JPH07174372A - Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method - Google Patents

Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method

Info

Publication number
JPH07174372A
JPH07174372A JP5321794A JP32179493A JPH07174372A JP H07174372 A JPH07174372 A JP H07174372A JP 5321794 A JP5321794 A JP 5321794A JP 32179493 A JP32179493 A JP 32179493A JP H07174372 A JPH07174372 A JP H07174372A
Authority
JP
Japan
Prior art keywords
liquid
cooling medium
cooled
ice
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5321794A
Other languages
Japanese (ja)
Inventor
Akio Taya
昭夫 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUIKAN GIKEN KK
Original Assignee
SUIKAN GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUIKAN GIKEN KK filed Critical SUIKAN GIKEN KK
Priority to JP5321794A priority Critical patent/JPH07174372A/en
Publication of JPH07174372A publication Critical patent/JPH07174372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To maintain given heat exchanging and ice making effect for a long period of time by a method wherein two kinds of liquids, consisting of a liquid to be cooled and a cooling medium respectively, are contacted directly with each other in a gas phase space under the condition of thin films respectively to effect the heat exchange of the cooling medium under non-evaporated condition. CONSTITUTION:Two kinds of liquids, consisting of a liquid 13 to be cooled and a cooling medium 14 respectively, are contacted directly with each other in a gas phase space 5, having a pressure higher than the vapor pressure of the cooling medium 14, under thin film conditions respectively to effect the heat exchange of the cooling medium 14 under non-evaporated condition. The liquid 13 to be cooled is ejected out of an ejecting port 17 provided on an ejector 15. In this case, the ejected liquid 13 to be cooled forms a thin film section 18 while the film section 18 becomes thinner as it becomes farer from the ejecting port 17, then, the thin film section 18 is changed into mist section 19 from some time point due to a relation between an ejecting speed and a surface tension. On the other hand, the cooling medium 14, ejected out of another ejecting port 24 provided on another ejector 23, is contacted with the thin film section 18 to effect heat exchange of the cooling medium 14 under non-evaporated condition or the state of liquid as it is and ice a part of the liquid 13 to be cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換方法並びにそれ
による製氷方法及びその製氷方法を利用した氷蓄熱装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange method, an ice making method using the same, and an ice heat storage device using the ice making method.

【0002】[0002]

【従来の技術】従来の熱交換方法並びにそれによる製氷
方法としては、水に冷凍機によって例えば−7℃に冷却
した冷媒を直接に接触させ、前記冷媒の顕熱により水を
冷却して氷に変える原理に基づいた直接接触製氷方式が
注目され、以下に示す方式が試みられた。
2. Description of the Related Art As a conventional heat exchange method and ice making method using the same, a refrigerant directly cooled to -7 ° C. by a refrigerator is brought into direct contact with water, and the sensible heat of the refrigerant cools the water to form ice. The direct contact ice making method based on the principle of changing has attracted attention and the following methods have been tried.

【0003】図12は、前記方式の代表的なノズル方式の
一例であり、次のように作用するものである。即ち、冷
媒101 は冷媒取出手段102 を介して図示しない開閉バル
ブ、オイルポンプ、冷却管等を経て、冷凍機(図示しな
い)によって冷却される。次に、この冷却された冷媒10
1 は、冷媒供給手段103 を経て供給ノズル104 に供給さ
れ、当初、水面106 に向かって分散落下する。その後、
この水105 の中に落下した冷媒101 は水105 との比重差
によって、水105 の中を下降して最下層に達する。そし
て、この下降する過程で水105 と冷媒101 との間で熱交
換を行い、水105 が凍結温度まで冷却されて水105 の一
部を氷化する。そして、ここで生成された氷107 は水層
の上層部に浮上してスラリー状態に貯留されるのであ
る。尚、氷107 と水105 の間は氷水混合層108 である。
FIG. 12 shows an example of a typical nozzle system of the above system, which operates as follows. That is, the refrigerant 101 is cooled by a refrigerator (not shown) via an opening / closing valve, an oil pump, a cooling pipe, etc., which are not shown, via the refrigerant take-out means 102. Then, this cooled refrigerant 10
1 is supplied to the supply nozzle 104 via the refrigerant supply means 103, and initially, drops and disperses toward the water surface 106. afterwards,
The refrigerant 101 that has dropped into the water 105 descends in the water 105 and reaches the lowest layer due to the difference in specific gravity between the refrigerant 101 and the water 105. Then, during this descending process, heat exchange is performed between the water 105 and the refrigerant 101, the water 105 is cooled to the freezing temperature, and part of the water 105 is frozen. The ice 107 generated here floats above the upper layer of the water layer and is stored in a slurry state. An ice-water mixed layer 108 is between the ice 107 and the water 105.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記した
ものにあっては、時間の経過とともに浮上した氷107 の
量が増加してくると、冷媒101 が水面106 に直接接触す
る前に、氷107 の表面に接触するため氷107 と氷107 が
固着してブリッジングを起こす。従って、氷間の隙間が
閉ざされ冷媒101 が通過しにくくなり、冷媒101 と水10
5 との接触熱交換が加速度的に悪化し性能低下が急速に
進む等の欠点がある。
However, in the above-mentioned one, when the amount of the floating ice 107 increases with the lapse of time, before the refrigerant 101 directly contacts the water surface 106, the ice 107 Because of contact with the surface, ice 107 and ice 107 stick to each other and cause bridging. Therefore, the gap between the ice is closed and the refrigerant 101 becomes difficult to pass through, and the refrigerant 101 and the water 10
There is a drawback that contact heat exchange with 5 deteriorates at an accelerating rate and performance deteriorates rapidly.

【0005】更に、上記対策案として製氷器と貯氷槽を
分離することも考えられるが、前記供給ノズル104 から
噴射された冷媒101 の粒子が水面106 に当たり、水中に
沈降する過程で熱交換を行うものの、粒子と粒子が合体
して粒子径が大きくなって沈降速度を増すために十分な
熱交換が得られない。従って、冷媒101 の粒子同士が合
体しないように分散度を大きくしなければならないが、
冷媒量当たり極めて大きな製氷器の容積を必要とするた
め実用化が困難であり、何ら問題は解決しないのであ
る。
Further, although it is conceivable to separate the ice maker and the ice storage tank as the above countermeasure, heat exchange is performed in the process that the particles of the refrigerant 101 injected from the supply nozzle 104 hit the water surface 106 and settle in the water. However, since the particles are united with each other to increase the particle size and increase the sedimentation speed, sufficient heat exchange cannot be obtained. Therefore, the degree of dispersion must be increased so that the particles of the refrigerant 101 do not coalesce,
Since it requires an extremely large volume of ice making machine per amount of refrigerant, it is difficult to put it into practical use, and no problem is solved.

【0006】そこで本発明は以上のような実状に鑑みて
なされたものであり、その目的は、熱交換性能が悪化し
て性能が低下することなく、長時間一定の熱交換並びに
製氷効果を維持するとともに、しかもその熱交換量に比
して極めて小型の製氷器を設計できる熱交換方法並びに
それによる製氷方法と、市販又は既設の冷凍機に接続し
得る氷蓄熱装置とを提供することにある。
Therefore, the present invention has been made in view of the above situation, and an object thereof is to maintain a constant heat exchange and ice-making effect for a long time without deteriorating the heat exchange performance and deteriorating the performance. In addition, it is to provide a heat exchange method capable of designing an extremely small ice maker as compared with the amount of heat exchange, an ice making method therefor, and an ice heat storage device connectable to a commercially available or an existing refrigerator. .

【0007】更に、前記製氷方法を利用することにより
小型氷蓄熱装置のみならず大型氷蓄熱装置をも提供する
ことにある。
Another object of the present invention is to provide not only a small ice heat storage device but also a large ice heat storage device by utilizing the above ice making method.

【0008】[0008]

【課題を解決するための手段】そして、本発明の熱交換
方法は、被冷却液と冷却媒体からなる2種類の液体を気
相空間にてそれぞれ薄膜状態で直接接触させ、前記冷却
媒体が非蒸発状態のままで熱交換を行うものである。
In the heat exchange method of the present invention, two kinds of liquids, a liquid to be cooled and a cooling medium, are directly contacted in a thin film state in a vapor phase space, and the cooling medium is Heat is exchanged in the vaporized state.

【0009】また、本発明の製氷方法は、製氷貯氷槽内
の気相空間に被冷却液と冷却媒体を個別に噴射するため
の噴射ノズルを設定し、該噴射ノズルの適宜位置に設け
た被冷却液用噴射口から被冷却液を薄膜状態で噴射し、
一方、冷却媒体用噴射口から前記被冷却液の薄膜面に対
して前記冷却媒体を薄膜状態で直接接触させ、前記冷却
媒体が非蒸発状態のままで熱交換を行って前記被冷却液
の一部を氷化させるものである。
Further, in the ice making method of the present invention, an injection nozzle for individually injecting the liquid to be cooled and the cooling medium is set in the vapor phase space in the ice making storage tank, and the object to be placed at an appropriate position of the injection nozzle is set. Injects the liquid to be cooled in a thin film from the cooling liquid injection port,
On the other hand, the cooling medium is brought into direct contact with the thin film surface of the liquid to be cooled from the cooling medium injection port in a thin film state, and heat exchange is performed while the cooling medium remains in a non-evaporated state to obtain one of the liquid to be cooled. The part is to be frozen.

