JP2709485B2 - Direct contact cooling system - Google Patents

Direct contact cooling system

Info

Publication number
JP2709485B2
JP2709485B2 JP63299516A JP29951688A JP2709485B2 JP 2709485 B2 JP2709485 B2 JP 2709485B2 JP 63299516 A JP63299516 A JP 63299516A JP 29951688 A JP29951688 A JP 29951688A JP 2709485 B2 JP2709485 B2 JP 2709485B2
Authority
JP
Japan
Prior art keywords
brine
direct contact
cooling
refrigerant
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63299516A
Other languages
Japanese (ja)
Other versions
JPH02146438A (en
Inventor
正浩 若林
潤二 松田
敬介 笠原
茂 坂下
隆昭 転法輪
靖信 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP63299516A priority Critical patent/JP2709485B2/en
Publication of JPH02146438A publication Critical patent/JPH02146438A/en
Application granted granted Critical
Publication of JP2709485B2 publication Critical patent/JP2709485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、冷媒液に水その他のブライン液を直接接触
させながらスラリー状に氷化した負荷冷却源(以下スラ
リー液という)を得る直接接触式冷却装置に係り、特に
スラリー液を貯溜する蓄冷槽を有する直接接触式冷却装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a direct contact for obtaining a load cooling source (hereinafter, referred to as a slurry liquid) which has been slurried while a water or other brine liquid is in direct contact with a refrigerant liquid. More particularly, the present invention relates to a direct contact cooling device having a regenerator for storing a slurry liquid.

「従来の技術」 従来より電力負荷の平滑化や負荷冷却源の温度変動を
防止する為に、冷凍サイクルと負荷エネルギサイクル間
に蓄冷槽を介在させ、例えば夜間電力を利用して冷凍サ
イクルを運転する事により前記蓄冷槽内に負荷冷却源を
貯溜した後、昼間の需要時期に前記負荷冷却源を利用し
て負荷エネルギサイクルを循環させて冷房冷却水の製造
等を行うようにした蓄冷熱システムは公知であり、 この種の蓄冷熱システムには前記冷凍サイクル内を循
環する冷媒と、負荷エネルギサイクルを循環する水その
他のブラインとが熱交換器を介して接触させて前記負荷
冷却源を製造する、例えばアイスバンク等の間接接触方
式と、前記冷媒とブラインが直接接触する直接接触方式
とが存在するが、後者は前者に比較して熱交換器が不要
になる為に小型化が達成される、熱交換器等に奪われる
熱損失がない為に冷媒の蒸発温度をブラインの氷結温度
と同一に設定出来、その分圧縮機も小さくて済み且つ圧
縮動力も大幅に低減し得る、前記ブラインはシャーベッ
ト(スラリー)状に氷化される為に溶融が速やかであ
り、負荷冷却源としての取り出しが容易、等の長所を有
する為に近年急速に注目されつつある。
"Prior art" Conventionally, a regenerator is interposed between a refrigeration cycle and a load energy cycle in order to smooth the power load and prevent the temperature fluctuation of the load cooling source. After storing a load cooling source in the cool storage tank by doing, a cold energy storage system that produces a cooling cooling water by circulating a load energy cycle using the load cooling source during daytime demand time. In this type of regenerative heat storage system, a refrigerant circulating in the refrigeration cycle is brought into contact with water or other brine circulating in a load energy cycle via a heat exchanger to produce the load cooling source. For example, there are an indirect contact method such as an ice bank, and a direct contact method in which the refrigerant and the brine are in direct contact with each other, but the latter requires no heat exchanger as compared with the former. Since the miniaturization is achieved, there is no heat loss lost to the heat exchanger etc., so the evaporation temperature of the refrigerant can be set to be the same as the freezing temperature of the brine, and the compressor can be reduced accordingly and the compression power is greatly reduced In recent years, the brine has been rapidly attracting attention because of its merits such as being iced in a sherbet (slurry) state, and having an advantage that it can be easily taken out as a load cooling source.

