JPH05223291A - Ice cold accumulator - Google Patents

Ice cold accumulator

Info

Publication number
JPH05223291A
JPH05223291A JP2151492A JP2151492A JPH05223291A JP H05223291 A JPH05223291 A JP H05223291A JP 2151492 A JP2151492 A JP 2151492A JP 2151492 A JP2151492 A JP 2151492A JP H05223291 A JPH05223291 A JP H05223291A
Authority
JP
Japan
Prior art keywords
water
refrigerant
ice
tank
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2151492A
Other languages
Japanese (ja)
Inventor
Sanae Sekida
早苗 関田
Katsuya Yamashita
勝也 山下
Takeshi Noma
毅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2151492A priority Critical patent/JPH05223291A/en
Publication of JPH05223291A publication Critical patent/JPH05223291A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ice cold accumulator in which an ice generating speed is fast and stable, a decrease in an efficiency of a refrigerator and damage of a heat transfer tube are prevented, and generation of corrosive gas due to mixture of water and refrigerant and change of physical properties of the refrigerant are eliminated in ice-making steps of the accumulator. CONSTITUTION:The ice cold accumulator comprises an ice-making tank 1 for storing refrigerant 4 insoluble in water and having a specific weight of 1.5 times as large as that of water and a solidifying temperature is 20 degrees or lower and water 9, a tube 7 for circulating the refrigerant to maintain a temperature of the refrigerant 4 at 0 degree or lower thereby to circulate it in the tank 1, a storage tank 2 for receiving ice crystal 10 generated in the tank 1 to store it, a water tube 12 for supplying water of the tank 2 to the tank 1, and a refrigerant nozzle 8 provided in the tank 1 to inject the refrigerant 4 from a refrigerant layer of a lower part of the ice-making tank into upper water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調用氷蓄熱装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device for air conditioning.

【0002】[0002]

【従来の技術】氷蓄熱装置を有する空調システムは、昼
間に集中する冷房用電力需要を低減する目的で、安価な
深夜電力を利用し熱源機器の負荷を軽減させ、ビル空調
や地域熱供給等の比較的大容量の空調システムへの適用
がある。この氷蓄熱装置の氷の製造方法は、大別して間
接熱交換方式と直接熱交換方式の2通りがある。
2. Description of the Related Art An air-conditioning system having an ice heat storage device reduces the load of heat source equipment by using inexpensive late-night power for the purpose of reducing the power demand for cooling concentrated in the daytime, such as building air-conditioning and district heat supply. There is an application to a relatively large capacity air conditioning system. There are roughly two types of ice production methods for this ice heat storage device, an indirect heat exchange method and a direct heat exchange method.

【0003】間接熱交換方式は、氷蓄熱槽内に製氷用伝
熱管を有し、伝熱管の内側または外側に低温の冷媒を循
環させて、この伝熱管の外側または内側に氷を生成させ
る方式である。
The indirect heat exchange system has a heat transfer tube for ice making in an ice heat storage tank, and a low temperature refrigerant is circulated inside or outside the heat transfer tube to generate ice outside or inside the heat transfer tube. Is.

【0004】間接熱交換方式は冷媒にエチレングリコー
ル等の不凍液やフレオン等を用いて伝熱管の外側または
内側に氷を生成させる方式であり、水自身の熱伝導率が
小さいため伝熱管壁に氷を生成させるため氷の厚さが増
加するに伴って冷媒から氷への熱移動が減少し、氷の生
成速度が遅くなり、冷媒を冷却する冷凍機の効率が低下
するといった欠点を有している。
The indirect heat exchange system is a system in which an antifreeze liquid such as ethylene glycol or Freon is used as a refrigerant to generate ice on the outside or inside of the heat transfer tube. With the increase in ice thickness to generate ice, the heat transfer from the refrigerant to the ice decreases and the ice formation rate slows down, which has the drawback of reducing the efficiency of the refrigerator for cooling the refrigerant. ing.