【0010】次に、本発明の氷蓄熱装置は、製氷貯氷槽
と;前記被冷却液と冷却媒体とを個別に噴射するための
被冷却液用噴射口と冷却媒体用噴射口とを設け、前記被
冷却液用噴射口から被冷却液を薄膜状態で噴射し、一
方、前記冷却媒体用噴射口から前記被冷却液の薄膜面に
対して前記冷却媒体を薄膜状態で直接接触させ、前記製
氷貯氷槽内の気相空間に設定してなる噴射ノズルと;前
記製氷貯氷槽内の被冷却液の液相中から導出され途中に
循環ポンプを設け、前記被冷却液を前記噴射ノズルに供
給する被冷却液用循環路と;前記製氷貯氷槽内の底部に
沈んだ冷却媒体あるいは液相上部に浮いた冷却媒体の液
相中から導出され、途中に蒸発器、圧縮機、凝縮器、減
圧弁からなる冷凍機を、前記蒸発器を介して接続し、前
記冷却媒体を前記噴射ノズルに供給する冷却媒体用循環
路とを備えたものである。
Next, the ice heat storage device of the present invention is provided with an ice making storage tank; an injection port for the liquid to be cooled and an injection port for the cooling medium for individually injecting the liquid to be cooled and the cooling medium, The cooled liquid is jetted in a thin film state from the cooled liquid jet port, while the cooling medium is directly contacted in the thin film state from the cooling medium jet port to the thin film surface of the cooled liquid, and the ice making is performed. An injection nozzle set in a vapor phase space in the ice storage tank; a circulation pump provided in the middle of the liquid phase of the liquid to be cooled in the ice making storage tank to supply the liquid to be cooled to the injection nozzle A circulation path for the liquid to be cooled; derived from the liquid phase of the cooling medium sinking at the bottom of the ice making storage tank or floating at the upper part of the liquid phase, and an evaporator, a compressor, a condenser, a pressure reducing valve on the way. Connected to the refrigerator via the evaporator, and the cooling medium is sprayed. It is obtained by a cooling medium circulating path for supplying to the nozzle.

【0011】更に、本発明の氷蓄熱装置は、製氷貯氷槽
と;前記被冷却液と冷却媒体とを個別に噴射するための
被冷却液用噴射口と冷却媒体用噴射口とを設け、前記被
冷却液用噴射口から被冷却液を薄膜状態で噴射し、一
方、前記冷却媒体用噴射口から前記被冷却液の薄膜面に
対して前記冷却媒体を薄膜状態で直接接触させ、前記製
氷貯氷槽内の気相空間に設定してなる噴射ノズルと;前
記製氷貯氷槽内の被冷却液の液相中から導出され途中に
循環ポンプを設け、前記被冷却液を前記噴射ノズルに供
給する被冷却液用循環路と;前記製氷貯氷槽内の底部に
沈んだ冷却媒体あるいは液相上部に浮いた冷却媒体の液
相中から導出され、途中に圧縮機と凝縮器を内蔵する室
外機、蒸発器を内蔵する複数の室内機からなる冷凍機
を、新たに付加する蒸発器を介して接続し、前記冷却媒
体を前記噴射ノズルに供給する冷却媒体用循環路とを備
えたものである。
Further, the ice heat storage device of the present invention is provided with an ice making storage tank; a cooled liquid jet port and a cooling medium jet port for individually jetting the liquid to be cooled and the cooling medium. The cooled liquid is jetted in a thin film state from the cooled liquid jet port, while the cooling medium is directly contacted in a thin film state from the cooling medium jet port to the thin film surface of the cooled liquid, and the ice making ice storage An injection nozzle set in a vapor phase space in the tank; a circulation pump provided in the middle of the liquid phase of the liquid to be cooled in the ice making storage tank to supply the liquid to be cooled to the injection nozzle. A circulation path for the cooling liquid; an outdoor unit that is derived from the liquid phase of the cooling medium that sinks at the bottom of the ice making storage tank or the cooling medium that floats above the liquid phase and that has a compressor and condenser inside A new refrigerator with a refrigerator consisting of multiple indoor units Connected via a vessel, in which the cooling medium and a cooling medium circulation path for supplying to said injection nozzle.

【0012】[0012]

【作用】以上のような構成にしてなる本発明の熱交換方
法においては、被冷却液と冷却媒体からなる2種類の液
体を気相空間にてそれぞれ薄膜状態で直接接触させ、前
記冷却媒体が非蒸発状態のままで効率の良い熱交換が行
われる。
In the heat exchange method of the present invention having the above-mentioned structure, two kinds of liquids, the liquid to be cooled and the cooling medium, are brought into direct contact with each other in a thin film state in the vapor phase space, and the cooling medium is Efficient heat exchange is performed in the non-evaporated state.

【0013】また、本発明の製氷方法においては、製氷
貯氷槽内の気相空間に被冷却液と冷却媒体を個別に噴射
するための噴射ノズルを設定し、該噴射ノズルの適宜位
置に設けた被冷却液用噴射口から被冷却液を薄膜状態で
噴射し、一方、冷却媒体用噴射口から前記被冷却液の薄
膜面に対して前記冷却媒体を薄膜状態で直接接触させ、
前記冷却媒体が非蒸発状態のままで熱交換を行って前記
被冷却液の一部を氷化して製氷されるのである。
Further, in the ice making method of the present invention, an injection nozzle for individually injecting the liquid to be cooled and the cooling medium is set in the vapor phase space in the ice making storage tank, and provided at an appropriate position of the injection nozzle. The cooled liquid is jetted in a thin film state from the cooled liquid jet port, while the cooling medium is directly contacted in a thin film state from the cooling medium jet port to the thin film surface of the cooled liquid,
The cooling medium is heat-exchanged in a non-evaporated state to partially liquefy the liquid to be cooled to make ice.

【0014】次に、本発明の氷蓄熱装置においては、前
記製氷貯氷槽内の被冷却液の液相中から導出された被冷
却液用循環路の途中に循環ポンプを設け、前記噴射ノズ
ルに供給される被冷却液と、前記製氷貯氷槽内の底部に
沈んだ冷却媒体あるいは液相上部に浮いた冷却媒体の液
相中から導出された冷却媒体用循環路の途中に蒸発器、
圧縮機、凝縮器、減圧弁からなる冷凍機を、前記蒸発器
を介して接続し、前記噴射ノズルに供給される冷却媒体
とを前記製氷貯氷槽内の気相空間にてそれぞれ薄膜状態
で噴射する。そして、前記被冷却液の薄膜面に対して前
記冷却媒体を薄膜状態で直接接触させることにより、前
記冷却媒体は非蒸発状態のままで熱交換を行い、一方の
前記被冷却液の一部は氷化して製氷される。また前記製
氷貯氷槽の底部に沈んだ冷却媒体あるいは液相上部に浮
いた冷却媒体は、前記同様、冷却媒体用循環路を経て循
環ポンプに再び導かれるのである。一方、一部氷化した
冷水は、浮いた氷の間を沈下して被冷却液用循環路を経
て循環ポンプに再び導かれるのである。
Next, in the ice heat storage device of the present invention, a circulation pump is provided in the circulation path for the liquid to be cooled derived from the liquid phase of the liquid to be cooled in the ice making storage tank, and the injection nozzle is provided with the circulating pump. The liquid to be cooled supplied and the evaporator in the middle of the cooling medium circulation path derived from the liquid phase of the cooling medium sunk at the bottom of the ice making storage tank or the cooling medium floating above the liquid phase,
A refrigerator comprising a compressor, a condenser, and a pressure reducing valve is connected via the evaporator, and a cooling medium supplied to the injection nozzle is injected in a thin film state in a vapor phase space in the ice making storage tank. To do. Then, by directly contacting the cooling medium in a thin film state with respect to the thin film surface of the liquid to be cooled, the cooling medium performs heat exchange in a non-evaporated state, and a part of the liquid to be cooled is It is made into ice and made into ice. Further, the cooling medium sinking at the bottom of the ice making storage tank or the cooling medium floating at the upper part of the liquid phase is again guided to the circulation pump through the circulation passage for the cooling medium. On the other hand, the partially iced cold water sinks between the floating ice, and is led again to the circulation pump via the circulation path for the liquid to be cooled.