そしてかかる直接接触式の冷却装置は種々存在する
が、その多くは、ブラインを収容する蓄冷槽の液相中、
具体的には前記蓄冷槽の底側付近にノズルを配し、該ノ
ズルより冷媒液を噴射させる事により、該冷媒液の蒸発
熱源を利用して前記ブラインを奪熱し、スラリー状の氷
晶化せしめて負荷冷却源として前記ブライン液相上に逐
次浮遊製造させていくものである。(特開昭61−272539
号他) 「発明が解決しようとする課題」 しかしながらかかる装置においては、液相上面に氷晶
化したスラリー状の氷が常に浮遊堆積している為に、氷
の生成量が多くなると水面上で氷同志が集積固化して液
相を密封する事になる為に、前記液相中で奪熱された冷
媒が蒸発しにくくなり、結果として冷凍サイクル中に循
環する冷媒が不足して安定した運転が出来なくなり、冷
凍能力に支障を来すことになる。
And there are various such direct contact type cooling devices, most of which are in the liquid phase of a regenerator that contains brine.
Specifically, a nozzle is arranged near the bottom side of the regenerator, and the coolant is ejected from the nozzle, thereby utilizing the heat of evaporation of the coolant to remove heat from the brine and form a slurry-like ice crystal. At the very least, it is to be produced as a load cooling source by successively floating production on the brine liquid phase. (Japanese Unexamined Patent Publication No. 61-272539
However, in such a device, ice-crystallized slurry-like ice is constantly floating and deposited on the upper surface of the liquid phase. Since the ice condenses and solidifies to seal the liquid phase, the refrigerant deprived of heat in the liquid phase is less likely to evaporate, resulting in a shortage of refrigerant circulating in the refrigeration cycle and stable operation. Refrigeration capacity will be impaired.

又前記装置ではノズル開口が常に液相中に存在する事
が前提となるものである為に、氷の製造量に制約を受け
るのみならず、該ノズルが液相中に存在する為に、ノズ
ル開口が氷で封鎖されてしまう場合がある。
In addition, in the above-described apparatus, it is assumed that the nozzle opening is always present in the liquid phase. Therefore, not only is the amount of ice produced restricted, but also because the nozzle is present in the liquid phase, The opening may be blocked by ice.

又前記装置では噴出冷媒との接触が頻繁に行われるノ
ズル周囲とその上方の氷層で過冷却が生じ氷の生成が均
一化されないのみならず蓄冷層内で温度差が生じ易い。
Further, in the above-described apparatus, supercooling occurs around the nozzle and the ice layer above the nozzle where contact with the jetted refrigerant is frequently performed, and not only ice generation is not uniform, but also a temperature difference easily occurs in the cold storage layer.

かかる欠点を解消する為に、凝縮過程の加熱冷媒ガス
を、ノズル先端部を囲繞する如く噴出させてノズル開口
の封鎖を阻止せんとしたり、又蓄冷槽上下に開口する筒
体内に前記ノズルを配設させて該筒体内で上方に向けて
冷媒を噴出させる事により、積極的に対流現象を生ぜし
め冷媒の蒸発の促進、蓄冷温度の均一化等を図ったりし
ている技術(特開昭61−295442号、特開昭62−268973
号)が開示されているが、いずれも液相内で冷媒を噴出
させて熱交換を行うという基本構成に変化がない為に前
記従来技術の欠点全てを解消する事は不可能であり、又
特に冷凍能力の低下と装置の複雑化等の副次的な欠点が
派生する。
In order to solve such a drawback, heated refrigerant gas in the condensing process is ejected so as to surround the tip of the nozzle so as to prevent the nozzle opening from being blocked, or the nozzle is disposed in a cylinder that opens up and down the regenerator. A technology that positively generates a convection phenomenon to promote the evaporation of the refrigerant and to equalize the cold storage temperature by ejecting the refrigerant upward in the cylindrical body (Japanese Patent Application Laid-Open No. Sho 61) -295442, JP-A-62-268973
No.) is disclosed, but it is impossible to eliminate all the disadvantages of the prior art because there is no change in the basic configuration of performing heat exchange by ejecting a refrigerant in the liquid phase, In particular, there are secondary disadvantages such as a decrease in refrigeration capacity and an increase in the complexity of the apparatus.

本発明はかかる従来技術の欠点を完全に解消し、前記
ブラインと冷媒との円滑な接触を図りつつ熱交換効率の
面で又運転効率の面で極めて好ましい直接接触式冷却装
置を提供する事を目的とする。
The present invention completely eliminates the disadvantages of the prior art and provides a direct contact cooling device which is extremely preferable in terms of heat exchange efficiency and operation efficiency while ensuring smooth contact between the brine and the refrigerant. Aim.

