JP2953827B2 - Ice storage device - Google Patents

Ice storage device

Info

Publication number
JP2953827B2
JP2953827B2 JP22618791A JP22618791A JP2953827B2 JP 2953827 B2 JP2953827 B2 JP 2953827B2 JP 22618791 A JP22618791 A JP 22618791A JP 22618791 A JP22618791 A JP 22618791A JP 2953827 B2 JP2953827 B2 JP 2953827B2
Authority
JP
Japan
Prior art keywords
ice
refrigerant
tank
water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22618791A
Other languages
Japanese (ja)
Other versions
JPH0566030A (en
Inventor
孝 幸 八文字
下 勝 也 山
間 毅 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22618791A priority Critical patent/JP2953827B2/en
Publication of JPH0566030A publication Critical patent/JPH0566030A/en
Application granted granted Critical
Publication of JP2953827B2 publication Critical patent/JP2953827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、たとえば、ビル空調シ
ステムや地域熱供給システムに適用される比較的大容量
の空気調和機に組み込まれる氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device incorporated in a relatively large-capacity air conditioner applied to, for example, a building air conditioning system or a district heat supply system.

【0002】[0002]

【従来の技術】ビル空調システムや地域熱供給システム
のような比較的大容量の空気調和システムにおいては、
氷の溶ける潜熱を利用した氷蓄熱装置を組み込んだ空気
調和機が適用され、氷蓄熱装置における氷の生成を、安
価な深夜電力を利用して、昼間に集中する冷房用電力需
要を低減するとともに、熱源機器の負荷を軽減するよう
にしている。氷蓄熱装置における氷の製造方法は、間接
熱交換方式と直接熱交換方式の2つがあり、間接熱交換
方式氷蓄熱装置では、氷蓄熱槽内に製氷用伝熱管を設
け、製氷用伝熱管の内側または外側に低温の冷媒を循環
させることで氷を生成するようにしており、直接熱交換
方式氷蓄熱装置では、低温冷媒を直接氷蓄熱槽内に循環
させることで氷を生成するようにしている。
2. Description of the Related Art In a relatively large-capacity air conditioning system such as a building air conditioning system or a district heat supply system,
An air conditioner incorporating an ice heat storage device that uses the latent heat of melting ice is applied to reduce the generation of ice in the ice storage device by using inexpensive midnight power to reduce the demand for cooling power that is concentrated in the daytime. , To reduce the load on the heat source equipment. There are two methods for producing ice in an ice heat storage device: an indirect heat exchange method and a direct heat exchange method. In the indirect heat exchange type ice heat storage device, a heat transfer tube for ice making is provided in an ice heat storage tank, and a heat transfer tube for ice making is provided. Ice is generated by circulating low-temperature refrigerant inside or outside, and in a direct heat exchange type ice heat storage device, ice is generated by circulating low-temperature refrigerant directly into the ice heat storage tank. I have.

【0003】[0003]

【発明が解決しようとする課題】間接熱交換方式の氷蓄
熱装置では、冷媒にエチレングリコール等の不凍液やフ
レオン等を用いて伝熱管の内側または外側に氷を生成す
るが、氷の熱伝導率が小さいため、伝熱管壁に生成され
る氷の厚さが増加するに伴って冷媒から氷への熱移動が
減少し、氷の生成速度が遅くなり、冷媒を冷却する冷凍
機の効率が低下することになる。また、氷蓄熱槽内に製
氷用伝熱管を配置する場合には、伝熱管の外側に氷が生
成されるので、氷蓄熱槽の効率を向上させるには、伝熱
管の本数を増加させるが、伝熱管の本数の増加は、その
増加分だけ氷の充填率が減少することになる。また、伝
熱管の本数を少なくして、伝熱管に着氷する厚さを増す
ようにすると、氷の生成速度が遅くなるとともに、解氷
時には伝熱管の着氷の溶け易い部分が生じ、氷の厚さが
不均一になり、再度伝熱管に着氷する際には、厚さの不
均一な氷の上に着氷するため、厚い部分がさらに厚くな
り、ついには、伝熱管の外側に生成された氷と氷が接触
し、伝熱管を曲げたり、伝熱管を損傷させてしまうこと
がある。
In the ice heat storage device of the indirect heat exchange system, ice is generated inside or outside the heat transfer tube by using an antifreeze such as ethylene glycol or freon as a refrigerant. As the thickness of the ice generated on the heat transfer tube wall increases, the heat transfer from the refrigerant to the ice decreases, the ice generation rate decreases, and the efficiency of the refrigerator for cooling the refrigerant decreases. Will decrease. In addition, when the heat transfer tube for ice making is arranged in the ice heat storage tank, ice is generated outside the heat transfer tube, so in order to improve the efficiency of the ice heat storage tank, the number of heat transfer tubes is increased. An increase in the number of heat transfer tubes results in a decrease in the ice filling rate by the increased amount. In addition, if the number of heat transfer tubes is reduced to increase the thickness of icing on the heat transfer tubes, the rate of ice formation is reduced, and at the time of thawing, the icing of the heat transfer tubes tends to melt easily, causing ice to form. When the ice becomes uneven on the heat transfer tube, the ice is deposited on the ice of uneven thickness, so the thicker part becomes even thicker. The generated ice may come into contact with the ice, bending the heat transfer tube or damaging the heat transfer tube.