【0015】更に、本発明の氷蓄熱装置においては、前
記製氷貯氷槽内の被冷却液の液相中から導出された被冷
却液用循環路の途中に循環ポンプを設け、前記噴射ノズ
ルに供給される被冷却液と、前記製氷貯氷槽内の底部に
沈んだ冷却媒体あるいは液相上部に浮いた冷却媒体の液
相中から導出された冷却媒体用循環路の途中に圧縮機と
凝縮器を内蔵する室外機、蒸発器を内蔵する複数の室内
機からなる冷凍機を、新たに付加する蒸発器を介して接
続し、前記噴射ノズルに供給される冷却媒体とを前記製
氷貯氷槽内の気相空間にてそれぞれ薄膜状態で噴射す
る。そして、前記被冷却液の薄膜面に対して前記冷却媒
体を薄膜状態で直接接触させることにより、前記冷却媒
体は非蒸発状態のままで熱交換を行い、一方の前記被冷
却液の一部は氷化して製氷される。また前記製氷貯氷槽
の底部に沈んだ冷却媒体あるいは液相上部に浮いた冷却
媒体は、前記同様、冷却媒体用循環路を経て循環ポンプ
に再び導かれるのである。一方、一部氷化した冷水は、
浮いた氷の間を沈下して被冷却液用循環路を経て循環ポ
ンプに再び導かれるのである。尚、解氷時には前記新た
に付加した蒸発器を凝縮器として機能させ、その凝縮し
た冷凍機の冷媒を冷媒ポンプで昇圧し、室内機へ送り出
すのである。
Further, in the ice heat storage device of the present invention, a circulation pump is provided in the middle of the circulation path for the liquid to be cooled, which is derived from the liquid phase of the liquid to be cooled in the ice making storage tank, and is supplied to the jet nozzle. The liquid to be cooled, and a compressor and a condenser in the middle of the cooling medium circulation path derived from the liquid phase of the cooling medium sinking at the bottom of the ice making storage tank or the cooling medium floating above the liquid phase. A refrigerator comprising an indoor unit having a built-in outdoor unit and a plurality of indoor units having a built-in evaporator is connected via a newly added evaporator, and the cooling medium supplied to the injection nozzle is connected to the air inside the ice making storage tank. Inject each in a thin film state in the phase space. Then, by directly contacting the cooling medium in a thin film state with respect to the thin film surface of the liquid to be cooled, the cooling medium performs heat exchange in a non-evaporated state, and a part of the liquid to be cooled is It is made into ice and made into ice. Further, the cooling medium sinking at the bottom of the ice making storage tank or the cooling medium floating at the upper part of the liquid phase is again guided to the circulation pump through the circulation passage for the cooling medium. On the other hand, cold water that has partially frozen
It sinks between the floating ice and is led again to the circulation pump via the circulation path for the liquid to be cooled. When the ice is thawed, the newly added evaporator functions as a condenser, and the condensed refrigerant of the refrigerator is pressurized by the refrigerant pump and sent out to the indoor unit.

【0016】[0016]

【実施例】本発明の詳細を更に図示した実施例に基づい
て説明する。
The details of the present invention will be described with reference to the illustrated embodiments.

【0017】図1は本発明に係る基本原理を示したもの
であって、被冷却液13と冷却媒体14からなる2種類の液
体を前記冷却媒体14の蒸気圧よりも高い圧力の気相空間
5にてそれぞれ薄膜状態で直接接触させ、前記冷却媒体
14を非蒸発状態のままで熱交換を行うものである。図1
に示す如く、噴射装置15に設けられた噴射口17から前記
被冷却液13を噴射させる。そして、噴射した被冷却液13
は薄膜部18を形成し、前記噴射口17から離れるにつれて
序々に薄くなって、ついにある時点で噴射速度と表面張
力との関係からミスト部19に変わるのである。そして、
一方の噴射装置23に設けられた噴射口24から噴射された
冷却媒体14を前記薄膜部18に接触させ、前記冷却媒体14
を非蒸発状態、即ち液体のままで熱交換を行って前記被
冷却液13の一部を氷化させ、製氷効率を高めることがで
きるのである。これは前記冷却媒体14の蒸気圧よりも高
い圧力の気相空間を設定することにより実現できるもの
である。
FIG. 1 shows the basic principle according to the present invention. Two kinds of liquid consisting of a liquid to be cooled 13 and a cooling medium 14 are used in a vapor phase space having a pressure higher than the vapor pressure of the cooling medium 14. 5 directly contact each other in a thin film state to obtain the cooling medium.
The heat exchange is performed while 14 is left in the non-evaporated state. Figure 1
As shown in, the liquid to be cooled 13 is jetted from the jet port 17 provided in the jetting device 15. Then, the injected cooled liquid 13
Forms a thin film portion 18, gradually thins away from the injection port 17, and finally changes to a mist portion 19 due to the relationship between the injection speed and the surface tension at a certain point. And
The cooling medium 14 jetted from the jet port 24 provided in one jetting device 23 is brought into contact with the thin film portion 18, and the cooling medium 14
In the non-evaporated state, that is, by performing heat exchange in the liquid state, a part of the liquid to be cooled 13 is iced, and the ice making efficiency can be improved. This can be realized by setting the vapor phase space at a pressure higher than the vapor pressure of the cooling medium 14.

【0018】図2に示すものは前記噴射口17から被冷却
液13を噴射した状態の説明図である。そして本発明の噴
射口17は円弧状に形成され、噴射速度と表面張力との関
係から滑らかな薄膜に広がり、同一半径上あるいは噴射
口17からの距離が同じ位置では均一な厚みとなる薄膜部
18を形成し、ついにある時点で噴射速度と表面張力との
関係からミスト部19に変わるのである。また円弧状の噴
射口17は等間隔で複数設けることが可能であるが、円弧
状のみならず全周を切欠いて噴射させることも適宜採用
可能である。更に、必要時に合わせて前記噴射口17にパ
ッキン等を取付けることによって、薄膜の厚みを自在に
変更することもできるのである。尚、噴射口17の形状を
円弧状のみならず直線状、曲線状等に形成することも別
段問題を有しないところである。
FIG. 2 is an explanatory view of a state in which the liquid to be cooled 13 is jetted from the jet port 17. And the injection port 17 of the present invention is formed in an arc shape, spreads into a smooth thin film due to the relationship between the injection speed and the surface tension, and a thin film portion having a uniform thickness on the same radius or at the same distance from the injection port 17
18 is formed, and at some point, the mist portion 19 is finally changed due to the relationship between the injection speed and the surface tension. Further, a plurality of arc-shaped injection ports 17 can be provided at equal intervals, but it is also possible to employ not only arc-shaped injection ports 17 but also cut out the entire circumference for injection. Furthermore, the thickness of the thin film can be freely changed by attaching a packing or the like to the injection port 17 as needed. It should be noted that forming the injection port 17 not only in an arc shape but also in a linear shape, a curved shape or the like does not pose any particular problem.

【0019】以上のような基本原理の発想に基づいて本
発明者は、鋭意検討を行い、以下に示す氷蓄熱装置を開
発するに至った。
Based on the idea of the basic principle as described above, the present inventor has earnestly studied and developed the ice heat storage device described below.

【0020】図3に示したものは本発明の氷蓄熱装置に
おける実施例の説明図であり、これは建物の室内機27
(ファンコイルユニット)へ冷水を循環させるタイプの
冷凍機B(一般名として、空冷チラー、水冷チラー、ブ
ラインチラー、チリングユニット等と称されるもの)に
製氷貯氷槽ユニットAを接続したものである。そして、
本装置を用いて製氷作業を行うには、先ず、製氷貯氷槽
1内の被冷却液13の液相中から導出された被冷却液用循
環路22の途中に被冷却液用循環ポンプ2、熱交換器11を
設け、前記被冷却液13を製氷貯氷槽1内の気相空間5に
設定した噴射ノズル16に供給する。一方、前記製氷貯氷
槽1内の底部に沈んだ冷却媒体14の液相中から導出され
た冷却媒体用循環路8の途中に冷却媒体用循環ポンプ10
等を設け、次いで蒸発器9、圧縮機3、凝縮器4、減圧
弁7等からなる冷凍機Bを前記蒸発器9を介して接続
し、前記冷却媒体14を製氷貯氷槽1内の気相空間5に設
定した噴射ノズル16に供給する。尚、明細書中に記載す
る「製氷貯氷槽」は、図3に示す一体型の場合及び、大
型機で製氷槽と貯氷槽を分離設置する場合、更には、製
氷槽を貯氷槽の上部に一体的に設置する場合を含む概念
である。
FIG. 3 is an explanatory view of an embodiment of the ice heat storage device of the present invention, which is an indoor unit 27 of a building.
An ice making storage tank unit A is connected to a refrigerator B (commonly called an air cooling chiller, a water cooling chiller, a brunch chiller, a chilling unit, etc.) of a type in which cold water is circulated to a (fan coil unit). . And
In order to perform the ice making operation using this device, first, the circulation pump 2 for the liquid to be cooled is provided in the middle of the circulation path 22 for the liquid to be cooled which is derived from the liquid phase of the liquid to be cooled 13 in the ice making storage tank 1. A heat exchanger 11 is provided, and the liquid to be cooled 13 is supplied to the injection nozzle 16 set in the vapor phase space 5 in the ice making storage tank 1. On the other hand, the cooling medium circulation pump 10 is provided in the middle of the cooling medium circulation path 8 derived from the liquid phase of the cooling medium 14 sinking at the bottom of the ice making storage tank 1.
Etc., and then a refrigerator B comprising an evaporator 9, a compressor 3, a condenser 4, a pressure reducing valve 7 and the like is connected via the evaporator 9, and the cooling medium 14 is put in a vapor phase in the ice making storage tank 1. It is supplied to the injection nozzle 16 set in the space 5. The “ice-making storage tank” described in the specification is an integrated type shown in FIG. 3, and when the ice-making tank and the ice-storage tank are separately installed with a large machine, further, the ice-making tank is placed above the ice-storage tank. This is a concept including the case where they are installed integrally.