「課題を解決する為の手段」 本発明は上記の課題を解決するために、水その他のブ
ラインに冷媒液を直接接触させながら前記ブラインを氷
晶化するまで冷却させて、該ブラインより氷晶化された
冷却源の生成槽兼蓄冷槽として機能する閉鎖空間内に、
ブラインと冷媒液を個別に又は前もって混合化させた状
態で噴射させる噴射域と、前記冷媒とブラインとを直接
接触にて熱交換させる熱交換域と、該熱交換域で生成し
た冷却源をスラリー状に貯溜させる蓄冷域とを夫々個別
に設けるとともに、これらが前記噴射域の下方に熱交換
域、又その下方に蓄冷域と、前記各域が上方より順次下
方に向け形成されている事を第1の要旨とする直接接触
式冷却装置を提案する。
"Means for Solving the Problems" In order to solve the above-described problems, the present invention is to cool the brine until it is crystallized while directly contacting the refrigerant liquid with water or other brine, and to cool the brine from the brine. In a closed space that functions as both a production tank and a cold storage tank for
An injection zone for injecting brine and the refrigerant liquid individually or in a state of being mixed in advance, a heat exchange zone for directly exchanging heat between the refrigerant and the brine, and a cooling source generated in the heat exchange zone as a slurry. And the cold storage areas to be stored in the form of a heat exchange area below the injection area, and the cold storage area below the injection area, and that each of the areas is formed sequentially downward from above. A direct contact cooling device as a first gist is proposed.

この場合前記噴射域は、請求項1)に記載のように、
例えばブラインを噴射するノズル群の下方に冷媒液を噴
射するノズル群を配置する事により、ブラインを噴射す
るノズル群の氷結による目詰まり防止する事が出来る。
In this case, the injection zone is, as described in claim 1),
For example, by arranging a nozzle group that injects a coolant liquid below a nozzle group that injects brine, it is possible to prevent clogging of the nozzle group that injects brine due to freezing.

又前記噴射域は、請求項2)に記載のように、冷媒液
とブラインとをエゼクターで混合し、凝縮熱を保有する
冷媒液をブラインで冷却しつつ且つブラインの温度をエ
ゼクター内で0℃以上に昇温しつつ、霧化状態にある前
記両液を円滑に噴射域まで導く事が可能であり、この結
果前記冷媒液のノズルの目詰まり防止と熱効率の大幅向
上が図れる。
In the injection zone, the refrigerant liquid and the brine are mixed by an ejector, and the refrigerant liquid having heat of condensation is cooled by the brine, and the temperature of the brine is set to 0 ° C. in the ejector. It is possible to smoothly guide the two liquids in the atomized state to the injection region while increasing the temperature as described above. As a result, it is possible to prevent the nozzles of the refrigerant liquid from clogging and significantly improve the thermal efficiency.

又前記熱交換域は、請求項3)に記載のように、例え
ば第3図に示すように表面に前記冷媒とブラインとが接
触可能な形状を有する多数の充填材を集積させて形成さ
れるものであり、この場合、該充填材に氷結したブライ
ンの剥離を促進させる為に、請求項4)に記載のよう
に、ブライン中に界面活性作用を有する物質を混和させ
てもよく、又請求項5)に記載のように、前記充填材表
面に低摩擦抵抗膜を被覆してもよい。
In addition, the heat exchange area is formed by accumulating a large number of fillers having a shape capable of contacting the refrigerant and the brine on the surface as shown in FIG. 3, for example. In this case, a substance having a surface active effect may be mixed in the brine as described in claim 4) in order to promote the separation of the brine frozen on the filler. As described in Item 5), the surface of the filler may be coated with a low friction resistance film.

尚、前記ブラインは水のみに限定される事なく、食塩
水やエチレングリコール水溶液を用いる事も可である。
Incidentally, the brine is not limited to water alone, and it is also possible to use a saline solution or an aqueous solution of ethylene glycol.

更に前記熱交換域は、冷却源生成槽兼蓄冷槽として機
能する閉鎖空間内に設ける事なく、請求項6)に記載の
例えば第4図に示すように冷媒液とブラインとをエジェ
クタにより混合させる混合手段17と、該混合させた混合
流体をミキシングにより熱接触をしながら冷媒液をブラ
インのほぼ氷結温度付近まで降温させるミキシング手段
18とを直列に配設するとともに、前記ミキシング手段18
の出口側を蓄冷槽3内に配した噴射手段32に接続し、前
記ミキシング手段18で熱交換した混合流体を噴射手段32
により、閉鎖空間3下方に噴射させながら氷晶化された
冷却源を生成させた後、該冷却源を閉鎖空間3下方の蓄
冷域3Cに貯溜させるように構成してもよい。
Further, the heat exchange area is not provided in a closed space functioning as both a cooling source generation tank and a cold storage tank, and the refrigerant liquid and the brine are mixed by an ejector as shown in, for example, FIG. A mixing means for mixing the mixed fluid with the mixing means to thermally lower the refrigerant liquid to near the freezing temperature of the brine while thermally contacting the mixed fluid by mixing;
18 and the mixing means 18
Is connected to the injection means 32 arranged in the regenerator 3, and the mixed fluid heat-exchanged by the mixing means 18 is injected into the injection means 32.
Thus, a cooling source that has been crystallized while being sprayed below the closed space 3 may be generated, and then the cooling source may be stored in the cold storage area 3C below the closed space 3.