【0004】直接熱交換方式の氷蓄熱装置では、氷蓄熱
槽内を直接循環する低温冷媒により氷を生成するので、
冷媒を冷却する冷凍機の効率は向上するが、氷蓄熱槽内
の水の中に冷媒ガスが混入するため、水と冷媒ガスが反
応して、腐食性ガスを発生したり、冷媒自体の物性が変
化し、場合によっては、氷蓄熱槽を破損させる事故を招
くことがある。本発明は上記した点に鑑みてなされたも
ので、冷凍機の効率向上を図り、腐食性ガスの発生がな
く、冷却媒体自体の物性変化を防ぐようにした氷蓄熱装
置を提供することを目的とする。
In a direct heat exchange type ice storage device, ice is generated by a low-temperature refrigerant circulating directly in an ice storage tank.
Although the efficiency of the refrigerator that cools the refrigerant improves, the refrigerant gas mixes with the water in the ice heat storage tank, causing the water and the refrigerant gas to react, generating corrosive gas and the physical properties of the refrigerant itself. Changes, and in some cases, may cause an accident that damages the ice heat storage tank. The present invention has been made in view of the above points, and has as its object to provide an ice heat storage device that improves the efficiency of a refrigerator, does not generate corrosive gas, and prevents a change in the physical properties of a cooling medium itself. And

【0005】[0005]

【課題を解決するための手段】本発明の氷蓄熱装置は、
収容される水面より低い仕切り部により内部空間を互い
に連通する製氷槽と貯氷槽に仕切る蓄熱槽と、この製氷
槽を2つの冷媒室に仕切りかつ仕切り部分において一方
の冷媒室から他方の冷媒室へ向け比重量が水の1.5倍
以上で凝固点がー20℃以下で水に不溶解な特性を有す
る冷却冷媒を薄膜状態で流下させる仕切り部材と、製氷
槽に設けた2つの冷媒室を配管で結び冷媒循環路を形成
するととも冷却媒体を0℃以下に冷却するための冷却装
置とを有して構成される。
The ice heat storage device of the present invention comprises:
A heat storage tank that divides the internal space into an ice-making tank and an ice storage tank that communicate the internal space with each other by a partition part that is lower than the contained water surface, and that divides the ice-making tank into two refrigerant chambers and from one refrigerant chamber to the other refrigerant chamber in the partition part A partition member that allows a cooling refrigerant having a characteristic weight of 1.5 times or more of water and a freezing point of −20 ° C. or less and insoluble in water to flow down in a thin film state, and two refrigerant chambers provided in an ice making tank are piped. And a cooling device for cooling the cooling medium to 0 ° C. or lower.

【0006】本発明の他の氷蓄熱装置は、収容される水
面より低い高さの仕切り部により内部空間を互いに連通
する製氷槽と貯氷槽に仕切る蓄熱槽と、この製氷槽の水
中の異なる高さ位置に配置した2つの冷媒槽と、これら
2つ冷媒槽を結び比重量が水の1.5倍以上で凝固点が
ー20℃以下で水に不溶解な特性を有する冷却冷媒を薄
膜状態で流下させる波状流路と、2つの冷媒槽を配管で
結び冷媒循環路を形成するととも冷却媒体を0℃以下に
冷却するための冷却装置とを有して構成される。
[0006] Another ice heat storage device of the present invention is a heat storage tank that separates the ice storage tank into an ice storage tank and an ice storage tank that communicate the internal space with each other by a partition portion having a height lower than the level of the water to be stored, and a different height of the water in the ice storage tank. The two refrigerant tanks arranged at the position are connected to the two refrigerant tanks, and the specific weight of the refrigerant is 1.5 times or more, the freezing point is -20 ° C or less, and the cooling refrigerant having the property of being insoluble in water is formed into a thin film. It has a wavy flow path to flow down, and a cooling device for connecting two refrigerant tanks with pipes to form a refrigerant circulation path and for cooling a cooling medium to 0 ° C. or lower.

【0007】本発明の他の氷蓄熱装置は、収容される水
面より低い高さの仕切り部により内部空間を互いに連通
する製氷槽と貯氷槽に仕切る蓄熱槽と、比重量が水の
1.5倍以上で凝固点がー20℃以下で水に不溶解な特
性を有し製氷槽の下部に形成した冷媒槽に収容された冷
却媒体と、この製氷槽の水中と冷却媒体中との異なる高
さ位置に配置した2つの冷媒噴射ノズルと、冷媒槽と2
つの冷媒噴射ノズルを配管で結び冷媒槽の冷却媒体を冷
却し、冷却した冷却媒体を冷媒噴射ノズルから製氷槽の
水中に噴射する冷却装置とを有して構成される。
[0007] Another ice heat storage device of the present invention comprises a heat storage tank that partitions an internal space into an ice storage tank and an ice storage tank that communicate with each other by a partition portion having a height lower than the level of water to be stored, and a water storage tank having a specific weight of 1.5%. The cooling medium contained in a cooling medium tank formed at the lower part of the ice making tank having a characteristic of being insoluble in water at a freezing point of -20 ° C. or less and a different height between the water and the cooling medium in the ice making tank Two refrigerant injection nozzles arranged in a position,
A cooling device that connects the two refrigerant injection nozzles with pipes to cool the cooling medium in the refrigerant tank, and injects the cooled cooling medium from the refrigerant injection nozzle into the water in the ice making tank.

【0008】[0008]

【作用】本発明の氷蓄熱装置においては、製氷槽の仕切
り部材により仕切られた一方の冷媒室に収容された冷却
媒体を、2つの冷媒室を接続する配管に設けた冷凍機に
より冷却し、冷却された冷却媒体を他方の冷却室に送る
が、冷却媒体は水より重い比重を有するので、この冷却
媒体は、冷却室に収容された水を押し出しながら冷却室
に貯えられ、この冷却室に貯えられた冷却媒体の量が増
加し冷却媒体の液面が仕切り部材の上端面より上方にな
ると、冷却媒体は仕切り部材を越えて一方の冷却室に導
かれ、仕切り部材に設けた階段状部分により薄膜状態を
形成しながら下方に流れ、この薄膜状態の冷却媒体に、
水配管に設けたポンプにより強制流となった貯氷槽の水
が噴射され、流下する冷却冷媒に接する水が冷却媒体と
熱交換することで氷結晶を析出し、冷却冷媒に接した水
はシャーベット状の氷粒となり、生成された氷粒は、水
より比重が軽いので、製氷槽の上方に浮き上がり、製氷
槽と貯氷槽を結ぶ連通路を通って貯氷槽に貯えられ蓄熱
される。
In the ice heat storage device of the present invention, the cooling medium contained in one of the refrigerant chambers partitioned by the partition member of the ice making tank is cooled by a refrigerator provided in a pipe connecting the two refrigerant chambers, The cooled cooling medium is sent to the other cooling chamber, and since the cooling medium has a higher specific gravity than water, the cooling medium is stored in the cooling chamber while extruding the water contained in the cooling chamber, and is stored in the cooling chamber. When the amount of the stored cooling medium increases and the liquid level of the cooling medium becomes higher than the upper end face of the partition member, the cooling medium is guided to one of the cooling chambers over the partition member, and a step-like portion provided on the partition member is provided. Flows downward while forming a thin film state by the cooling medium in this thin film state,
The water in the ice storage tank, which has been forced to flow by the pump provided in the water pipe, is jetted, and water in contact with the flowing cooling refrigerant exchanges heat with the cooling medium to precipitate ice crystals, and the water in contact with the cooling refrigerant is sherbet. Since the formed ice particles have a lower specific gravity than water, they rise above the ice making tank, are stored in the ice storage tank through a communication path connecting the ice making tank and the ice storage tank, and are stored therein.