【0021】そして、前記冷却媒体14と被冷却液13は各
々図1に示す如く個別に噴射して、前記製氷貯氷槽1内
部であって、前記冷却媒体14の蒸気圧よりも遙に高い圧
力の気相空間5で初めて直接接触させるのである。従っ
て、このような接触方法を採用することにより、前記冷
却媒体14自身は蒸発することなく液体のままで熱交換を
行い、大気圧下で前記被冷却液13の一部は氷化され氷6
が生成するのである。また、接触の角度は前記被冷却液
13の薄膜面に対して少なくとも鋭角であることが望まし
く、更に、前記被冷却液13の薄膜面に対して前記冷却媒
体14を沿わせる状態にまで角度を小さくすれば、より完
全に冷却媒体14が被冷却液13と接触し、熱交換性能が飛
躍的に向上するものである。また、前記冷却媒体14が蒸
発しないことにより冷媒ガスの発生がないので、薄膜の
形成に悪影響を及ぼすことがないのである。よって、図
3に示す如く噴射ノズル16を複数重合しても何ら差し支
えないのである。尚、本発明の製氷貯氷槽ユニットAに
用いる前記冷却媒体14は、−10℃であっても凝固せ
ず、且つ図3に示すように水よりも比重が大きいものと
しては、例えば、ハイドロフルオロカーボン、フルオロ
カーボン等が適している。一方、冷凍機Bに循環使用し
ている冷却媒体28はR22等である。即ち、製氷のための
冷却媒体14と冷凍機Bの冷却媒体28は直接接触するので
はなく、前記冷凍機Bの蒸発器9を介して間接的に熱交
換されるのである。尚、本発明は冷却媒体14として水よ
りも比重が軽いものを用いることも可能である。
Then, the cooling medium 14 and the liquid to be cooled 13 are individually sprayed as shown in FIG. 1, and the pressure inside the ice making storage tank 1 is much higher than the vapor pressure of the cooling medium 14. The first direct contact is made in the gas phase space 5. Therefore, by adopting such a contact method, the cooling medium 14 itself does not evaporate and performs heat exchange with the liquid as it is, and a part of the liquid to be cooled 13 is iced under the atmospheric pressure.
Is generated. The contact angle is the liquid to be cooled.
It is desirable that at least an acute angle is formed with respect to the thin film surface of 13, and further, if the angle is reduced to a state in which the cooling medium 14 is along the thin film surface of the liquid to be cooled 13, the cooling medium 14 can be more completely. Comes into contact with the liquid to be cooled 13, and the heat exchange performance is dramatically improved. Further, since the cooling medium 14 does not evaporate and no refrigerant gas is generated, the formation of the thin film is not adversely affected. Therefore, there is no problem even if a plurality of injection nozzles 16 are overlapped as shown in FIG. The cooling medium 14 used in the ice making storage tank unit A of the present invention does not solidify even at −10 ° C. and has a specific gravity larger than that of water as shown in FIG. , Fluorocarbon, etc. are suitable. On the other hand, the cooling medium 28 circulated in the refrigerator B is R22 or the like. That is, the cooling medium 14 for ice making and the cooling medium 28 of the refrigerator B are not in direct contact with each other, but heat is indirectly exchanged via the evaporator 9 of the refrigerator B. In the present invention, it is possible to use, as the cooling medium 14, one having a specific gravity lighter than that of water.

【0022】以上の手法により、夜間に割安な夜間電力
を利用して製氷貯氷した冷熱は、以下のようにして建物
の各室内への冷房に使用される。被冷却液13の冷熱は、
図3に示すように前記熱交換器11を介して建物内への冷
水供給管29を流れる建物内循環水によって各室内に伝え
られ、ファンコイルユニット27によって室内冷房に供さ
れる。一方、前記熱交換器11にて温められた被冷却液14
は、前記噴射ノズル16を通じて蓄えられたシャーベット
状の氷6の上に散布され、氷6を溶かすことで冷やさ
れ、製氷貯氷槽1の底部に溜まる。このように解氷運転
は、冷凍機Bを停止していても可能であるが、冷凍機B
を同時に運転することも勿論可能である。尚、図3では
解氷の場合の流れを2点鎖線の矢印で示すが、この時の
冷水の流れは両切換弁31、31を切換えることによってな
される。
With the above-described method, the cold heat stored in the ice making by using cheap nighttime electric power at night is used for cooling each room in the building as follows. The cold heat of the liquid to be cooled 13 is
As shown in FIG. 3, it is transmitted to each room by the circulating water in the building flowing through the cold water supply pipe 29 to the inside of the building through the heat exchanger 11, and is supplied to the indoor cooling by the fan coil unit 27. On the other hand, the liquid to be cooled 14 heated in the heat exchanger 11
Is sprayed on the sherbet-shaped ice 6 accumulated through the jet nozzle 16, cooled by melting the ice 6, and accumulated at the bottom of the ice making storage tank 1. As described above, the defrosting operation is possible even when the refrigerator B is stopped,
It is of course possible to drive the cars at the same time. In FIG. 3, the flow in the case of thawing is shown by the two-dot chain line arrow, but the flow of cold water at this time is made by switching both switching valves 31, 31.

【0023】そして、図3では、解氷運転時に冷凍機B
を同時に運転する時、建物内循環水を直列的に冷却する
直列方式となっている。図3の点線で示した出入部30を
通過する建物内循環水はその出入熱量の内1/2強が先
に冷凍機Bで冷やされ、続いて前記熱交換器11を介して
残り1/2弱が冷やされる。即ち、夜間運転により製氷
貯氷した冷熱量と昼間運転時の冷熱量とで、本来の冷凍
機Bの能力の2倍弱の冷熱出力が可能となる。以上、こ
れは建物内循環水の温度差を大きくする場合の説明図で
ある。一方、冷凍機Bの冷熱と氷蓄熱の冷熱を並列につ
なぐことによって温度差を通常と同じく5℃として、循
環水量を増す方式も当然とり得る。
Further, in FIG. 3, the refrigerator B is operated during the thawing operation.
When operating at the same time, it is a serial system that cools the circulating water in the building in series. The circulating water in the building passing through the inlet / outlet part 30 shown by the dotted line in FIG. 3 has a little more than 1/2 of the amount of heat input / output thereof, which is first cooled by the refrigerator B, and then 1 / A little less than 2 is chilled. That is, the cold heat output of ice making and ice storage by night operation and the cold heat amount during daytime operation make it possible to output a cold heat of slightly less than twice the original capacity of the refrigerator B. As described above, this is an explanatory diagram in the case of increasing the temperature difference of the circulating water in the building. On the other hand, a system of increasing the amount of circulating water by connecting the cold heat of the refrigerator B and the cold heat of the ice storage in parallel so that the temperature difference is 5 ° C. as in the normal case can be taken.

【0024】更に、前記した直列方式の場合は、熱交換
器11を設置せずに、被冷却液13を建物内への冷水供給管
29を通じて建物内循環水と共用とすることも可能であ
る。ファンコイルユニット27への建物内循環水の温度は
通常入口が7℃、出口が12℃に設定されるが、この場合
は、0℃を下限とする被冷却液13をファンコイルユニッ
ト27に供給することができ、それにより、ファンコイル
ユニット27の冷房出力を増加せしめることができる。但
し、この場合は冷却媒体14が建物内循環水と直接接触す
ることになるので冷却媒体14としては無害のものが必要
である。尚、以上の解氷運転は図3の製氷槽と貯氷槽が
一体の場合で説明したが、製氷槽と貯氷槽を分離する方
が好ましいような大型機においても、製氷槽と貯氷槽を
分離するために必要なスラリーポンプ、解氷用スプレー
構造等を除けば、その基本のシステムは同じである。
Further, in the case of the above-mentioned series system, the heat exchanger 11 is not installed, and the liquid to be cooled 13 is a pipe for supplying cold water into the building.
It is also possible to share it with circulating water in the building through 29. The temperature of circulating water in the building to the fan coil unit 27 is normally set to 7 ° C at the inlet and 12 ° C at the outlet. In this case, the liquid to be cooled 13 whose lower limit is 0 ° C is supplied to the fan coil unit 27. Therefore, the cooling output of the fan coil unit 27 can be increased. However, in this case, since the cooling medium 14 comes into direct contact with the circulating water in the building, a harmless cooling medium is required. Although the above-described defrosting operation has been described in the case where the ice making tank and the ice storage tank are integrated in Fig. 3, the ice making tank and the ice storage tank are separated even in a large machine in which it is preferable to separate the ice making tank and the ice storage tank. The basic system is the same, except for the slurry pump, the defrosting spray structure, etc. which are necessary for the operation.