【0005】また氷蓄熱槽内に伝熱管を配置する場合に
は、伝熱管の外側に氷を生成するため、伝熱管の本数を
増加させて氷蓄熱槽の効率を向上させるのであるが、伝
熱管の増加分だけ氷の充填率が減少することになる。
When the heat transfer tubes are arranged in the ice heat storage tank, since ice is generated outside the heat transfer tubes, the number of heat transfer tubes is increased to improve the efficiency of the ice heat storage tank. The filling rate of ice will be reduced by the increase of the heat tubes.

【0006】他方、伝熱管の本数を少なくして伝熱管に
着氷する厚さを増すと、氷の生成速度が遅くなるばかり
だけでなく、解氷時には伝熱管の着氷の融けやすい部分
が生じて氷が不均一となるため効率が低下すると共に、
再度伝熱管に着氷する際には着氷部から着氷を開始する
ため厚い部分がさらに厚くなりついには氷と氷とが接触
して伝熱管が曲がったり破損するといった事故を生じる
ことがある。
On the other hand, if the number of heat transfer tubes is reduced to increase the thickness of ice deposited on the heat transfer tubes, not only the speed of ice formation slows down, but also the portion of the heat transfer tubes where the ice is easily melted at the time of defrosting. As a result, the ice becomes uneven and the efficiency decreases,
When icing on the heat transfer tube again, icing starts from the icing part, so the thick part becomes thicker and eventually the ice and ice may come into contact with each other, causing an accident such as bending or damage of the heat transfer tube. ..

【0007】一方、直接熱交換方式は直接低温の冷媒を
氷蓄熱槽内に循環させて氷を生成させる方式であり、水
と氷とが氷蓄熱槽内に生成させるため、冷凍機の効率は
向上するが水の中に冷媒ガスが入るため、水と冷媒ガス
とが反応して腐食性のガスを発生したり、冷媒自身の物
性が変化するといった現象を生じ、条件によっては爆発
するといった危険な場合もある。
On the other hand, the direct heat exchange system is a system in which a low-temperature refrigerant is directly circulated in the ice heat storage tank to generate ice. Since water and ice are generated in the ice heat storage tank, the efficiency of the refrigerator is high. Improves, but since refrigerant gas enters water, water and refrigerant gas react with each other to generate corrosive gas or change the physical properties of the refrigerant itself, resulting in explosion under certain conditions There are some cases.

【0008】[0008]

【発明が解決しようとする課題】間接熱交換方式におけ
る、氷の生成速度が遅くなるため冷凍機の効率低下や、
着氷部分の氷の不均一性による冷凍機の効率低下や伝熱
管の破損といった問題がある。また、間接熱交換方式で
は水と冷媒ガスとが反応して腐食性のガスを発生した
り、冷媒自身の物性が変化するといった問題が生じる。
In the indirect heat exchange system, the efficiency of the refrigerator is reduced due to the slow ice production rate,
There are problems such as reduced efficiency of the refrigerator and damage to the heat transfer tubes due to non-uniformity of ice on the icing area. Further, in the indirect heat exchange system, there are problems that water and a refrigerant gas react with each other to generate a corrosive gas, or the physical properties of the refrigerant itself change.