【0009】本発明の他の氷蓄熱装置においては、冷媒
槽に収容された冷却媒体を、冷媒配管に設けた冷凍機に
より0℃以下の温度に冷却し、冷凍ポンプにより強制さ
れて冷媒槽に送られる。冷媒槽に送られる冷却媒体の量
が増えて冷媒槽から溢れると、溢れた冷却媒体は、冷媒
槽と冷媒槽を連結する波状流路を薄膜状態で流下し、製
氷槽の水が、波状流路を薄膜状態で流下する冷却媒体に
直接接することで、冷却媒体との間で熱交換され、氷結
晶を析出しシャーベット状の氷粒を生成する。生成され
た氷粒は、水より比重が軽いので、製氷槽の上方に浮き
上がり、製氷槽から貯氷槽に送られ蓄熱される。
[0009] In another ice heat storage device of the present invention, the cooling medium accommodated in the refrigerant tank is cooled to a temperature of 0 ° C or less by a refrigerator provided in the refrigerant pipe, and is forced into the refrigerant tank by a refrigeration pump. Sent. When the amount of the cooling medium sent to the refrigerant tank increases and overflows from the refrigerant tank, the overflowing cooling medium flows down in a thin film state in a wavy flow path connecting the refrigerant tank and the refrigerant tank, and water in the ice making tank flows in a wavy flow. By directly contacting the cooling medium flowing down in a thin film state on the path, heat exchange is performed between the cooling medium and the cooling medium, ice crystals are precipitated, and sherbet-like ice particles are generated. Since the generated ice particles have a lower specific gravity than water, they rise above the ice making tank, are sent from the ice making tank to the ice storage tank, and are stored therein.

【0010】本発明の他の氷蓄熱装置においては、冷却
装置により冷却された冷却媒体を、強制流として冷却媒
体の液面より上方の部位に配設された冷媒噴射ノズルに
より、水中に噴射し、冷却媒体の液面より上方の部位の
水を0℃まで冷却し、冷却媒体の液中に配設した冷媒噴
射ノズルにより冷却媒体を、0℃まで冷却された水中に
向けて噴射し、この冷却媒体を0℃まで冷却された水と
接触させることにより、氷結晶を析出しシャーベット状
の氷粒を生成する。生成された氷粒は、水より比重が軽
いので、製氷槽の上方に浮き上がり、製氷槽から貯氷槽
に送られ蓄熱される。
[0010] In another ice heat storage device of the present invention, the cooling medium cooled by the cooling device is injected into the water as a forced flow by a refrigerant injection nozzle disposed above the liquid surface of the cooling medium. The water in the portion above the liquid level of the cooling medium is cooled to 0 ° C., and the cooling medium is injected toward the water cooled to 0 ° C. by a refrigerant injection nozzle disposed in the liquid of the cooling medium. By bringing the cooling medium into contact with water cooled to 0 ° C., ice crystals are precipitated to form sherbet-like ice particles. Since the generated ice particles have a lower specific gravity than water, they rise above the ice making tank, are sent from the ice making tank to the ice storage tank, and are stored therein.

【0011】[0011]

【実施例】以下本発明の一実施例を図面につき説明す
る。図1において、符号1は氷蓄熱装置の氷蓄熱槽を示
し、この氷蓄熱槽1の内部空間は仕切り部2により製氷
槽3および貯氷槽4を形成している。したがって、氷蓄
熱槽1に所定量の水を収容した時に、仕切り部2の上面
と水面16との間に製氷層3と貯氷槽4を結ぶ連通路5
が形成される。この連通路5は、製氷槽3において生成
される氷を水とともに製氷槽3から貯氷槽4に送り込
む。この連通路5の深さは、氷結晶の形態を考慮する
と、水面から200ミリから300ミリであることが好
ましい。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In FIG. 1, reference numeral 1 denotes an ice heat storage tank of the ice heat storage device, and an inner space of the ice heat storage tank 1 forms an ice making tank 3 and an ice storage tank 4 by a partition 2. Therefore, when a predetermined amount of water is stored in the ice heat storage tank 1, the communication path 5 connecting the ice making layer 3 and the ice storage tank 4 between the upper surface of the partition 2 and the water surface 16.
Is formed. The communication path 5 sends ice generated in the ice making tank 3 from the ice making tank 3 to the ice storage tank 4 together with water. Considering the form of ice crystals, the depth of the communication passage 5 is preferably 200 mm to 300 mm from the water surface.

