JPH04190028A - Ice heat accumulation device - Google Patents

Ice heat accumulation device

Info

Publication number
JPH04190028A
JPH04190028A JP2317696A JP31769690A JPH04190028A JP H04190028 A JPH04190028 A JP H04190028A JP 2317696 A JP2317696 A JP 2317696A JP 31769690 A JP31769690 A JP 31769690A JP H04190028 A JPH04190028 A JP H04190028A
Authority
JP
Japan
Prior art keywords
ice
cooling medium
ice heat
water
storing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2317696A
Other languages
Japanese (ja)
Inventor
Sanae Sekida
関田 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2317696A priority Critical patent/JPH04190028A/en
Publication of JPH04190028A publication Critical patent/JPH04190028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve an efficiency of freezer device and to prevent occurrence of corrosive gas and variation in physical characteristic of refrigerant itself by a method wherein a specified cooling refrigerant is stored in an ice storing tank of an ice heat storing tank at a bottom part of the ice heat storing tank at a temperature lower than a specified temperature and this cooling medium is dispersed from an upper part within the ice heat storing tank, circulated within an ice heat storing tank and then ices are crystallized. CONSTITUTION:Medium 3 with its specific weight of 1.5 times or more than that of ice, solidification point of -20 deg.C or less and non-soluble against water is stored at a bottom part 2 of an ice heat storing tank 1 at a temperature of 0 deg.C or less. This cooling medium 3 is dispersed by a pipe 6 from an upper part 7 of the ice heat storing tank. Due to this fact, the medium may perform well a heat exchanging operation with water 8 within the ice heat storing tank 1, resulting in that some sherbet-like ice particles 9 are crystallized. The heat exchanged cooling medium 3 drops into the water while agitating the water 8 and is collected at a bottom part 2 of the ice heat storing tank 1. Then, the dispersing cooling medium is not directly brought into contact with the water 8, so that it does not freeze the upper part 7 of the pipe 6. In addition, the cooling medium 3 can be fed directlyl into a freezer 4, so that an efficiency of the ice heat storing device can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、空調等に用いられる氷蓄熱装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an ice heat storage device used for air conditioning and the like.

(従来の技術) 氷蓄熱装置を有する空調システムは、昼間に集中する冷
房用電力需要を低減する目的で、安価な深夜電力を利用
し熱源機器の負荷を軽減させ、ビル空調や地域熱供給等
の比較的大容量の空調システムへの適用がある。
(Conventional technology) Air conditioning systems with ice thermal storage devices use cheap late-night electricity to reduce the load on heat source equipment, in order to reduce the demand for electricity for cooling, which is concentrated during the day. It has applications in relatively large capacity air conditioning systems.

この氷蓄熱装置の氷の製造方法は、大別して2通りあり
間接熱交換方式と直接熱交換方式とがある。
There are two methods for producing ice in this ice heat storage device: indirect heat exchange method and direct heat exchange method.

間接熱交換方式は、氷蓄熱槽内に製氷用伝熱管を有し、
伝熱管の内側または外側に低温の冷却媒体を循環させて
、この伝熱管の外側または内側に氷を生成させる方式で
あ、る。
The indirect heat exchange method has an ice-making heat transfer tube inside the ice heat storage tank.
This method circulates a low-temperature cooling medium inside or outside of the heat exchanger tube to generate ice on the outside or inside of the heat exchanger tube.

間接熱交換方式では冷却媒体にエチレングリコール等の
不凍液やフレオン等を用いて伝熱管の外側または内側に
氷を生成させる方式であり、伝熱管壁に氷を生成させる
ため氷の厚さが増加するに伴って氷自身の熱伝導率が小
さいため、冷却媒体から氷への熱移動が減少するため氷
の生成速度が遅くなり、冷却媒体を冷却する冷凍機の効
率が低下するといった欠点を有している。
The indirect heat exchange method uses antifreeze such as ethylene glycol or Freon as a cooling medium to generate ice on the outside or inside of the heat transfer tube, and the thickness of the ice increases as ice is formed on the walls of the heat transfer tube. However, since the thermal conductivity of the ice itself is low, the heat transfer from the cooling medium to the ice is reduced, which slows down the ice formation rate and reduces the efficiency of the refrigerator that cools the cooling medium. are doing.

また氷蓄熱槽内に伝熱管を配置する場合には、伝熱管の
外側に氷を生成するが伝熱管の本数を増加させて氷蓄熱
槽の効率を向上させるのであるが、伝熱管の増加分だけ
氷の充填率が減少することになる。
Furthermore, when heat transfer tubes are placed in an ice heat storage tank, ice is generated on the outside of the heat transfer tubes, and the number of heat transfer tubes is increased to improve the efficiency of the ice heat storage tank. The ice filling rate will decrease accordingly.