【0025】そして本願の目的の1つは、量産低価格の
非蓄熱の市販標準型あるいは既設の冷凍機Bに図3に示
す如く、製氷貯氷槽ユニットAを接続することで、解氷
特性の良いシャーベット状氷を製氷するダイナミック型
の氷蓄熱装置を低価格で製作できるようにすることであ
った。そして図3の実施例の冷凍機Bは、建物内のファ
ンコイルユニット27へ冷水を循環させるタイプであり、
これに対して、図4に示すように、冷凍機Dの冷媒を建
物内へ循環させるタイプの冷凍機D(一般名として、ビ
ル用マルチエアコンと称されるもの)も存在する。この
冷凍機Dは、圧縮機と凝縮器を内蔵する室外機35並び
に、蒸発器を内蔵する複数の室内機36からなるものであ
り、本願の製氷貯氷槽ユニットCは前記冷凍機Dにも接
続可能である。但し、図4の実施例での製氷貯氷槽ユニ
ットCには、冷凍機Dとは別に設置する蒸発器32と冷凍
機Dの冷却媒体37であるR22等を昇圧するための冷媒ポ
ンプ34が含まれている。前記蒸発器32は製氷時には蒸発
器として機能するものであり、この時のシステムは基本
的に図3の実施例と同じである。次に、解氷時には前記
蒸発器32は凝縮器として機能するものであって、その凝
縮した冷凍機Dの蒸発器32の冷却媒体37を冷媒ポンプ34
で昇圧し、室内機36へ送り出す。従って、この解氷運転
時には、圧縮機の方は、運転停止共に可能となる。即
ち、室内機36の蒸発器で冷房に供されて、ガス化した冷
却媒体37の一部あるいは全てを凝縮機(蒸発器32)で冷
却凝縮し、これにより、夜間蓄積した冷熱を取り出し、
次いで冷媒ポンプ34で液体の冷却媒体37を室内機36に送
り出すことになる。
One of the objects of the present application is to connect the ice-making ice storage tank unit A to a mass-produced low-cost non-heat storage commercial standard type or an existing refrigerator B as shown in FIG. It was to be able to manufacture a dynamic ice heat storage device that makes good sherbet ice at a low price. The refrigerator B of the embodiment shown in FIG. 3 is of a type in which cold water is circulated to the fan coil unit 27 in the building,
On the other hand, as shown in FIG. 4, there is also a refrigerator D of a type in which the refrigerant of the refrigerator D is circulated into the building (generally called a multi air conditioning system for buildings). This refrigerator D comprises an outdoor unit 35 having a compressor and a condenser built-in, and a plurality of indoor units 36 having an evaporator built-in. The ice making storage tank unit C of the present application is also connected to the refrigerator D. It is possible. However, the ice-making storage tank unit C in the embodiment of FIG. 4 includes an evaporator 32 installed separately from the refrigerator D and a refrigerant pump 34 for pressurizing R22 or the like as a cooling medium 37 of the refrigerator D. Has been. The evaporator 32 functions as an evaporator during ice making, and the system at this time is basically the same as that of the embodiment shown in FIG. Next, at the time of thawing, the evaporator 32 functions as a condenser, and the condensed cooling medium 37 of the evaporator 32 of the refrigerator D is transferred to the refrigerant pump 34.
The pressure is increased by and is sent to the indoor unit 36. Therefore, during this deicing operation, the compressor can be stopped. That is, the evaporator of the indoor unit 36 is used for cooling, and part or all of the gasified cooling medium 37 is cooled and condensed by the condenser (evaporator 32), whereby the cold heat accumulated at night is taken out,
Then, the cooling medium pump 37 delivers the liquid cooling medium 37 to the indoor unit 36.

【0026】次に図5に示すものは、前述した噴射ノズ
ル16を具体的に本発明に係る氷蓄熱装置に用いたもので
あって、前記製氷貯氷槽1に設けたフランジ20に設置し
た状態の簡易説明図である。先ず、前記被冷却液用循環
路22から送りこまれた被冷却液13は図示の如く、先端部
に形成した被冷却液用噴射口17aから噴射される。そし
て前記冷却媒体用循環路8から送りこまれた冷却媒体14
も先端部に形成した冷却媒体用噴射口17bから噴射され
るのである。そして、図示したものは後述すべく、全周
から噴射しているものであるが、数箇所に分割しても良
いのである。また、熱交換性能を高めるためには、少し
でも気相空間5で浮遊している時間が長ければよいので
噴射角度は図示の如く水平方向あるいは稍上方に向けて
噴射するのが最適である。一方、製氷時及び解氷時には
製氷貯氷槽1内の全体に散布する方が好ましいので、前
記被冷却液用噴射口17aから噴射される被冷却液13の噴
射速度あるいは噴射角度を適宜変更することができる。
また、前記冷却媒体用循環路8によって送りこまれた冷
却媒体14は図示の如く冷却媒体用噴射口17bから被冷却
液13の薄膜部18に向けて噴射し、接触させるものであ
る。このようにすることによって、より完全な接触が得
られ熱交換性能が飛躍的に向上するのである。尚、製氷
貯氷槽1内の全体に散布できるように前述のみならず、
前記噴射ノズル16の下端33を解氷用スプレー構造とする
ことも可能である。
Next, as shown in FIG. 5, the above-mentioned injection nozzle 16 is specifically used in the ice heat storage device according to the present invention, and is installed on the flange 20 provided in the ice making storage tank 1. FIG. First, the liquid-to-be-cooled 13 sent from the circulation passage 22 for the liquid-to-be-cooled is jetted from an injection port 17a for the liquid-to-be-cooled formed in the tip end portion as shown in the drawing. The cooling medium 14 sent from the cooling medium circulation path 8
Is also injected from the cooling medium injection port 17b formed at the tip. Further, as shown in the figure, as will be described later, the fuel is injected from the entire circumference, but it may be divided into several places. Further, in order to improve the heat exchange performance, it is sufficient that the floating time in the gas phase space 5 is long as much as possible, so that it is optimal to inject the spray angle horizontally or upward as shown in the drawing. On the other hand, since it is preferable to sprinkle the whole inside of the ice making storage tank 1 at the time of ice making and thawing, it is necessary to appropriately change the jet speed or the jet angle of the liquid to be cooled 13 jetted from the jet 17a for the liquid to be cooled. You can
Further, the cooling medium 14 sent by the cooling medium circulation path 8 is jetted from the cooling medium jet port 17b toward the thin film portion 18 of the liquid to be cooled 13 as shown in the figure, and brought into contact therewith. By doing so, more complete contact can be obtained and the heat exchange performance is dramatically improved. In addition, not only the above so that it can be sprayed throughout the ice making storage tank 1,
The lower end 33 of the jet nozzle 16 can be made to have a spray structure for melting ice.

【0027】図6は前記噴射ノズル16の拡大半断面図で
あり、被冷却液13は水平方向に被冷却液用噴射口17aに
おいて約1〜5mm厚で噴射され、一方冷却媒体14は前記
被冷却液13の薄膜部18に向けて冷却媒体用噴射口17bに
おいて被冷却液13と同程度ないし数倍の厚みで噴射する
ことが適している。そして、前記冷却媒体14は非蒸発状
態のままで熱交換を行うのでガスの発生がなく、膜形成
を阻害することがない。そして前記冷却媒体14の顕熱に
よって被冷却液13を凍らせ、一方、冷却媒体14は温度上
昇し0℃に近づく。従って、蒸発することで相手を冷却
する冷媒(冷凍機の冷却媒体)を用いる直接接触方式に
比べると冷却媒体14の噴射量が遙に多くなる。
FIG. 6 is an enlarged half cross-sectional view of the injection nozzle 16, in which the liquid to be cooled 13 is horizontally ejected at a thickness of about 1 to 5 mm at the liquid ejection port 17a for the liquid to be cooled, while the cooling medium 14 is to be ejected. It is suitable that the cooling liquid 13 is jetted toward the thin film portion 18 at the cooling medium jet port 17b with the same or several times as thick as the liquid to be cooled 13. Since the cooling medium 14 exchanges heat in the non-evaporated state, no gas is generated and the film formation is not hindered. Then, the liquid to be cooled 13 is frozen by the sensible heat of the cooling medium 14, while the temperature of the cooling medium 14 rises and approaches 0 ° C. Therefore, the injection amount of the cooling medium 14 is much larger than that in the direct contact method using the refrigerant (the cooling medium of the refrigerator) that cools the other party by evaporating.