【0012】上記製氷槽3には、階段状部分6を設けた
仕切り部7が配置され、製氷槽3の下側部分を、外側室
8と内側室9の2つの室に分けている。仕切り部7に設
けた階段状部分6は内側室9の側壁を形成している。外
側室8の高い位置には配管接続開口8aがまた内側室9
の低い位置には配管接続開口9aがそれぞれ形成されて
おり、これら配管接続開口8aおよび9aに冷媒配管1
0が接続され循環路を形成する。この冷媒配管10に
は、冷凍機11および冷媒ポンプ12が配置されてい
る。上記外側室8および内側室9には、たとえばフロリ
ナート液のような冷却媒体(冷媒液)13が収容されて
いる。このフロリナート液は、無色、透明、無臭、不活
性な液体である。このフロリナート液は、炭素原子Cと
フッ素原子Fとの結合体で、この結合数に応じて沸騰点
と凝固点は異なるが、凝固点は−20℃以下のものがほ
とんどであり、比重量も0℃付近では水の1.7倍以上
(氷の約2倍程度)であり、かつ水への溶解性は温度1
0℃で7.2ppmとかなり少ないため、水と混合して
も完全に分離して比重の重いフロリナート液が沈殿し、
比重の軽い水が浮くことになる。したがって、製氷槽3
の下側部分に形成された外側室8と内側室9の2つの室
には、フロリナート液が沈殿した状態で貯えられ、その
上に水が貯えられた状態を保つことになる。製氷槽3の
外側室8および内側室9に設けた冷媒配管10の接続位
置8aおよび9aは、フロリナート液13の液面より下
側に設定されていて、冷却媒体を循環路を循環させた際
に、製氷槽3の水が冷媒配管10に入り込まない構成に
なっている。
A partition 7 having a stepped portion 6 is arranged in the ice making tank 3, and the lower part of the ice making tank 3 is divided into two chambers, an outer chamber 8 and an inner chamber 9. The stepped portion 6 provided in the partition 7 forms a side wall of the inner chamber 9. A pipe connection opening 8a is provided at a higher position of the outer chamber 8 and the inner chamber 9 is also provided.
The pipe connection openings 9a are formed at lower positions of the refrigerant pipes 1a.
0 are connected to form a circulation path. In this refrigerant pipe 10, a refrigerator 11 and a refrigerant pump 12 are arranged. The outer chamber 8 and the inner chamber 9 accommodate a cooling medium (refrigerant liquid) 13 such as a florinate liquid. This florinate solution is a colorless, transparent, odorless, and inert liquid. This Fluorinert solution is a combination of carbon atom C and fluorine atom F. The boiling point and freezing point differ depending on the number of the bonds, but most of them have a freezing point of −20 ° C. or less and a specific weight of 0 ° C. In the vicinity, water is 1.7 times or more (about twice as much as ice) and its solubility in water is 1
Since it is quite low at 7.2 ° C. at 0 ° C., even when mixed with water, it is completely separated and a florinate liquid having a high specific gravity precipitates,
Light water of specific gravity will float. Therefore, the ice making tank 3
The outer chamber 8 and the inner chamber 9 formed in the lower part of the chamber store the florinate liquid in a precipitated state, and maintain the state in which water is stored thereon. The connection positions 8a and 9a of the refrigerant pipes 10 provided in the outer chamber 8 and the inner chamber 9 of the ice making tank 3 are set below the liquid surface of the florinert liquid 13, and when the cooling medium is circulated through the circulation path. In addition, the water in the ice making tank 3 does not enter the refrigerant pipe 10.

【0013】一方上記製氷槽3の内側室9と貯氷槽4
は、水配管14により接続されている。この水配管14
にはポンプ15が配置されている。上記水配管14の内
側室9の配管接続開口9bは仕切り部7の階段状部分6
に対向する位置にあり、ポンプ15により強制された水
流が仕切り部7の階段状部分6に噴射する。すなわち、
水流を仕切り部7の階段状部分6を流下する薄膜状態の
フロリナート液(冷却冷媒)に向けて噴射することによ
り、流下するフロリナート液に接する水をフロリナート
液と熱交換することで氷結晶を析出し、シャーベット状
の氷粒17が生成される。このシャーベット状の氷粒1
7は、水より比重が軽いので、製氷槽3の上方に浮き上
がる性質を有している。
On the other hand, the inner chamber 9 of the ice making tank 3 and the ice storage tank 4
Are connected by a water pipe 14. This water pipe 14
Is provided with a pump 15. The pipe connection opening 9b of the inner chamber 9 of the water pipe 14 is a stepped portion 6 of the partition 7.
The water flow forced by the pump 15 is jetted to the stepped portion 6 of the partition 7. That is,
Ice crystals are precipitated by injecting a water flow toward a thin-film florinert liquid (cooling refrigerant) flowing down the stepped portion 6 of the partition portion 7, thereby exchanging water with the florinert liquid that is in contact with the flowing florinert liquid. Then, sherbet-like ice particles 17 are generated. This sherbet-like ice grain 1
7 is lighter than water, and thus has the property of floating above the ice making tank 3.

【0014】つぎに作用を説明する。製氷槽3の仕切り
部7により仕切られた内側室9に収容されたフロリナー
ト液(冷媒液)13は、図2に示すように、外側室8と
内側室9を接続する冷媒配管10に設けた冷媒ポンプ1
2により冷媒配管10に吸い込まれ、冷媒配管10に設
けた冷凍機11により冷却された後、矢印で示すように
外側室8に送られる。外側室8に送られた冷却冷媒液1
3は、水より重い比重を有するので、外側室8に収容さ
れた水を押し出しながら外側室8に貯えられる。外側室
8に貯えられる冷却冷媒液13はその量の増加に伴い液
面が上昇し、その液面が仕切り部7の上端面より上方に
達すると、この仕切り部7を越えて内側室9に導かれ
る。内側室9の側壁を兼ねる仕切り部7の上側部分には
階段状部分6が形成されているので、内側室9に導かれ
る冷却冷媒液13は、階段状部分6に沿って薄膜状態と
なって下方に流れて内側室9に収容される。
Next, the operation will be described. The florinate liquid (refrigerant liquid) 13 accommodated in the inner chamber 9 partitioned by the partition part 7 of the ice making tank 3 was provided in a refrigerant pipe 10 connecting the outer chamber 8 and the inner chamber 9 as shown in FIG. Refrigerant pump 1
After being sucked into the refrigerant pipe 10 by the cooling water 2 and cooled by the refrigerator 11 provided in the refrigerant pipe 10, it is sent to the outer chamber 8 as shown by the arrow. Coolant liquid 1 sent to outer chamber 8
Since 3 has a specific gravity heavier than water, the water 3 is stored in the outer chamber 8 while extruding the water stored in the outer chamber 8. The liquid level of the cooling refrigerant liquid 13 stored in the outer chamber 8 rises as the amount thereof increases, and when the liquid level reaches above the upper end face of the partition 7, the coolant 13 passes through the partition 7 and enters the inner chamber 9. Be guided. Since the stepped portion 6 is formed on the upper part of the partition 7 also serving as the side wall of the inner chamber 9, the cooling refrigerant liquid 13 guided to the inner chamber 9 becomes a thin film along the stepped portion 6. It flows downward and is accommodated in the inner chamber 9.