他方、伝熱管の本数を少なくして伝熱管に着氷する厚さ
を増すと、氷の生成速度が遅くなるばかりでなく、解氷
時には伝熱管の着氷の融けやすい部分が生じて氷が不均
一となるため効率が低下すると共に、再度伝熱管に着氷
する際には着氷部から着氷を開始するため厚い部分がさ
らに厚くなりついには氷と氷とが接触して伝熱管が曲が
ったり破損するといった事故を生じることがある。
On the other hand, if you reduce the number of heat transfer tubes and increase the thickness of the ice on the heat transfer tubes, not only will the rate of ice formation slow down, but when the ice melts, there will be parts of the heat transfer tubes that are easy to melt, causing ice to form. The efficiency decreases due to unevenness, and when ice forms on the heat exchanger tube again, it starts from the iced part, so the thicker part becomes even thicker, and eventually the ice comes into contact with the heat exchanger tube, causing the ice to form. Accidents such as bending or damage may occur.

一方、直接熱交換方式は直接低温の冷却媒体を氷蓄熱槽
内に循環させて氷を生成させる方式であり、水と氷とが
氷蓄熱槽内に生成されるため、冷凍機の効率は向上する
が氷の中に冷却媒体ガスが入いるため、水と冷却媒体ガ
スとが反応して腐食性のガスを発生したり、冷却媒体自
体の物性が変化するといった現象を生じる。
On the other hand, the direct heat exchange method generates ice by directly circulating a low-temperature cooling medium into the ice storage tank.Since water and ice are generated in the ice storage tank, the efficiency of the refrigerator is improved. However, since the cooling medium gas enters the ice, phenomena such as water and cooling medium gas reacting to generate corrosive gas or changing the physical properties of the cooling medium itself occur.

(発明が解決しようとする課題) 間接熱交換方式における、氷の生成速度が遅くなるため
冷凍機の効率低下や1着氷部分の氷の不均一性による冷
凍機の効率低下や伝熱管の破損といった問題がある。
(Problems to be solved by the invention) In the indirect heat exchange method, the efficiency of the refrigerator decreases due to the slow ice generation rate, and the efficiency of the refrigerator decreases due to unevenness of ice in the icing area and damage to heat transfer tubes. There are problems like this.

また、直接熱交換方式では水と冷却媒体ガスとが反応し
て腐食性ガスを発生したり、冷却媒体自身の物性が変化
するといった問題が生じる。
Further, in the direct heat exchange method, there arise problems such as water and cooling medium gas reacting to generate corrosive gas or changing the physical properties of the cooling medium itself.

本発明は上記の問題に鑑みなされたもので、冷凍機の効
率向上を計り、腐食性ガスが発生しない冷媒体自身の物
性の変化しない、氷蓄熱槽を提供せんとするものである
The present invention has been made in view of the above problems, and aims to improve the efficiency of refrigerators and to provide an ice heat storage tank that does not generate corrosive gas and does not change the physical properties of the refrigerant itself.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明においては。 (Means for solving problems) In order to achieve the above object, the present invention has the following features.

氷蓄熱槽の貯水槽内に、比重量が氷の1.5倍以上で凝
固点が一20℃以下で、水に不溶解な冷却媒体を、0℃
以下で氷蓄熱槽の底部に貯蔵し、この冷却媒体を氷蓄熱
槽内の上部から散布し氷蓄熱槽内に循環させて氷を析出
させるものである。
In the water storage tank of the ice heat storage tank, a cooling medium with a specific weight of 1.5 times or more that of ice, a freezing point of 120 degrees Celsius or less, and a water-insoluble cooling medium is placed at 0 degrees Celsius.
Below, ice is stored at the bottom of the ice heat storage tank, and this cooling medium is distributed from the top of the ice heat storage tank and circulated within the ice heat storage tank to precipitate ice.

(作用) 冷却媒体、特にここではフロリナート液を例にとって説
明するとフロリナート液は、無色・透明・無臭・不活発
な液体であり、完全にフッ素化されて構造をしており、
炭素原子Cとフッ素原子Fとの結合体で、この結合数に
応じて沸騰点と凝固点は異なるが、凝固点は一20℃以
下のものがほとんどである。
(Function) To explain the cooling medium, particularly Fluorinert liquid, as an example, Fluorinert liquid is a colorless, transparent, odorless, and inert liquid, and has a completely fluorinated structure.
It is a bond between a carbon atom C and a fluorine atom F, and its boiling point and freezing point differ depending on the number of bonds, but most have a freezing point below -20°C.