【0028】そして図7は前記製氷貯氷槽1の上部から
見た簡易説明図であり、前記製氷貯氷槽1の全周に冷却
媒体14と被冷却液13を噴射させているものである。ま
た、図8に示す如く、被冷却液13を冷却媒体14、14によ
って上下から挟み込み、3層の液膜を形成するような噴
射手法が考えられる。この手法では、冷却媒体14の噴射
厚みを1層の場合の1/2として2倍の液々接触面積が
得られるのである。そして、図5に示したものは例示で
あって、単位の噴射ノズル16としているが、大型機に使
用する際には、前記図3、図4に示す如く複数の噴射ノ
ズル16を重合して多数段とすることが適している。ま
た、製氷槽と貯氷槽を分離することも可能であり、高効
率、大容量の大型氷蓄熱装置が実現するのである。ま
た、分離型ではスラリーポンプ等が追加必要となるが、
分離のために必要とするものを除けば前記図3、図4に
示す説明図と同一である。ここで、本願に記載する大型
機とは、例えば熱量で表示すると、10万kcal/h
r以上である。尚、製氷貯氷槽一体型においては、噴射
された冷却媒体14は氷層、水層を通過して最下層まで沈
降せねばならないが、氷の生成量が増えてくると、その
間を沈降中に、氷片に付着したり、あるいは氷片上に乗
った状態となり、量的に無駄が出る。そのため、図示は
しないが、貯氷部上部にジャマ板等を設け、ごく大雑把
に氷、冷水と冷媒とを分離し、その冷媒を底部に導く流
路を設けることも可能である。更に、氷、冷水、冷媒の
殆どを先に貯氷部底部に導き、それから水と冷媒の分離
をしつつ、氷を水層中に上昇させる構造も可能である。
即ち、製氷貯氷槽一体型でも上部は製氷槽、下部は貯氷
槽と役割分担的構造の方がより実用的である。
FIG. 7 is a simplified explanatory view seen from the upper portion of the ice making storage tank 1, in which the cooling medium 14 and the liquid to be cooled 13 are sprayed over the entire circumference of the ice making storage tank 1. Further, as shown in FIG. 8, an injection method may be considered in which the liquid to be cooled 13 is sandwiched between the cooling media 14 and 14 from above and below to form a three-layer liquid film. In this method, the sprayed thickness of the cooling medium 14 is halved compared with the case of one layer, and a double liquid-liquid contact area can be obtained. And what is shown in FIG. 5 is an exemplification, and is shown as a unit injection nozzle 16. However, when it is used in a large machine, a plurality of injection nozzles 16 are superposed as shown in FIGS. It is suitable to have multiple stages. Further, it is possible to separate the ice making tank and the ice storage tank, and a high-efficiency, large-capacity large-sized ice heat storage device is realized. In addition, although a separate type requires a slurry pump etc.,
Except what is necessary for separation, it is the same as the explanatory view shown in FIGS. 3 and 4. Here, the large machine described in the present application is, for example, 100,000 kcal / h in terms of heat quantity.
r or more. In the integrated ice-making storage tank, the sprayed cooling medium 14 must pass through the ice layer and the water layer and settle to the lowest layer, but if the amount of ice generated increases, the cooling medium 14 will settle during that period. However, it will be in a state in which it adheres to the ice pieces or gets on the ice pieces, and the amount is wasted. Therefore, although not shown, it is possible to provide a jammer plate or the like on the upper portion of the ice storage unit to roughly separate ice, cold water and the refrigerant, and to provide a flow path for guiding the refrigerant to the bottom. Furthermore, a structure is also possible in which most of ice, cold water, and the refrigerant are first introduced to the bottom of the ice storage section, and then the water and the refrigerant are separated from each other and the ice is raised into the water layer.
That is, even if the ice-making storage tank is integrated, it is more practical to have a role-sharing structure in which the upper portion is the ice-making tank and the lower portion is the ice-storage tank.

【0029】また図9、図10は、本発明の噴射ノズル16
を2段に重合したものを示したものであり、段数を2倍
として液の膜厚を半減することで同じ噴射流量でも被冷
却液13と冷却媒体14との接触伝熱面積を2倍とすること
ができるのである。そしてこのような噴射ノズル16を多
段に重合する設計手法は、特に被冷却液13と冷却媒体14
の循環流量若しくは容量を大きくした大型氷蓄熱装置に
おいて利用価値が高いものである。そして図10は、上述
した図9のA−B断面図であって各々の噴射口17a、17
bから冷却媒体14及び被冷却液13が噴射されるように形
成しているのが明らかである。更に、詳しく説明する
と、噴射ノズル16内は図9に示す如く、被冷却液用通過
路25と冷却媒体用通過路26とに2分されている。そして
被冷却液用通過路25に被冷却液13が流れ込み、各段に設
けられた被冷却液用導出孔17cに被冷却液13が進入して
前記被冷却液用噴射口17aから噴射されるのである。一
方、冷却媒体用通過路26に冷却媒体14が流れ込み、各段
に設けられた冷却媒体用導出孔17dに冷却媒体14が進入
して前記冷却媒体用噴射口17bから噴射されるのであ
る。また、噴射時の全周における薄膜状態が均一となる
ように両導出孔17c、17dに流れ込んだ被冷却液13又は
冷却媒体14が直接噴射口17a、17bから噴射されるので
はなく、図示したように被冷却液用環状バッファ17e及
び冷却媒体用環状バッファ17fを設けて一旦蓄えられて
から噴射されるのである。更に、単位噴射ノズルブロッ
ク16a、16bはパッキン17gを介して多段に積層するこ
とができる。また、前記被冷却液用通過路25と冷却媒体
用通過路26との間に設けた仕切板21は断熱構造とするこ
とが適している。そのようにすることにより、前記冷却
媒体用通過路26を流れる冷却媒体14の冷熱によって、前
記被冷却液用通過路25を流れる被冷却液13の一部が氷化
され、前記仕切板21側壁に付着成長するのを防止するこ
とがである。勿論、前記単位噴射ノズルブロック16a、
16bも同様に断熱構造とすることが適しているというこ
とは言うまでもない。
9 and 10 show the injection nozzle 16 of the present invention.
2 shows the result of polymerization in two stages. By doubling the number of stages and halving the liquid film thickness, the contact heat transfer area between the liquid to be cooled 13 and the cooling medium 14 is doubled even at the same injection flow rate. You can do it. And the design method of superposing such injection nozzles 16 in multiple stages is particularly effective for the liquid to be cooled 13 and the cooling medium 14.
It has a high utility value in a large ice heat storage device having a large circulation flow rate or capacity. 10 is a cross-sectional view taken along the line AB of FIG. 9 described above, showing the injection ports 17a, 17
It is obvious that the cooling medium 14 and the liquid to be cooled 13 are formed so as to be jetted from b. More specifically, as shown in FIG. 9, the interior of the injection nozzle 16 is divided into a passage 25 for a liquid to be cooled and a passage 26 for a cooling medium. Then, the liquid to be cooled 13 flows into the passage 25 for liquid to be cooled, and the liquid to be cooled 13 enters into the lead-out holes 17c for liquid to be cooled provided in each stage and is ejected from the jet port 17a for liquid to be cooled. Of. On the other hand, the cooling medium 14 flows into the cooling medium passage 26, the cooling medium 14 enters the cooling medium outlet holes 17d provided at each stage, and is jetted from the cooling medium jet port 17b. Further, the liquid to be cooled 13 or the cooling medium 14 which has flowed into both the outlet holes 17c and 17d so that the thin film state is uniform over the entire circumference at the time of jetting is not directly jetted from the jet ports 17a and 17b, but is shown in the figure. As described above, the annular buffer 17e for the liquid to be cooled and the annular buffer 17f for the cooling medium are provided and once stored, they are injected. Furthermore, the unit injection nozzle blocks 16a and 16b can be stacked in multiple stages with packing 17g interposed. Further, it is suitable that the partition plate 21 provided between the cooled liquid passage 25 and the cooling medium passage 26 has a heat insulating structure. By doing so, the cooling heat of the cooling medium 14 flowing through the cooling medium passage 26 partially ices the liquid to be cooled 13 flowing through the liquid passage 25 for cooling, and the side wall of the partition plate 21. It is to prevent the adhesion and growth on the surface. Of course, the unit injection nozzle block 16a,
It goes without saying that 16b is also suitable to have a heat insulating structure.