【0015】一方、貯氷槽4に貯えられた水は、水配管
14に設けたポンプ15により強制流となり、内側室9
の配管接続開口9bから仕切り部7の階段状部分6を流
下する冷却冷媒液に向けて噴射される。流下する冷却冷
媒液に接する水は、冷却冷媒液と熱交換することで氷結
晶を析出しシャーベット状の氷粒17を生成する。生成
された氷粒17は、水より比重が軽いので、図2に示す
ように、製氷槽3の上方に浮き上がり、製氷槽3と貯氷
槽4を結ぶ連通路5を通って、貯氷槽4に貯えられる。
すなわち、冷却冷媒液を流れ落とした階段部分に水を吹
き付けることで、水と冷却冷媒液との熱交換を行うの
で、水と冷却冷媒液との熱交換効率を高めることがで
き、このような手段でシャーベット状の氷粒17を析出
るすることで、氷蓄熱槽の氷充填率を高めることが可能
になる。また、冷媒配管10は、外側室8と内側室9の
冷媒液収容部同士を接続しているので、冷媒配管10に
製氷槽3の水が混入して冷媒配管10を凍結させること
がなく、しかも、冷媒液を直接冷凍機に導入するので、
氷蓄熱装置としての効率も向上する。
On the other hand, the water stored in the ice storage tank 4 is forced to flow by a pump 15 provided in a water pipe 14, and
Is injected toward the cooling refrigerant liquid flowing down the stepped portion 6 of the partition 7 from the pipe connection opening 9b. The water in contact with the flowing cooling refrigerant liquid exchanges heat with the cooling refrigerant liquid to precipitate ice crystals and generate sherbet-like ice particles 17. Since the generated ice particles 17 have a lower specific gravity than water, they rise above the ice making tank 3 and pass through the communication path 5 connecting the ice making tank 3 and the ice storage tank 4 to the ice storage tank 4 as shown in FIG. Can be stored.
In other words, by spraying water on the steps where the cooling refrigerant liquid has flowed down, heat exchange between water and the cooling refrigerant liquid is performed, so that the heat exchange efficiency between water and the cooling refrigerant liquid can be increased. Precipitation of the sherbet-like ice particles 17 by means makes it possible to increase the ice filling rate of the ice heat storage tank. In addition, since the refrigerant pipe 10 connects the refrigerant liquid storage portions of the outer chamber 8 and the inner chamber 9 to each other, the refrigerant pipe 10 does not mix with water from the ice making tank 3 and freeze the refrigerant pipe 10. Moreover, since the refrigerant liquid is directly introduced into the refrigerator,
The efficiency as an ice heat storage device is also improved.

【0016】図3は、本発明の変形例を示し、この変形
例においては、外側室8の底面と内側室9の側面下部と
を冷媒配管20で接続し、冷媒配管20に冷媒ポンプ1
2を配置するとともに、外側室8に別に設けた熱交換器
21を配置し、この熱交換器21に冷凍機11を接続す
ることで、外側室8に収容された冷媒液を冷却するよう
にしている。
FIG. 3 shows a modification of the present invention. In this modification, the bottom of the outer chamber 8 and the lower side of the inner chamber 9 are connected by a refrigerant pipe 20, and the refrigerant pump 20 is connected to the refrigerant pipe 20.
2 and a heat exchanger 21 separately provided in the outer chamber 8, and the refrigerator 11 is connected to the heat exchanger 21 to cool the refrigerant liquid accommodated in the outer chamber 8. ing.

【0017】図4に示す本発明の他の実施例において
は、蓄熱槽1の内部空間を水面16より高さの低い仕切
り部30により互いに連通する製氷槽31と貯氷槽32
に仕切り、製氷槽31の水中の仕切り部30に近い側の
側壁30aの低い位置に連なるように冷媒槽33を設け
るとともに、製氷槽31の水中の対向する側壁1aの高
い位置に連なるように冷媒槽34を設け、冷媒槽34と
冷媒槽33を冷却冷媒を薄膜状態で流下させるための波
状流路35で連結している。そして、冷媒槽34と冷媒
槽33には、比重が水の1.5倍以上で凝固点がー20
℃以下で水に不溶解な特性を有する冷却冷媒36がそれ
ぞれ収容されている。側壁30aは上方が広がる方向に
湾曲した曲面構造となっていて、生成された氷粒17が
浮上しやすい構造をなしている。また、2つの冷媒槽3
3と冷媒槽34の底部は、冷媒配管37で連結され、冷
媒循環路を形成している。この冷媒配管37には、冷凍
機38および冷媒ポンプ39が配置されている。仕切り
部30の直上に回転自在に配置した氷送り羽根40は、
製氷槽31において生成され浮上した氷粒17を貯氷槽
32に送る作用をする。冷凍機38および冷媒ポンプ3
9は、冷却媒体を0℃以下に冷却し0℃以下に冷却した
冷却冷媒を冷媒槽34に送り込む。なお、上記波状流路
35は、冷却冷媒を薄膜状態で流下させるものであれ
ば、たとえば、階段状流路に変更することができるのは
もちろんである。
In another embodiment of the present invention shown in FIG. 4, an ice-making tank 31 and an ice-storage tank 32 communicate with each other by a partition 30 having a height lower than the water surface 16 in the internal space of the heat storage tank 1.
The refrigerant tank 33 is provided so as to be connected to a lower position of the side wall 30a of the ice making tank 31 which is closer to the underwater partitioning section 30 and the refrigerant is connected so as to be connected to a higher position of the underwater side wall 1a of the ice making tank 31. A tank 34 is provided, and the refrigerant tank 34 and the refrigerant tank 33 are connected by a wavy channel 35 for causing the cooling refrigerant to flow down in a thin film state. The refrigerant tank 34 and the refrigerant tank 33 have a specific gravity of 1.5 times or more of water and a freezing point of −20.
Cooling refrigerants 36 having a property of being insoluble in water at a temperature of not more than ° C. are respectively stored. The side wall 30a has a curved surface structure that is curved in a direction in which the upper side expands, and has a structure in which the generated ice particles 17 easily float. Also, two refrigerant tanks 3
3 and the bottom of the refrigerant tank 34 are connected by a refrigerant pipe 37 to form a refrigerant circulation path. In this refrigerant pipe 37, a refrigerator 38 and a refrigerant pump 39 are arranged. The ice feed blade 40, which is rotatably arranged directly above the partitioning section 30,
It acts to send the ice particles 17 generated and floated in the ice making tank 31 to the ice storage tank 32. Refrigerator 38 and refrigerant pump 3
The cooling medium 9 cools the cooling medium to 0 ° C. or lower and sends the cooling medium cooled to 0 ° C. or lower to the refrigerant tank 34. Note that the wavy flow path 35 can be changed to, for example, a stepped flow path as long as the cooling refrigerant flows down in a thin film state.

