート液と水とを分離貯
留する分離槽と、水と氷を貯留する氷水槽とからなり、
前記フロリナート液と水とをポンプで前記製氷器に供給
して直接接触熱交換により氷を析出させるとともにフロ
リナート液と水と氷を前記分離槽に供給し、該分離槽で
分離された水と氷を前記氷水槽に供給するように構成し
たことを特徴とする氷蓄熱装置。
[Claim 1] An ice maker, a Fluorinert liquid which is a cooling medium having a specific weight of at least 1.5 times that of water, a freezing point of -20°C or lower, and insoluble in water, and separating and storing the Fluorinert liquid and water. It consists of a separation tank and an ice water tank that stores water and ice.
The Fluorinert liquid and water are supplied to the ice maker with a pump to precipitate ice by direct contact heat exchange, and the Fluorinert liquid, water and ice are supplied to the separation tank, and the water and ice separated in the separation tank are An ice heat storage device configured to supply ice to the ice water tank.
JP7951091A 1991-04-12 1991-04-12 Ice regenerator Pending JPH04313658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7951091A JPH04313658A (en) 1991-04-12 1991-04-12 Ice regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7951091A JPH04313658A (en) 1991-04-12 1991-04-12 Ice regenerator

Publications (1)

Publication Number Publication Date
JPH04313658A true JPH04313658A (en) 1992-11-05

Family

ID=13691956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7951091A Pending JPH04313658A (en) 1991-04-12 1991-04-12 Ice regenerator

Country Status (1)

Country Link
JP (1) JPH04313658A (en)

Similar Documents

Publication Publication Date Title
US5435155A (en) High-efficiency liquid chiller
JPH04313658A (en) Ice regenerator
KR100715779B1 (en) Apparatus for manufacturing low-temperature cooling water
JPH04174229A (en) Ice heat storage device
JP2892202B2 (en) Ice storage device
JPH04106380A (en) Ice making device
JPH04251139A (en) Ice heat accumulation device
JP2953827B2 (en) Ice storage device
JPH0370928A (en) Ice heat accumulator
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
JPH0621752B2 (en) Ice storage device for heat storage
JP3292502B2 (en) Ice storage device
SU1449795A1 (en) Refrigerant accumulator
JPH1163752A (en) Ice making device and ice making method
JP2548637B2 (en) Operating method of supercooled water production equipment
JPS63271074A (en) Ice making method and device for heat accumulation
JPH1047823A (en) Ice making method and ice heat storage device
JP2755775B2 (en) Subcooler
JPH0438177Y2 (en)
JPH081346B2 (en) Ice storage method for heat storage
JPH03244985A (en) Ice making device
JPH0391635A (en) Ice thermal accumulating device
JPH02110231A (en) Ice-making method and ice heat-accumulator
JPH08285418A (en) Method for discharging supercooled water in supercooling ice making system
JPH0359335A (en) Thermal accumulation system