「作用」 かかる請求項1)乃至5)に記載した技術手段によれ
ば、前記従来技術のように氷結したブライン貯溜域中に
ノズルを配置するのではなく、ノズルが配置されている
噴射域と、蓄冷域とを上下に区別して配設した溜に、冷
媒液と水を別々に設けたノズルから熱交換域上部の空間
内に噴射させるか又は冷媒液と水をエゼクターで混合し
た後冷却器内に噴出させて、充填材を充填した熱交換部
で冷媒液と水を熱交換させて水を氷結させその下方の蓄
冷域内にスラリー状に貯溜させる事が出来る為に、ノズ
ルの閉塞を防ぐことが出来、安定した給液を行うことが
出来、而も冷媒蒸発温度と晶析温度の差を小さくするこ
とが出来る。
According to the technical means described in claims 1) to 5), instead of arranging the nozzle in the frozen brine storage area as in the related art, the injection area in which the nozzle is arranged and After the cooling liquid is cooled down, the cooling liquid is injected into the space above the heat exchange area from a nozzle provided separately with the cooling liquid, and the cooling liquid is cooled by an ejector. To prevent the nozzle from clogging, because the refrigerant exchanges heat with the refrigerant liquid in the heat exchange section filled with the filler to freeze the water and store it in the form of slurry in the cold storage area below it As a result, a stable liquid supply can be performed, and the difference between the refrigerant evaporation temperature and the crystallization temperature can be reduced.

又熱交換域で生成した氷晶化した氷は、常に下方の蓄
冷域に落下する為に、前記熱交換域中で奪熱された冷媒
が蒸発の何等障害になる事なく、結果として冷凍サイク
ル中に循環する冷媒の不足が生じる事なく長期に亙って
安定した運転が可能となり、冷凍能力に支障を来すこと
もない。
Further, ice crystallized ice generated in the heat exchange area always falls to the cold storage area below, so that the refrigerant deprived of heat in the heat exchange area does not hinder any evaporation, and as a result, the refrigeration cycle A stable operation can be performed for a long time without causing a shortage of the refrigerant circulating therein, and the refrigeration capacity is not hindered.

又本技術手段は、熱交換域で氷晶化したスラリーのみ
が下方の蓄冷域に落下する為に、蓄冷域内で温度差が生
じる恐れが少ない。
Further, according to the present technical means, since only the slurry crystallized in the heat exchange region falls to the cool storage region below, there is little possibility that a temperature difference occurs in the cool storage region.

又請求項6)に記載した技術手段によれば前もって噴
射手段32に導入される前に、ミキシング手段18で熱交換
し、ほぼ氷晶点付近まで熱降下させた混合流体を噴射手
段32により噴射させる為に、その下方に充填材集積層か
らなる熱交換域を設けなくても、氷晶化が容易であり、
且つ前記技術手段と同様の効果を達成し得る。
Further, according to the technical means described in claim 6, before being introduced into the injection means 32 in advance, the mixing fluid is heat-exchanged by the mixing means 18, and the mixed fluid whose temperature has dropped substantially to near the ice crystal point is injected by the injection means 32. In order to do this, ice crystallization is easy even without providing a heat exchange area consisting of a filler accumulation layer below it,
And the same effect as the technical means can be achieved.