【0018】しかして、冷媒槽33に収容された冷却冷
媒液36は、冷媒配管37に設けた冷凍機38により0
℃以下の温度に冷却され、冷媒ポンプ39により強制さ
れて冷媒槽34に送り込まれる。冷媒槽34に送り込ま
れる冷却冷媒液36が冷媒槽34に溢れると、冷却冷媒
液36は、冷媒槽34と冷媒槽33を連結する波状流路
35を薄膜状態で流下して冷媒槽33に至る。製氷槽3
1の水は、波状流路35を薄膜状態で流下する冷却冷媒
液36に直接接することで、冷却冷媒液と熱交換し、氷
結晶を析出しシャーベット状の氷粒17を生成する。生
成された氷粒17は、水より比重が軽いので、製氷室3
1の上方に浮き上がり、製氷槽31と貯氷槽32の間に
設けた氷送り羽根40に強制されて貯氷槽32に貯えら
れる。図5に示す本発明の他の実施例においては、蓄熱
槽1の内部は水面16より高さの低い仕切り板50によ
り互いに連通する製氷槽51と貯氷槽52に仕切られて
いる。製氷槽51の底部53は冷却冷媒液54を収容す
る冷媒槽55を形成している。製氷槽51の底部53か
ら上方に湾曲して延びる側壁56は、仕切り板50を越
えて貯氷槽52まで延びている。貯氷槽52に延びる延
設部57は、斜め下方に10度から15度までの範囲の
傾斜面58となっている。この延設部57の表面にはテ
フロン層が被覆され、製氷槽51で生成された氷粒17
の着床を防ぎ、生成された氷粒17を製氷槽51から滑
らかに貯氷槽52に送り込むようにしている。
Thus, the cooling refrigerant liquid 36 stored in the refrigerant tank 33 is cooled by a refrigerator 38 provided in the refrigerant pipe 37.
It is cooled to a temperature of not more than ° C. and forced into a refrigerant tank 34 by a refrigerant pump 39. When the cooling refrigerant liquid 36 sent into the refrigerant tank 34 overflows into the refrigerant tank 34, the cooling refrigerant liquid 36 flows down in a thin film state through the wavy flow path 35 connecting the refrigerant tank 34 and the refrigerant tank 33 to reach the refrigerant tank 33. . Ice maker 3
The water 1 is in direct contact with the cooling refrigerant liquid 36 flowing down in a thin film state in the wavy flow path 35, and exchanges heat with the cooling refrigerant liquid, precipitates ice crystals and generates sherbet-like ice particles 17. Since the generated ice particles 17 have a lower specific gravity than water, the ice making room 3
1 and is forced by an ice feed blade 40 provided between the ice making tank 31 and the ice storage tank 32 and stored in the ice storage tank 32. In another embodiment of the present invention shown in FIG. 5, the inside of the heat storage tank 1 is partitioned by a partition plate 50 having a height lower than the water surface 16 into an ice making tank 51 and an ice storage tank 52 which communicate with each other. The bottom 53 of the ice making tank 51 forms a refrigerant tank 55 for containing a cooling refrigerant liquid 54. A side wall 56 extending upward from the bottom 53 of the ice making tank 51 extends beyond the partition plate 50 to the ice storage tank 52. The extending portion 57 extending to the ice storage tank 52 has an inclined surface 58 extending obliquely downward from 10 degrees to 15 degrees. The surface of the extending portion 57 is covered with a Teflon layer, and ice particles 17 generated in the ice making tank 51 are formed.
Is prevented, and the generated ice particles 17 are smoothly sent from the ice making tank 51 to the ice storage tank 52.

【0019】一方、蓄熱槽1の側壁1a冷却冷媒液54
の液面54aより上方の部位には、冷媒噴射ノズル59
が、また冷却冷媒液54の液中には冷媒噴射ノズル60
がそれぞれ配設されている。製氷槽の異なる高さ位置に
配置した2つの冷媒噴射ノズル59,60は、製氷槽5
1の冷媒槽55の底部と冷媒配管61を介して連結され
ている。この冷媒配管61には冷凍機62および冷媒ポ
ンプ63が配置され、冷却媒体を冷却し2つの冷媒噴射
ノズルから製氷槽の水中に噴射する冷却装置を構成して
いる。各冷媒噴射ノズル59,60は、断熱効果の高い
材料で成形され、効率よく冷媒を水中に噴出することを
可能にしている。冷媒噴射ノズル60は、冷却冷媒液5
4の液面54aより10ミリ程度下側で45度ないし5
5度の角度で、かつ冷却冷媒液54を液面54aより上
方に80ミリないし100ミリ程度噴出させる。
On the other hand, the side wall 1a of the heat storage tank 1
The portion above the liquid level 54a of the
However, the coolant injection nozzle 60
Are arranged respectively. The two refrigerant injection nozzles 59 and 60 arranged at different heights of the ice making tank are connected to the ice making tank 5.
It is connected to the bottom of one refrigerant tank 55 via a refrigerant pipe 61. A refrigerator 62 and a refrigerant pump 63 are arranged in the refrigerant pipe 61, and constitute a cooling device that cools a cooling medium and injects the same from two refrigerant injection nozzles into the water in an ice making tank. Each of the refrigerant injection nozzles 59 and 60 is formed of a material having a high heat insulating effect, and enables the refrigerant to be efficiently injected into water. The coolant injection nozzle 60 is used to cool the coolant 5
45 degrees to 5 about 10 mm below the liquid level 54a of 4
The cooling refrigerant liquid 54 is ejected at an angle of 5 degrees and about 80 to 100 mm above the liquid surface 54a.