【0030】更に技術思想を発展させて、図3、図4に
示した製氷貯氷槽一体型のみならず図11に示す如く、噴
射ノズル16に噴射口17a、17bを複数個設け、液相中に
は生成した氷6を冷水13とともに取出すための氷抜取り
管12を配管して全体を製氷槽となし、貯氷槽を別に分離
設置することも可能であり、高効率、大容量の大型氷蓄
熱装置が実現するのである。尚、分離型ではスラリーポ
ンプ等が追加必要となるが、分離のために必要とするも
のを除けば前記図3、図4に示す説明図と同一である。
ここで、本願に記載する大型機とは、例えば熱量で表示
すると、10万kcal/hr以上のものを対象としたもので
ある。尚、従来の氷蓄熱装置においては、1万kcal/hr
以下であれば、何とか使用可能ではあるが、前述の大型
機を構成することは不可能であり、極めて実用性に乏し
いのである。
By further developing the technical idea, not only the ice making storage tank integrated type shown in FIGS. 3 and 4 but also the injection nozzle 16 is provided with a plurality of injection ports 17a and 17b as shown in FIG. It is also possible to pipe an ice extraction pipe 12 for taking out the generated ice 6 together with cold water 13 into an ice-making tank as a whole, and to separately install the ice-storage tank. The device is realized. Although the separation type requires a slurry pump and the like, it is the same as the explanatory views shown in FIGS. 3 and 4 except for those necessary for separation.
Here, the large-scale machine described in the present application is intended for, for example, 100,000 kcal / hr or more in terms of heat quantity. In the conventional ice heat storage device, 10,000 kcal / hr
If it is below, it is possible to use it, but it is impossible to construct the above-mentioned large-sized machine, and it is extremely impractical.

【0031】[0031]

【発明の効果】以上の記載より明らかなように、次に記
載する効果を奏する。冷却媒体と被冷却液とを気相空間
にてそれぞれ薄膜状態で確実且つ均一に十分な接触面積
をもって直接接触させ、しかも、複数の噴射ノズルを設
けて多段にすることによって必要な分だけ伝熱面積を増
やすことができるので格段に製氷効率が高まり、熱交換
性能が飛躍的に向上する。そして最終温度差を極めて接
近させることができるので、このことにより接続する冷
凍機の蒸発温度を高くすることができ、冷凍機の成績係
数を良くすることができると同時に、伝熱面積を幾ら増
やしても容器が殆ど大きくならない。また、小型機から
大型機まで一貫した設計手法で確実に制御でき、大型機
の製氷槽を小さく設計することができるのである。
As is clear from the above description, the following effects are exhibited. The cooling medium and the liquid to be cooled are directly contacted in a vapor phase space in a thin film state reliably and uniformly with a sufficient contact area, and moreover, a plurality of injection nozzles are provided to make heat transfer as much as necessary. Since the area can be increased, the ice making efficiency is significantly improved, and the heat exchange performance is dramatically improved. And since the final temperature difference can be made extremely close, this makes it possible to raise the evaporation temperature of the connected refrigerator, improve the coefficient of performance of the refrigerator, and at the same time increase the heat transfer area to some extent. However, the container does not grow large. In addition, it is possible to reliably control from small machines to large machines with a consistent design method, and it is possible to design the ice making tank of large machines in a small size.

【0032】そして、本発明による氷蓄熱装置は製氷貯
氷槽ユニットを設置し、量産によってコストダウンされ
ている市販、汎用又は既設の冷凍機に接続することでコ
ストを小さくすることが可能となる。更に、特に既設接
続については新たな附帯設備の全てを設置することな
く、本製氷貯氷槽ユニットを別途接続することで大幅な
冷房能力の増強が可能となり、コスト面並びに作業性の
観点から極めて有用な装置となるとともに、安価な夜間
電力を使用できる。
The ice heat storage device according to the present invention is provided with an ice making storage tank unit and is connected to a commercially available, general-purpose or existing refrigerator whose cost is reduced by mass production, so that the cost can be reduced. Furthermore, especially for existing connections, it is possible to significantly increase the cooling capacity by connecting this ice making ice storage tank unit separately without installing any new auxiliary equipment, which is extremely useful from the viewpoint of cost and workability. In addition to being a simple device, inexpensive night power can be used.

【0033】また、既設の冷凍機の能力が冷房負荷に必
要十分であっても、本製氷貯氷槽ユニットを接続するこ
とによって能力が大幅に向上するため、夜間電力を使用
して、冷熱エネルギーを蓄積しておけば余裕のでる冷房
能力分だけ昼間に冷凍機を停止することができ、大幅に
ランニングコストを下げることができるとともに、電力
の平準化に寄与することもできるのである。
Further, even if the capacity of the existing refrigerator is necessary and sufficient for the cooling load, the capacity is significantly improved by connecting the ice making ice storage tank unit. If accumulated, it is possible to stop the refrigerator in the daytime by the amount of cooling capacity that can be afforded, the running cost can be significantly reduced, and it is possible to contribute to the leveling of electric power.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る基本原理を示した簡易説明図。FIG. 1 is a simplified explanatory diagram showing the basic principle of the present invention.

【図2】 噴射ノズルの噴射口から被冷却液を噴射した
状態の説明図。
FIG. 2 is an explanatory diagram of a state in which the liquid to be cooled is jetted from the jet port of the jet nozzle.

【図3】 本発明に係る建物内に冷水を循環させるタイ
プの氷蓄熱装置の説明図。
FIG. 3 is an explanatory diagram of an ice heat storage device of a type that circulates cold water in a building according to the present invention.

【図4】 本発明に係る建物内に冷媒を循環させるタイ
プの氷蓄熱装置の説明図。
FIG. 4 is an explanatory view of an ice heat storage device of a type in which a refrigerant is circulated in a building according to the present invention.

【図5】 前記装置に用いる噴射ノズルを示した簡易説
明図。
FIG. 5 is a simplified explanatory view showing an injection nozzle used in the apparatus.

【図6】 前記装置に用いる噴射ノズルの噴射口を示し
た縦断面図。
FIG. 6 is a vertical cross-sectional view showing an injection port of an injection nozzle used in the device.

【図7】 製氷貯氷槽の上部から見た状態の簡易説明
図。
FIG. 7 is a simplified explanatory view of the ice making storage tank as viewed from above.

【図8】 他の噴射手法を示した説明図。FIG. 8 is an explanatory diagram showing another injection method.

【図9】 前記噴射ノズルを2段に積層した状態の断面
図。
FIG. 9 is a cross-sectional view showing a state in which the injection nozzles are stacked in two stages.

【図10】 図9の上部から見たA−B断面図。FIG. 10 is a cross-sectional view taken along the line AB of FIG. 9 viewed from the top.

【図11】 複数の噴射口を設けた大型氷蓄熱装置を示し
た簡易説明図。
FIG. 11 is a simplified explanatory view showing a large ice heat storage device provided with a plurality of injection ports.

【図12】 従来の氷蓄熱装置を示した説明図。FIG. 12 is an explanatory diagram showing a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