かかる発明によれば前もってエゼクタ17で混合された
後のブライと冷媒液との混合液を、更にミキシング手段
18によりで熱交換しほぼ氷結温度付近まで冷媒液を降温
させる為に、該混合液を蓄冷槽3内に配した噴射手段32
より噴出させた場合、その上方より噴射させたブライン
の奪熱がより効果的に行われ、熱交換域3Bを設けなくて
も前記実施例とほぼ同様な効果を得る事が出来る。
According to this invention, the mixed liquid of the brie and the refrigerant liquid, which have been mixed by the ejector 17 in advance, is further mixed with mixing means.
Injecting means 32 in which the mixed liquid is disposed in the regenerator 3 in order to exchange heat with 18 and to lower the temperature of the refrigerant liquid to approximately the freezing temperature.
In the case of jetting more, the heat of the brine jetted from above is more effectively removed, and substantially the same effect as in the above embodiment can be obtained without providing the heat exchange region 3B.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的
に詳しく説明する。ただしこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, preferred embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just

第1図は本発明の実施例に係る蓄冷システムの概略構
成を示し、1は冷凍サイクル、2は負荷サイクルで、両
サイクル間に蒸発器としても機能する冷却源生成槽兼蓄
冷槽(以下蓄冷槽3という)が介在している。
FIG. 1 shows a schematic configuration of a cold storage system according to an embodiment of the present invention, wherein 1 is a refrigeration cycle, 2 is a load cycle, and a cooling source generation tank and a cold storage tank (hereinafter, cold storage tank) which also functions as an evaporator between both cycles. A tank 3) is interposed.

冷凍サイクル1は、公知のようにオクタフルオタシク
ロブタン(C318)からなる冷媒の循環経路中に、モータ
11に連結されたオイルフリータイプのスクリュー圧縮機
12、凝縮器13、受液器14、膨張弁15、蒸発器として機能
する蓄冷槽3が配設され、圧縮機12で圧縮された冷媒
は、凝縮器13及び受液器14を介して凝縮液化された後、
膨張弁15を介して蓄冷槽3内でブライン(水)との熱交
換により奪熱蒸発された後、再度前記圧縮機12の吸入側
に戻入され、かかるサイクルを繰り返し行うように構成
されている。
The refrigeration cycle 1 includes a motor in a circulation path of a refrigerant composed of octafluorotacyclobutane (C318), as is well known.
Oil-free type screw compressor connected to 11
12, a condenser 13, a receiver 14, an expansion valve 15, and a regenerator 3 functioning as an evaporator are provided. The refrigerant compressed by the compressor 12 is condensed through the condenser 13 and the receiver 14. After being liquefied,
After being deprived and evaporated by heat exchange with brine (water) in the cold storage tank 3 via the expansion valve 15, the heat is returned to the suction side of the compressor 12 again, and such a cycle is repeated. .

次に前記蓄冷槽3の内部構成について詳細に説明す
る。
Next, the internal configuration of the cold storage tank 3 will be described in detail.

蓄冷槽3は縦形の太径円筒容器で形成され、その内部
空間上方位置に、ブライン循環管41と連接されたブライ
ン噴出ノズル管31とその下方に膨張弁15吐出側と連接さ
れた冷媒噴出ノズル管32が配設され、そしていずれも夫
々噴射口を下方に向け水平方向に延在せしめて噴射域3A
を形成する。
The cool storage tank 3 is formed of a vertical large-diameter cylindrical container, and a brine ejection nozzle pipe 31 connected to a brine circulation pipe 41 and a refrigerant ejection nozzle connected to the expansion valve 15 discharge side below the pipe 31 at a position above the internal space. Tubes 32 are provided, and each of them extends in the horizontal direction with the injection port directed downward, so that the injection area 3A
To form

そして前記噴射域3Aの下方の蓄冷槽略中央部に充填材
33を集積配置して形成される熱交換域3Bを、又その下方
に、前記熱交換域3Bで生成したシャーベット上のブライ
ン氷晶を貯溜する蓄冷域3Cを夫々形成する。
Filling material is located at approximately the center of the regenerator below the injection zone 3A.
A heat exchange area 3B formed by accumulating 33 is formed, and a cold storage area 3C for storing brine ice crystals on the sherbet generated in the heat exchange area 3B is formed below the heat exchange area 3B.

熱交換域3Bは、例えば第3図(a)に示すように長方
形波形の薄いアルミ板を巻き込んで円筒形にした充填材
33a、又同図(b)の如く紐状プラスチックを籠形に編
んだ状態に成形した充填材33b、更に必要に応じてこれ
ら充填材33a,32b表面にテフロン(商品名)膜等を被覆
して形成される充填材33を多段状に集積配置して前記熱
交換域3Bを形成する。
The heat exchange zone 3B is made of, for example, a cylindrical filler formed by winding a thin aluminum plate having a rectangular waveform as shown in FIG. 3 (a).
33a, as shown in FIG. 3 (b), a filler 33b formed by knitting a string-shaped plastic into a cage shape, and, if necessary, coating the surface of these fillers 33a, 32b with a Teflon (trade name) film or the like. The heat exchange region 3B is formed by stacking and disposing the fillers 33 formed in a multi-stage manner.