【0009】本発明は上記の問題を鑑みなされたもの
で、冷凍機の効率向上を計り、腐食性ガスが発生しない
冷媒体自身の物性が変化しない。新規な氷蓄熱装置を提
供せんとするものである。
The present invention has been made in view of the above problems, and improves the efficiency of the refrigerator so that the physical properties of the refrigerant body itself, which does not generate corrosive gas, do not change. The purpose is to provide a new ice heat storage device.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の氷蓄熱装置は、比重量が水の 1.5倍以上で
かつ凝固点が−20℃以下の水に不溶解な冷媒と水を貯蔵
する製氷槽と、前記冷媒を0℃以下に維持して前記製氷
槽内を循環させる冷媒循環路と、前記製氷槽内に生成さ
れた氷結晶を流入し貯蔵する貯水槽と、この貯水槽と前
記製氷槽とを接続し貯水槽内の水を製氷槽に供給する水
配管と、前記製氷槽内に設けられ製氷槽下部の冷媒層内
より上部水中に向けて冷媒を噴出させる冷媒ノズルとを
備えた構成とする。
In order to solve the above problems, the ice heat storage device of the present invention comprises a refrigerant and water which have a specific weight of 1.5 times or more of water and a freezing point of -20 ° C. An ice making tank, a refrigerant circulation path for circulating the inside of the ice making tank while maintaining the refrigerant at 0 ° C. or less, a water storage tank for inflowing and storing the ice crystals generated in the ice making tank, and this water storage A water pipe that connects the tank and the ice making tank to supply water in the water storage tank to the ice making tank, and a refrigerant nozzle that is provided in the ice making tank and ejects a refrigerant toward the upper water from the refrigerant layer at the bottom of the ice making tank And the configuration.

【0011】[0011]

【作用】冷媒、特にここではフロリナート(米国3M社
商品名)液を例にとって説明すると、フロリナート液
は、無色・透明・無臭・不活発な液体であり、完全にフ
ッ素化された構造をしており、炭素原子Cとフッ素原子
Fとの結合体で、この結合数に応じて沸騰点と凝固点は
異なるが、凝固点は−20℃以下のものがほとんどであ
る。
[Function] When a refrigerant, especially a Fluorinert (trade name, manufactured by 3M Company in the United States) liquid is used as an example, the Fluorinert liquid is a colorless, transparent, odorless and inert liquid having a completely fluorinated structure. In most cases, the boiling point and freezing point of the combination of carbon atom C and fluorine atom F differ depending on the number of bonds, but the freezing point is -20 ° C or lower in most cases.

【0012】このフロリナート液は、比重量も0℃付近
では水の 1.7倍以上(氷の約2倍程度)あり、さらに水
への溶解性は温度10℃で7.2ppmとかなり少ないため、水
と混合しても完全に分離してフロリナート液が沈澱し水
が浮くこととなる。
The specific weight of this Fluorinert solution is 1.7 times or more that of water (about twice as much as that of ice) at around 0 ° C., and the solubility in water is 7.2 ppm at a temperature of 10 ° C. Even if they are mixed, they will be completely separated and the Fluorinert liquid will precipitate and the water will float.

【0013】この冷媒(フロリナート液)の特性を利用
して、製氷槽の底部に冷媒を貯蔵し、この冷媒を直接ま
たは間接的に冷凍機により冷却させて、製氷槽の底部の
冷媒液中より冷媒ノズルから噴出し、製氷槽内の水を氷
の結晶にさせ、0℃付近の水と析出した氷結晶とを貯水
槽へ送り蓄熱させるものである。
By utilizing the characteristics of this refrigerant (Fluorinert liquid), the refrigerant is stored at the bottom of the ice making tank, and this refrigerant is cooled directly or indirectly by a refrigerator so that the refrigerant in the refrigerant liquid at the bottom of the ice making tank is The water is sprayed from the refrigerant nozzle to turn the water in the ice-making tank into ice crystals, and the water near 0 ° C. and the precipitated ice crystals are sent to the water storage tank for heat storage.