A、C 製氷貯氷槽ユニット B、D 冷凍機 1 製氷貯氷槽 2 被冷却液用循
環ポンプ 3 圧縮機 4 凝縮器 5 気相空間 6 氷 7 減圧弁 8 冷却媒体用循
環路 9 蒸発器 10 冷却媒体用循
環ポンプ 11 熱交換器 12 氷抜取り管 13 被冷却液 14 冷却媒体 15 噴射装置 16 噴射ノズル 16a 単位噴射ノズルブロック 16b 単位噴射ノ
ズルブロック 17 噴射口 17a 被冷却液用
噴射口 17b 冷却媒体用噴射口 17c 被冷却液用
導出孔 17d 冷却媒体用導出孔 17e 被冷却液用
環状バッファ 17f 冷却媒体用環状バッファ 17g パッキン 18 薄膜部 19 ミスト部 20 フランジ 21 仕切板 22 被冷却液用循環路 23 噴射装置 24 噴射口 25 被冷却液用通
過路 26 冷却媒体用通過路 27 ファンコイル
ユニット 28 冷却媒体 29 冷水供給管 30 出入部 31 切換弁 32 蒸発器 33 下端 34 冷媒ポンプ 35 室外機 36 室内機 37 冷却媒体 101 冷媒 102 冷媒取出手段 103 冷媒供給手段 104 供給ノズル 105 水 106 水面 107 氷 108 氷水混合層
A, C Ice making storage tank unit B, D Refrigerator 1 Ice making storage tank 2 Circulating pump for liquid to be cooled 3 Compressor 4 Condenser 5 Gas phase space 6 Ice 7 Pressure reducing valve 8 Cooling medium circulation path 9 Evaporator 10 Cooling medium Circulation pump 11 Heat exchanger 12 Ice removal pipe 13 Liquid to be cooled 14 Cooling medium 15 Injection device 16 Injection nozzle 16a Unit injection nozzle block 16b Unit injection nozzle block 17 Injection port 17a Cooled liquid injection port 17b Cooling medium injection port 17c Cooling liquid outlet 17d Cooling medium outlet 17e Cooling liquid annular buffer 17f Cooling medium annular buffer 17g Packing 18 Thin film part 19 Mist part 20 Flange 21 Partition plate 22 Coolant circulating circuit 23 Injector 24 Injection port 25 Passage passage for liquid to be cooled 26 Passage passage for cooling medium 27 Fan coil unit 28 Cooling medium 29 Cooling water supply pipe 30 Inlet / outlet portion 31 Switching valve 32 Evaporator 33 Lower end 34 Refrigerant pump 35 Outdoor unit 36 Internal mechanism 37 cooling medium 101 refrigerant 102 refrigerant retriever 103 coolant supply unit 104 supplying nozzle 105 Water 106 Water 107 ice 108 ice mixed layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被冷却液と冷却媒体からなる2種類の液
体を気相空間にてそれぞれ薄膜状態で直接接触させ、前
記冷却媒体が非蒸発状態のままで熱交換を行うことを特
徴とする熱交換方法。
1. A method for directly exchanging heat between two types of liquids including a liquid to be cooled and a cooling medium in a vapor phase space in a thin film state, and performing heat exchange while the cooling medium remains in a non-evaporated state. Heat exchange method.
【請求項2】 製氷貯氷槽内の気相空間に被冷却液と冷
却媒体を個別に噴射するための噴射ノズルを設定し、該
噴射ノズルの適宜位置に設けた被冷却液用噴射口から被
冷却液を薄膜状態で噴射し、一方、冷却媒体用噴射口か
ら前記被冷却液の薄膜面に対して前記冷却媒体を薄膜状
態で直接接触させ、前記冷却媒体が非蒸発状態のままで
熱交換を行って前記被冷却液の一部を氷化させることを
特徴とする製氷方法。
2. An injection nozzle for individually injecting a liquid to be cooled and a cooling medium is set in a vapor phase space in an ice making storage tank, and a liquid to be cooled is injected from an injection port for the liquid to be cooled provided at an appropriate position of the injection nozzle. The cooling liquid is sprayed in a thin film state, while the cooling medium is directly contacted in a thin film state from the cooling medium jet port to the thin film surface of the liquid to be cooled, and the heat exchange is performed while the cooling medium is in a non-evaporated state. The method for making ice is characterized in that a part of the liquid to be cooled is iced.
【請求項3】 製氷貯氷槽と、 被冷却液と冷却媒体とを個別に噴射するための被冷却液
用噴射口と冷却媒体用噴射口とを設け、前記被冷却液用
噴射口から被冷却液を薄膜状態で噴射し、一方、前記冷
却媒体用噴射口から前記被冷却液の薄膜面に対して前記
冷却媒体を薄膜状態で直接接触させ、前記製氷貯氷槽内
の気相空間に設定してなる噴射ノズルと、 前記製氷貯氷槽内の被冷却液の液相中から導出され途中
に循環ポンプを設け、前記被冷却液を前記噴射ノズルに
供給する被冷却液用循環路と、 前記製氷貯氷槽内の底部に沈んだ冷却媒体あるいは液相
上部に浮いた冷却媒体の液相中から導出され、途中に蒸
発器、圧縮機、凝縮器、減圧弁からなる冷凍機を、前記
蒸発器を介して接続し、前記冷却媒体を前記噴射ノズル
に供給する冷却媒体用循環路、 とを備えたことを特徴とする氷蓄熱装置。
3. An ice making storage tank, a cooling liquid injection port for individually injecting a liquid to be cooled and a cooling medium and a cooling medium injection port are provided, and cooling is performed from the cooling liquid injection port. The liquid is jetted in a thin film state, while the cooling medium is directly contacted in a thin film state from the cooling medium jet port to the thin film surface of the liquid to be cooled and set in the vapor phase space in the ice making storage tank. An injection nozzle, a circulation pump for the liquid to be cooled, which supplies the liquid to be cooled to the injection nozzle, and is provided with a circulation pump in the middle of the liquid phase of the liquid to be cooled in the ice making storage tank; The cooling medium sunk in the bottom of the ice storage tank or the cooling medium floating in the upper portion of the liquid phase is led out from the liquid phase, and a refrigerator comprising an evaporator, a compressor, a condenser, and a pressure reducing valve is installed in the middle of the evaporator. And a cooling medium circulation circuit for supplying the cooling medium to the injection nozzle. An ice heat storage device comprising: a circuit.
【請求項4】 製氷貯氷槽と、 被冷却液と冷却媒体とを個別に噴射するための被冷却液
用噴射口と冷却媒体用噴射口とを設け、前記被冷却液用
噴射口から被冷却液を薄膜状態で噴射し、一方、前記冷
却媒体用噴射口から前記被冷却液の薄膜面に対して前記
冷却媒体を薄膜状態で直接接触させ、前記製氷貯氷槽内
の気相空間に設定してなる噴射ノズルと、 前記製氷貯氷槽内の被冷却液の液相中から導出され途中
に循環ポンプを設け、前記被冷却液を前記噴射ノズルに
供給する被冷却液用循環路と、 前記製氷貯氷槽内の底部に沈んだ冷却媒体あるいは液相
上部に浮いた冷却媒体の液相中から導出され、途中に圧
縮機と凝縮器を内蔵する室外機、蒸発器を内蔵する複数
の室内機からなる冷凍機を、新たに付加する蒸発器を介
して接続し、前記冷却媒体を前記噴射ノズルに供給する
冷却媒体用循環路、 とを備えたことを特徴とする氷蓄熱装置。
4. An ice making storage tank, a cooling liquid injection port for individually injecting a liquid to be cooled and a cooling medium and a cooling medium injection port are provided, and cooling is performed from the cooling liquid injection port. The liquid is jetted in a thin film state, while the cooling medium is directly contacted in a thin film state from the cooling medium jet port to the thin film surface of the liquid to be cooled and set in the vapor phase space in the ice making storage tank. An injection nozzle, a circulation pump for the liquid to be cooled, which supplies the liquid to be cooled to the injection nozzle, and is provided with a circulation pump in the middle of the liquid phase of the liquid to be cooled in the ice making storage tank; From the cooling medium sunk in the bottom of the ice storage tank or the cooling medium floating above the liquid phase in the liquid phase, an outdoor unit with a built-in compressor and condenser, and multiple indoor units with a built-in evaporator The refrigerator is connected via the newly added evaporator, and the cooling medium An ice heat storage device, comprising: a cooling medium circuit for supplying a body to the injection nozzle.
JP5321794A 1993-12-21 1993-12-21 Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method Pending JPH07174372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321794A JPH07174372A (en) 1993-12-21 1993-12-21 Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321794A JPH07174372A (en) 1993-12-21 1993-12-21 Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method

Publications (1)

Publication Number Publication Date
JPH07174372A true JPH07174372A (en) 1995-07-14

Family

ID=18136496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321794A Pending JPH07174372A (en) 1993-12-21 1993-12-21 Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method

Country Status (1)

Country Link
JP (1) JPH07174372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162146A (en) * 2004-12-07 2006-06-22 Sanken Setsubi Kogyo Co Ltd Ice melting heat accumulating tank having water sprinkling pipe of slit opening
JP2013204884A (en) * 2012-03-28 2013-10-07 Takasago Thermal Eng Co Ltd Dynamic type ice thermal storage system
CN111780296A (en) * 2020-06-09 2020-10-16 青岛海尔空调电子有限公司 Air conditioning unit with spray cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162146A (en) * 2004-12-07 2006-06-22 Sanken Setsubi Kogyo Co Ltd Ice melting heat accumulating tank having water sprinkling pipe of slit opening
JP4662025B2 (en) * 2004-12-07 2011-03-30 三建設備工業株式会社 Ice melting heat storage tank equipped with a sprinkling pipe with a slit opening
JP2013204884A (en) * 2012-03-28 2013-10-07 Takasago Thermal Eng Co Ltd Dynamic type ice thermal storage system
CN111780296A (en) * 2020-06-09 2020-10-16 青岛海尔空调电子有限公司 Air conditioning unit with spray cooling system

Similar Documents

Publication Publication Date Title
US7610773B2 (en) Ice producing apparatus and method
CN101922830B (en) Supercooled liquid ice slurry continuous preparation device
WO1992022777A2 (en) A full-range, high-efficiency liquid chiller
CN1493834A (en) Ice machine
CN204787392U (en) Refrigerating plant sprays
CN102221276A (en) Ice making device for refrigerator and refrigerator with same
CN208091022U (en) Promote the ice-making system of brilliant device with ultrasound
CN102052812A (en) Method and device for preparing fluidized ice by utilizing air condensation-evaporation composite mode
JPH07174372A (en) Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method
CN102042728B (en) Method and device for preparing fluidized ice
CN200979321Y (en) Plate ice/ cooling water machine set
JPH102644A (en) Ice cold heat storage apparatus
CN201935496U (en) Air condensation compound evaporation type device for manufacturing flow pattern ice
JP2709485B2 (en) Direct contact cooling system
CN108759140A (en) A kind of cold-storage cold storage refrigerating system using hot gas defrosting in batches
JPH07158913A (en) Heat exchanging method and ice making method utilizing it as well as ice heat accumulating device utilizing the same
CN201954868U (en) Flo-ice making device
KR100715839B1 (en) Forice-on-coil a device inclusion of thermal stroage package system
CN221223066U (en) Thermal fluorine deicing Fang Bingji
CN211172500U (en) Side wall and ground connection waterproof structure of refrigeration house
KR200403761Y1 (en) Forice-on-coil a device inclusion of thermal stroage package system
SU1695077A1 (en) Cooling battery
CN87200974U (en) Medical water-spurting type fully automatic ice-making machine
CN115265060A (en) Multi-temperature-zone three-door direct-cooling refrigerator
CN113340032A (en) Transparent ice making devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622