【0020】しかして、製氷槽51の底部53に設けた
冷媒槽55に収容された冷却冷媒液54は、冷媒配管6
1に設けた冷凍機62によりー10℃ないしー20℃程
度に冷却し、冷媒ポンプ63により強制流として、液面
54aより上方の部位に配設された冷媒噴射ノズル59
により、水中に冷却冷媒液54を噴射して液面54aよ
り上方の部位の水を0℃まで冷却する。これと同時に、
冷却冷媒液54の液中に配設した冷媒噴射ノズル60に
より、0℃まで冷却された水中に向けて冷却冷媒液54
を噴射し、この冷却冷媒液54を0℃まで冷却された水
と接触させることにより、氷結晶を析出しシャーベット
状の氷粒17を生成する。生成された氷粒17は、水よ
り比重が軽いので、製氷槽51の上方に浮き上がり、製
氷槽51の上方に湾曲して延びる側壁56に沿って仕切
り板50を越えて貯氷槽52に送り込まれ、ここで蓄熱
される。
The coolant liquid 54 stored in the coolant tank 55 provided at the bottom 53 of the ice making tank 51 is
1 is cooled to about −10 ° C. to −20 ° C. by a refrigerator 62 provided as a forced flow by a refrigerant pump 63, and a refrigerant injection nozzle 59 arranged at a position above the liquid surface 54 a.
As a result, the coolant liquid 54 is injected into the water to cool the water above the liquid surface 54a to 0 ° C. At the same time,
The coolant injection nozzle 60 disposed in the coolant coolant 54 directs the coolant coolant 54 toward the water cooled to 0 ° C.
Is sprayed, and this cooling refrigerant liquid 54 is brought into contact with water cooled to 0 ° C., thereby depositing ice crystals and generating sherbet-like ice particles 17. Since the generated ice particles 17 have a lower specific gravity than water, they rise above the ice making tank 51, and are sent into the ice storage tank 52 over the partition plate 50 along the side wall 56 which extends upward and curves above the ice making tank 51. Is stored here.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、製
氷槽を2つの冷媒室に仕切る仕切り部材により循環する
冷却媒体を薄膜状態で流下させ、この薄膜状態で流下す
る冷却媒体に水を直接接するようにして氷を生成し、生
成した氷を貯氷槽に貯えることで蓄熱するので、製氷槽
の水が冷却媒体の配管に入りこんで配管を凍結させるこ
とがなく、冷却装置の効率も向上する。また、製氷槽の
水中の異なる高さ位置に2つの冷媒槽を配置し、これら
2つの冷媒槽を波状流路で結び、冷却媒体を薄膜状態で
流下させ、この薄膜状態で流下する冷却媒体に水を直接
接するようにして氷を生成し、生成した氷を貯氷槽に貯
えることで蓄熱するので、製氷槽の水が冷却媒体の配管
に入りこんで配管を凍結させることがなく、冷却装置の
効率も向上する。また、製氷槽の水中と冷却媒体中との
異なる高さ位置に冷媒噴射ノズルを配置し、2系統の冷
却手段で氷を生成することで、氷の生成時間を短縮しか
つ多量の氷を一時に生成することが可能になる。
As described above, according to the present invention, the cooling medium circulating by the partition member for partitioning the ice making tank into two refrigerant chambers flows down in a thin film state, and the cooling medium flowing down in the thin film state contains water. The ice is produced in direct contact with the ice, and the generated ice is stored in an ice storage tank to store heat.Therefore, the water in the ice making tank does not enter the cooling medium piping to freeze the piping, and the efficiency of the cooling device is improved. improves. In addition, two refrigerant tanks are arranged at different height positions in the water of the ice making tank, these two refrigerant tanks are connected by a wavy flow path, the cooling medium flows down in a thin film state, and the cooling medium flows down in the thin film state. Ice is generated by directly contacting water, and heat is stored by storing the generated ice in an ice storage tank.Therefore, the water in the ice making tank does not enter the cooling medium pipes and freeze the pipes. Also improve. In addition, a coolant injection nozzle is disposed at a different height between the water in the ice making tank and the cooling medium, and ice is generated by two cooling means, thereby shortening the ice generation time and reducing a large amount of ice. Sometimes it can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による氷蓄熱装置の全体図FIG. 1 is an overall view of an ice heat storage device according to the present invention.

【図2】本発明による氷蓄熱装置の要部を示す図FIG. 2 is a diagram showing a main part of an ice heat storage device according to the present invention.

【図3】本発明による氷蓄熱装置の変形例を示す図FIG. 3 is a diagram showing a modification of the ice heat storage device according to the present invention.

【図4】本発明による氷蓄熱装置の他の実施例を示す図FIG. 4 is a diagram showing another embodiment of the ice heat storage device according to the present invention.