【0014】[0014]

【実施例】図1は、本発明の氷蓄熱装置の一実施例の要
部断面の構成を示すものであり、氷蓄熱装置は製氷槽1
と貯水槽2とから構成し、製氷槽1の底部3に冷媒4
(フロリナート液)を貯蔵し、冷媒ポンプ5、冷凍機6
を経由して冷媒4を冷却し、冷媒配管7により製氷槽の
下部の冷媒ノズル8から噴出散布する。噴散布した冷媒
4は水9と熱交換して、一部を氷結晶10とし、水9より
重い冷媒4は再び製氷槽1の底部3へ戻る。
FIG. 1 shows a cross-sectional structure of an essential part of an embodiment of the ice heat storage device of the present invention. The ice heat storage device is an ice making tank 1.
And a water tank 2, and a refrigerant 4 is provided on the bottom portion 3 of the ice making tank 1.
(Fluorinert liquid) is stored, the refrigerant pump 5, the refrigerator 6
The cooling medium 4 is cooled via the cooling medium and sprayed from the cooling medium nozzle 8 at the lower part of the ice making tank by the cooling medium pipe 7. The sprayed refrigerant 4 exchanges heat with water 9 to partially form ice crystals 10, and the refrigerant 4 heavier than the water 9 returns to the bottom portion 3 of the ice making tank 1 again.

【0015】製氷槽1の横に配置した、貯水槽2の底部
11から水9は水配管12と水ポンプ13とにより、製氷槽1
内の冷媒4の上面の水中部14へ送る、製氷槽1の上部
は、製氷槽の幅と同等な幅の流路15を通って、水9と氷
結晶10とが混ざりあって貯水槽2へ流入する。
The bottom of the water storage tank 2 arranged beside the ice making tank 1.
Water from 11 is supplied to the ice making tank 1 by the water pipe 12 and the water pump 13.
The upper part of the ice making tank 1 which is sent to the underwater portion 14 on the upper surface of the refrigerant 4 inside passes through the flow path 15 having a width equal to the width of the ice making tank, and the water 9 and the ice crystals 10 are mixed with each other. Flow into.

【0016】製氷槽1と貯水槽2とを連結する流路15
は、製氷槽上部の幅と同等とし、深さを水表面から200m
m 〜 500mmとして十分な断面積とする事により、氷結晶
10が製氷槽1内に滞留することは無い。図2は、本発明
の冷媒ノズル8部の要部構造を示すもので、冷媒ノズル
8は冷媒4の液中に設置し、冷凍機で冷却した冷媒4を
上部の水中9へ噴出させる。
A flow path 15 connecting the ice-making tank 1 and the water storage tank 2
Is the same width as the top of the ice making tank, and the depth is 200m from the water surface.
By setting a sufficient cross-sectional area of m to 500 mm, ice crystals
10 does not stay in the ice making tank 1. FIG. 2 shows the essential structure of the refrigerant nozzle 8 of the present invention. The refrigerant nozzle 8 is installed in the liquid of the refrigerant 4, and the refrigerant 4 cooled by the refrigerator is jetted into the underwater 9 in the upper part.

【0017】噴出した冷媒4は水中9で熱交換して氷結
晶10を生成した後、水9より重い冷媒4は製氷槽底部3
に戻り、冷媒配管7を経由して再び冷凍機5で冷却され
る循環を行う。
The ejected refrigerant 4 exchanges heat in water 9 to generate ice crystals 10, and then the refrigerant 4 heavier than the water 9 is cooled in the bottom 3 of the ice making tank.
Then, the circulation is performed by cooling the refrigerator 5 again via the refrigerant pipe 7.

【0018】氷結晶10は浮力により製氷槽1の上部へ集
まり流路15を通って、貯水槽2へと流入する。貯水槽2
からの戻りの水9は、水配管12を通って製氷槽1の下部
3へ供給し、水9の流れを生成し、且つ、冷媒4は貯水
槽2に流出する事はない。
The ice crystals 10 gather in the upper portion of the ice making tank 1 by buoyancy, pass through the flow path 15, and flow into the water storage tank 2. Water tank 2
The water 9 returned from the water is supplied to the lower portion 3 of the ice making tank 1 through the water pipe 12 to generate a flow of the water 9, and the refrigerant 4 never flows into the water storage tank 2.