比重量も0℃付近では氷の1.7倍以上もあり、氷の約
2倍程度あり、さらに水への溶解性は温度10℃で7.
2ppmとかなり少ないため、水と混合しても完全に分
離してフロリナート液が沈澱し水が浮くこととなる。
Its specific weight is more than 1.7 times that of ice at around 0°C, and about twice that of ice, and its solubility in water is 7.
Since the amount is quite low at 2 ppm, even if it is mixed with water, it will completely separate and the Fluorinert solution will precipitate and the water will float.

この冷却媒体(フロリナート液)の特性を利用して、氷
蓄熱槽の底部に冷却媒体を貯蔵し、この冷却媒体を直接
または間接的に冷凍機により冷却させて、氷蓄熱槽の上
部から散布し氷蓄熱槽内の水をシャーベット状の氷とさ
せ、0℃付近の水を氷蓄熱槽に貯蔵する。
Utilizing the characteristics of this cooling medium (Florinat liquid), the cooling medium is stored at the bottom of the ice storage tank, cooled directly or indirectly by a refrigerator, and then sprayed from the top of the ice storage tank. The water in the ice heat storage tank is turned into sherbet-like ice, and the water around 0°C is stored in the ice heat storage tank.

(実施例) 第1図は、本発明の氷蓄熱装置の一実施例の要部構成を
示すものであり、氷蓄熱槽1の底部2に冷却媒体3(フ
ロリナート液)を貯蔵し、ポンプ4.冷凍機5を経由し
て配管6により氷蓄熱槽の上部7から散布すると、氷蓄
熱槽1内の水8と熱交換して一部を氷9とし1重い冷却
媒体は再び氷蓄熱槽1の撮部2へ戻る。
(Embodiment) FIG. 1 shows the main structure of an embodiment of the ice heat storage device of the present invention, in which a cooling medium 3 (Florinat liquid) is stored in the bottom 2 of the ice heat storage tank 1, and a pump 4 .. When sprayed from the upper part 7 of the ice heat storage tank via the refrigerator 5 and pipe 6, the heavy cooling medium exchanges heat with the water 8 in the ice heat storage tank 1, converting some of it into ice 9, and returns the heavy cooling medium to the ice heat storage tank 1. Return to photography department 2.

氷蓄熱槽1内の水8は熱交換して一部が氷9となるが氷
は水8よりも軽いため氷蓄熱槽1の上方へ浮き、水より
も更に重い冷却媒体3は氷蓄熱槽1の底部2に沈澱する
The water 8 in the ice heat storage tank 1 undergoes heat exchange and part of it becomes ice 9, but since the ice is lighter than the water 8, it floats above the ice heat storage tank 1, and the cooling medium 3, which is even heavier than water, flows into the ice heat storage tank. It settles on the bottom 2 of 1.

冷却媒体を散布するため水8と良く熱交換し、シャーベ
ット状の氷粒9が析出し、熱交換した冷却媒体3は水8
を撹拌しながら水中を落下して氷蓄熱槽1の底部2に集
まる。
In order to disperse the cooling medium, it exchanges heat well with the water 8, and sherbet-like ice particles 9 are precipitated, and the heat exchanged cooling medium 3 becomes water 8.
While stirring, the ice falls through the water and collects at the bottom 2 of the ice heat storage tank 1.

散布する冷却媒体は直接に水8と接触していないため、
配管6の上部7を凍結させることはない。
Since the cooling medium to be sprayed is not in direct contact with the water 8,
The upper part 7 of the pipe 6 is not frozen.

また、冷却媒体3は直接冷凍機4へ導入することもでき
るので氷蓄熱装置としての効率が向上する。
Moreover, since the cooling medium 3 can be directly introduced into the refrigerator 4, the efficiency of the ice heat storage device is improved.

散布する冷却媒体は直接に水8と接触していないため、
配管6の上部7を凍結させること無く安全、且つ効率の
高い氷蓄熱装置登提供することができる。
Since the cooling medium to be sprayed is not in direct contact with the water 8,
A safe and highly efficient ice heat storage device can be provided without freezing the upper part 7 of the pipe 6.

また、冷却媒体を散布するため水8と良く熱交換し、シ
ャーベット状の氷粒9を析出するため氷蓄熱槽IFF 
(水充填効率)を高くすることができる。
In addition, in order to disperse the cooling medium, the ice heat storage tank IFF is used to exchange heat well with water 8 and to precipitate sherbet-like ice particles 9.
(water filling efficiency) can be increased.