【図5】本発明による氷蓄熱装置の他の実施例を示す図FIG. 5 is a view showing another embodiment of the ice heat storage device according to the present invention.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 仕切り部 3 製氷槽 4 貯氷槽 6 仕切り部分 7 仕切り部材 8,9 冷媒室 10 配管 11 冷却装置 16 水面 DESCRIPTION OF SYMBOLS 1 Heat storage tank 2 Partition part 3 Ice making tank 4 Ice storage tank 6 Partition part 7 Partition member 8, 9 Refrigerant chamber 10 Piping 11 Cooling device 16 Water surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F24F 5/00 F25C 1/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) F24F 5/00 F25C 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】収容される水面より低い仕切り部により内
部空間を互いに連通する製氷槽と貯氷槽に仕切る蓄熱槽
と、この製氷槽を2つの冷媒室に仕切りかつ仕切り部分
において一方の冷媒室から他方の冷媒室へ向け比重量が
水の1.5倍以上で凝固点がー20℃以下で水に不溶解
な特性を有する冷却冷媒を薄膜状態で流下させる仕切り
部材と、製氷槽に設けた2つの冷媒室を配管で結び冷媒
循環路を形成するととも冷却媒体を0℃以下に冷却する
ための冷却装置とを有する氷蓄熱装置。
1. A heat storage tank which partitions an internal space into an ice making tank and an ice storage tank which communicate with each other by a partition part lower than a water surface to be accommodated, an ice making tank which is divided into two refrigerant chambers, and one of the refrigerant chambers at the partition part. A partition member for flowing a cooling refrigerant having a specific weight of 1.5 times or more of water and a freezing point of −20 ° C. or less and insoluble in water toward the other refrigerant chamber in a thin film state; An ice heat storage device having a cooling device for connecting two refrigerant chambers with piping to form a refrigerant circulation path and for cooling a cooling medium to 0 ° C. or less.
【請求項2】収容される水面より低い高さの仕切り部に
より内部空間を互いに連通する製氷槽と貯氷槽に仕切る
蓄熱槽と、この製氷槽の水中の異なる高さ位置に配置し
た2つの冷媒槽と、これら2つ冷媒槽を結び冷却冷媒を
薄膜状態で流下させる波状流路と、比重量が水の1.5
倍以上で凝固点がー20℃以下で水に不溶解な特性を有
する2つの冷媒槽を配管で結び冷媒循環路を形成すると
とも冷却媒体を0℃以下に冷却するための冷却装置とを
有する氷蓄熱装置。
2. A heat storage tank which partitions an internal space into an ice-making tank and an ice storage tank through a partition part having a height lower than the contained water surface, and two refrigerants arranged at different heights in the water of the ice-making tank. A tank, a wavy flow path connecting these two refrigerant tanks and allowing the cooling refrigerant to flow down in a thin film state,
An ice having a cooling device for cooling a cooling medium to 0 ° C. or lower by connecting two refrigerant tanks having a characteristic of being insoluble in water at a freezing point of −20 ° C. or lower and forming a refrigerant circulation path at 0 ° C. or lower. Heat storage device.
【請求項3】収容される水面より低い高さの仕切り部に
より内部空間を互いに連通する製氷槽と貯氷槽に仕切る
蓄熱槽と、比重量が水の1.5倍以上で凝固点がー20
℃以下で水に不溶解な特性を有し製氷槽の下部に形成し
た冷媒槽に収容された冷却媒体と、この製氷槽の水中と
冷却媒体中との異なる高さ位置に配置した2つの冷媒噴
射ノズルと、冷媒槽と2つの冷媒噴射ノズルを配管で結
び冷媒槽の冷却媒体を冷却し冷却した冷却媒体を冷媒噴
射ノズルから製氷槽の水中に噴射する冷却装置とを有す
る氷蓄熱装置。
3. A heat storage tank which partitions an internal space into an ice-making tank and an ice storage tank through a partition portion having a height lower than the contained water surface, a specific weight of 1.5 times or more of water and a freezing point of -20.
A cooling medium contained in a refrigerant tank formed at the lower part of the ice making tank having a property of being insoluble in water at a temperature of not more than ℃, and two refrigerants arranged at different height positions in the ice making tank between the water and the cooling medium An ice heat storage device comprising: an injection nozzle; and a cooling device that connects a refrigerant tank and two refrigerant injection nozzles with pipes, cools a cooling medium in the refrigerant tank, and injects the cooled cooling medium into the water in the ice making tank from the refrigerant injection nozzle.
JP22618791A 1991-09-05 1991-09-05 Ice storage device Expired - Lifetime JP2953827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22618791A JP2953827B2 (en) 1991-09-05 1991-09-05 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22618791A JP2953827B2 (en) 1991-09-05 1991-09-05 Ice storage device

Publications (2)

Publication Number Publication Date
JPH0566030A JPH0566030A (en) 1993-03-19
JP2953827B2 true JP2953827B2 (en) 1999-09-27

Family

ID=16841254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22618791A Expired - Lifetime JP2953827B2 (en) 1991-09-05 1991-09-05 Ice storage device

Country Status (1)

Country Link
JP (1) JP2953827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332468B (en) * 2017-09-06 2020-05-12 广州黄岩机电科技有限公司 Ice making device

Also Published As

Publication number Publication date
JPH0566030A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP6128452B1 (en) Quick freezing method and quick freezing apparatus
JP2953827B2 (en) Ice storage device
US4321802A (en) Ice and water-making refrigeration apparatus
JP2892202B2 (en) Ice storage device
JPH04251139A (en) Ice heat accumulation device
JPH05223291A (en) Ice cold accumulator
JPH04174229A (en) Ice heat storage device
WO2023123271A1 (en) Ice making assembly, and refrigeration device and control method and apparatus therefor
WO2023123258A1 (en) Refrigeration device and control method and apparatus thereof
CN219550919U (en) Brine refrigerating refrigerator
JPH11304386A (en) Heat storage system
JP2793765B2 (en) Internal melting type ice thermal storage device
SU1753214A1 (en) Cooling system of installations with autonomous type of operation
JPH1047823A (en) Ice making method and ice heat storage device
JP2862946B2 (en) Heat storage type air conditioning cooling method
JP2549208B2 (en) Ice heat storage device
JP2000337668A (en) Ice storage method and device
JP3337017B2 (en) Heat storage device
JP3365371B2 (en) Ice storage device
CN116294346A (en) Refrigerator with a refrigerator body
JPH02110231A (en) Ice-making method and ice heat-accumulator
JPH02263076A (en) Direct contact type ice heat accumulation method and apparatus therefor
JP2883168B2 (en) Heat storage device
JP2906380B2 (en) Heat storage type air conditioning cooling method
JPH02146437A (en) Ice heat accumulation device