【0019】また、図2に示す様に冷媒ノズル8位置か
ら半径100mm 〜 300mmの外周に水ジャケット16の水ノズ
ル17を配置させ、水9を供給させると冷媒4との熱交換
が促進される。
Further, as shown in FIG. 2, when the water nozzle 17 of the water jacket 16 is arranged on the outer periphery of the radius of 100 mm to 300 mm from the position of the refrigerant nozzle 8 and the water 9 is supplied, heat exchange with the refrigerant 4 is promoted. ..

【0020】水ジャケット16の水ノズル17から冷媒4噴
流と直角方向ないし45度の角度をもたせて水9を噴出さ
せる事により、製氷槽1内に循環流を形成させるため冷
媒4と水9との熱交換を促進させる事が出来る。
The water 9 is jetted from the water nozzle 17 of the water jacket 16 at a right angle to the jet of the coolant 4 or at an angle of 45 degrees to form a circulating flow in the ice making tank 1. The heat exchange of can be promoted.

【0021】水9と熱交換した冷媒4粒が水ジャケット
16の外周部に落下する際に、冷媒4粒が製氷槽1の内壁
に付着しない様に水ジャケット16の外周から300mm 〜 6
00mm距離を取ると良い。
4 refrigerants that have exchanged heat with water 9 are water jackets
When falling onto the outer periphery of the water jacket 16, 300 mm to 6 mm from the outer circumference of the water jacket 16 to prevent four refrigerants from adhering to the inner wall of the ice making tank 1.
It is good to have a distance of 00 mm.

【0022】冷媒ノズル8の循環流と水ノズル17の循環
流とにより熱交換効率を促進させると共に水9と熱交換
した冷媒4粒は氷結晶10と結合しないため、水9より重
い氷片を生成することもない。
The heat exchange efficiency is promoted by the circulation flow of the refrigerant nozzle 8 and the circulation flow of the water nozzle 17, and the four refrigerants that have exchanged heat with the water 9 do not bond with the ice crystals 10. It will never be generated.

【0023】[0023]

【発明の効果】以上述べた通り本発明によれば、冷媒を
製氷槽の底部の冷媒液中の冷媒ノズルから噴出させるた
め、冷媒ノズルは直接水と接触していないため、冷媒ノ
ズルは凍結する事はなく、冷媒ノズルの循環流と水ノズ
ルの循環流とにより効率よく氷結晶を生成すると共に、
安全かつ効率の高い氷蓄熱装置を提供することができ
る。また、冷媒は直接、冷凍機へ導入することもできる
ので氷蓄熱装置としての効率が向上する。
As described above, according to the present invention, since the refrigerant is ejected from the refrigerant nozzle in the refrigerant liquid at the bottom of the ice making tank, the refrigerant nozzle is not in direct contact with water, so the refrigerant nozzle freezes. There is no problem, while ice crystals are efficiently generated by the circulation flow of the refrigerant nozzle and the circulation flow of the water nozzle,
It is possible to provide a safe and highly efficient ice heat storage device. Further, since the refrigerant can be directly introduced into the refrigerator, the efficiency of the ice heat storage device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の氷蓄熱装置の一実施例の要部構成図FIG. 1 is a configuration diagram of main parts of an embodiment of an ice heat storage device of the present invention.

【図2】図1の冷媒ノズル部の一例を示す要部構成図FIG. 2 is a main part configuration diagram showing an example of a refrigerant nozzle part of FIG.

【符号の説明】[Explanation of symbols]