さらに、冷却媒体3は直接冷凍機4へ導入することもで
きるので氷蓄熱装置としての効率が向上する。
Furthermore, since the cooling medium 3 can be directly introduced into the refrigerator 4, the efficiency of the ice heat storage device is improved.

また1本発明の他の実施例の氷蓄熱装置の要部構成を第
2図に示す。氷蓄熱槽1の底部2に熱交換器10を設置
してもよい。
FIG. 2 shows a main part configuration of an ice heat storage device according to another embodiment of the present invention. A heat exchanger 10 may be installed at the bottom 2 of the ice heat storage tank 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り本発明によれば、散布する冷却媒体が直
接蓄熱槽内の水と接触せず配管を凍結させることがなく
、冷却媒体を冷凍機に直接導入することもできるので安
全かつ効率の高い氷蓄熱装置を提供することができる。
As described above, according to the present invention, the cooling medium to be sprayed does not come into direct contact with the water in the heat storage tank and does not freeze the pipes, and the cooling medium can be directly introduced into the refrigerator, resulting in safe and efficient operation. A high ice heat storage device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の氷蓄熱装置の一実施例の要部構成図、
第2図は本発明の他の実施例を示す要部構成図である。 1・・・氷蓄熱槽      3・・・冷却媒体5・・
・冷凍機       6・・・配管8・・・水   
      9・・・氷粒代理人 弁理士 則 近 憲
 佑 第1図 第2図
FIG. 1 is a configuration diagram of the main parts of an embodiment of the ice heat storage device of the present invention,
FIG. 2 is a block diagram of main parts showing another embodiment of the present invention. 1...Ice heat storage tank 3...Cooling medium 5...
・Freezer 6...Piping 8...Water
9...Ice Grain Agent Patent Attorney Noriyuki Chika Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 氷蓄熱槽の貯水槽内に、比重量が氷の1.5倍以上で凝
固点が−20℃以下で、水に不溶解な冷却媒体(例えば
フロリナート液)を、0℃以下で氷蓄熱槽の底部に貯蔵
し、この冷却媒体を氷蓄熱槽の上部から散布し氷蓄熱槽
内に循環させる事により氷を析出させることを特徴とし
た氷蓄熱装置。
A cooling medium (for example, Fluorinert liquid) that is insoluble in water and has a specific weight of at least 1.5 times that of ice and a freezing point of -20°C or lower is added to the water tank of the ice thermal storage tank at a temperature of 0°C or lower. An ice heat storage device that stores ice at the bottom, and deposits ice by distributing this cooling medium from the top of the ice heat storage tank and circulating it within the ice heat storage tank.
JP2317696A 1990-11-26 1990-11-26 Ice heat accumulation device Pending JPH04190028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317696A JPH04190028A (en) 1990-11-26 1990-11-26 Ice heat accumulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317696A JPH04190028A (en) 1990-11-26 1990-11-26 Ice heat accumulation device

Publications (1)

Publication Number Publication Date
JPH04190028A true JPH04190028A (en) 1992-07-08

Family

ID=18091007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317696A Pending JPH04190028A (en) 1990-11-26 1990-11-26 Ice heat accumulation device

Country Status (1)

Country Link
JP (1) JPH04190028A (en)

Similar Documents

Publication Publication Date Title
Gawron et al. Properties of some salt hydrates for latent heat storage
CN102003836B (en) Low-temperature water source heat pump unit
JP2000205775A (en) Manufacture of clathrate hydrate slurry
JPH04190028A (en) Ice heat accumulation device
JPH04251139A (en) Ice heat accumulation device
Gladis et al. Ice crystal slurry TES system using the orbital rod evaporator
KR20070020712A (en) DOUBLE COOLING and STORAGING DEVICE SYSTEM
JPH04165277A (en) Ice making machinery for accumulating heat
JP3407659B2 (en) Air conditioning equipment
JP3197051B2 (en) Load storage water return method for ice storage system
JP2883168B2 (en) Heat storage device
JP2551817B2 (en) Refrigeration system using ice heat storage
JPH0477216B2 (en)
JP2834722B2 (en) Vacuum cooling device with regenerator
JPH02146437A (en) Ice heat accumulation device
SU992247A2 (en) Cooling unit of vehicle air-conditioning system
JPH04174229A (en) Ice heat storage device
JPH0359335A (en) Thermal accumulation system
JPH0399177A (en) Ice heat accumulating device
JP2755775B2 (en) Subcooler
JP2953827B2 (en) Ice storage device
JP3292502B2 (en) Ice storage device
CN113803809A (en) Cold storage refrigerating device
JP2003021366A (en) Hydrate slurry cold using system
JPH081346B2 (en) Ice storage method for heat storage