1…製氷槽 2…貯水槽 4…冷媒 6…冷凍機 8…冷媒ノズル 9…水 10…氷結晶 12…水配管 15…流路 16…水ジャケット 17…水ノズル 1 ... Ice making tank 2 ... Water storage tank 4 ... Refrigerant 6 ... Refrigerator 8 ... Refrigerator nozzle 9 ... Water 10 ... Ice crystals 12 ... Water piping 15 ... Flow path 16 ... Water jacket 17 ... Water nozzle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比重量が水の 1.5倍以上でかつ凝固点が
−20℃以下の水に不溶解な冷媒と水を貯蔵する製氷槽
と、前記冷媒を0℃以下に維持して前記製氷槽内を循環
させる冷媒循環路と、前記製氷槽内に生成された氷結晶
を流入し貯蔵する貯水槽と、この貯水槽と前記製氷槽と
を接続し貯水槽内の水を製氷槽に供給する水配管と、前
記製氷槽内に設けられ製氷槽下部の冷媒層内より上部水
中に向けて冷媒を噴出させる冷媒ノズルとを備えたこと
を特徴とする氷蓄熱装置。
1. An ice making tank for storing a water-insoluble refrigerant having a specific weight of 1.5 times or more of water and a freezing point of −20 ° C. or lower, and the ice making tank for maintaining the refrigerant at 0 ° C. or lower. A coolant circulation path for circulating the inside, a water tank for inflowing and storing the ice crystals generated in the ice making tank, and connecting the water tank and the ice making tank to supply the water in the water tank to the ice making tank An ice heat storage device comprising: a water pipe; and a refrigerant nozzle which is provided in the ice making tank and ejects a refrigerant from a refrigerant layer in a lower portion of the ice making tank toward upper water.
【請求項2】 製氷槽内に接続される水配管の先端に前
記冷媒ノズルからの冷媒噴流と直角方向ないし45度の角
度をもたせて水を噴出させる水ノズルを有する水ジャケ
ットを備えたことを特徴とする請求項1に記載の氷蓄熱
装置。
2. A water jacket having a water nozzle for ejecting water at an angle of 45 degrees to the direction of the refrigerant jet from the refrigerant nozzle is provided at the tip of a water pipe connected to the ice making tank. The ice heat storage device according to claim 1, which is characterized in that.
JP2151492A 1992-02-07 1992-02-07 Ice cold accumulator Pending JPH05223291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151492A JPH05223291A (en) 1992-02-07 1992-02-07 Ice cold accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151492A JPH05223291A (en) 1992-02-07 1992-02-07 Ice cold accumulator

Publications (1)

Publication Number Publication Date
JPH05223291A true JPH05223291A (en) 1993-08-31

Family

ID=12057084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151492A Pending JPH05223291A (en) 1992-02-07 1992-02-07 Ice cold accumulator

Country Status (1)

Country Link
JP (1) JPH05223291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992934A (en) * 2019-03-22 2022-09-02 Lg电子株式会社 Ice maker and refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992934A (en) * 2019-03-22 2022-09-02 Lg电子株式会社 Ice maker and refrigerator

Similar Documents

Publication Publication Date Title
US4757690A (en) Water freezing enhancement for thermal storage brine tube
JPH05223291A (en) Ice cold accumulator
JP2953827B2 (en) Ice storage device
JPH1047823A (en) Ice making method and ice heat storage device
JPH04251139A (en) Ice heat accumulation device
JP2724201B2 (en) Direct contact ice storage method and equipment
JP2559817B2 (en) Refrigeration system using ice heat storage
US6849197B2 (en) Ice thermal storage medium
JP2696046B2 (en) Latent heat storage device
JP2883168B2 (en) Heat storage device
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
JP3292502B2 (en) Ice storage device
JPH04190028A (en) Ice heat accumulation device
JP2000139019A (en) Cooling device for underground power transmission line
JPH0942715A (en) Ice thermal storage apparatus
JPH03244985A (en) Ice making device
JPH02110231A (en) Ice-making method and ice heat-accumulator
JPH0399177A (en) Ice heat accumulating device
JP2000337668A (en) Ice storage method and device
JPH02146437A (en) Ice heat accumulation device
JPH05339561A (en) Method of heating and cooling
JP2002130745A (en) Heat storage unit and steam exhaust type ice storage device
JPH03122475A (en) Ice making device for heat accumulation
JPH06323701A (en) Operating method for ice-making machine using supercooled water
JPH10281602A (en) Ice heat storage device