蓄冷域3Cは、その底側鏡部にポンプ20を介してスラリ
ー液を負荷サイクル2の途中に設けた熱交換器21に導く
為の導出管22と、又前記蓄冷域3C底端には循環ポンプ23
を介してブライン循環管41と連接されたバイパス管24を
夫々接続する。
The cold storage region 3C has a discharge pipe 22 for guiding the slurry liquid to a heat exchanger 21 provided in the middle of the load cycle 2 via a pump 20 on the bottom mirror portion thereof, and circulates at the bottom end of the cold storage region 3C. Pump 23
Are connected to the bypass pipes 24 connected to the brine circulation pipes 41 through the respective pipes.

次にかかる構成に基づく蓄冷槽3を中心とした作用を
説明する。
Next, an operation centering on the cold storage tank 3 based on such a configuration will be described.

先ずブライン噴出ノズル管31より蓄冷槽3内に噴出さ
れたブライン液は、その下方で、冷媒ノズル管32より噴
射された霧状の冷媒液と接触しつつ、熱交換域3Bの充填
材33表面に達する。
First, the brine liquid jetted from the brine jet nozzle pipe 31 into the regenerator 3 contacts the mist-like refrigerant liquid jetted from the refrigerant nozzle pipe 32 below, and the surface of the filler 33 in the heat exchange area 3B. Reach

そして前記両液は熱交換域3Bで充填材33表面をつたっ
て徐々に下方に落下しながら、前記冷媒液より蒸発潜熱
を奪熱してブラインの氷晶化を促進させた後、該奪熱さ
れた冷媒蒸気が槽上端開口より戻入管16を通って再び圧
縮機12に戻される。
Then, the two liquids gradually fall downward along the surface of the filler material 33 in the heat exchange area 3B, while absorbing the latent heat of evaporation from the refrigerant liquid to promote the ice crystallization of the brine, and then the heat is removed. The refrigerant vapor is returned to the compressor 12 through the return pipe 16 from the upper end opening of the tank.

一方、前記蒸発潜熱により冷却されて氷晶化したブラ
インは、前記充填材33表面より脱落して蓄冷域3Cに落下
し、該蓄冷域3C内にスラリー液として貯溜蓄冷される。
On the other hand, the brine that has been cooled and crystallized by the latent heat of evaporation drops off the surface of the filler 33 and falls into the cold storage region 3C, where it is stored and stored as a slurry liquid in the cold storage region 3C.

そして蓄冷されたスラリー液はポンプ20を介して負荷
サイクル側の熱交換器21に導きクーラその他の負荷冷却
に供されて加温された後、循環管41を介して再度ブライ
ンノズル管31に導かれ前記と同様な作用を繰り返す。こ
の場合においてバイパス管34を介して前記蓄冷域3C内で
液化したブラインを再度ブラインノズル管31に導き、前
記加温されたブラインと混合しながら前冷却を行う。
Then, the stored slurry liquid is led to the heat exchanger 21 on the load cycle side via the pump 20, is supplied with a cooler or other load cooling, is heated, and then is returned to the brine nozzle pipe 31 via the circulation pipe 41. He repeats the same operation as above. In this case, the brine liquefied in the cool storage area 3C via the bypass pipe 34 is guided again to the brine nozzle pipe 31, and pre-cooling is performed while mixing with the heated brine.

かかる実施例によれば前記した本発明の作用を円滑に
達成する事が出来る。
According to this embodiment, the operation of the present invention described above can be smoothly achieved.

第2図は膨張弁15の代りにエゼクター17を用いた前記
実施例の変形例で、未だ凝縮熱を保有する冷媒液をエゼ
クター17内で蓄冷域内で液化しほぼ氷結温度と同等の温
度を有するブラインと冷媒液との混合を図りつつノズル
管32より蓄冷槽3内に噴射可能に構成している。
FIG. 2 shows a modification of the above-described embodiment using an ejector 17 in place of the expansion valve 15. The refrigerant liquid still retaining the heat of condensation is liquefied in the cool storage area in the ejector 17 and has a temperature substantially equal to the freezing temperature. The nozzle tube 32 can be injected into the regenerator 3 while mixing the brine and the refrigerant liquid.

かかる実施例によれば前もってエゼクター17で混合さ
れている為に、蓄冷槽内の冷却効果が大幅に向上すると
ともに、霧化状態に混合された状態でノズル管32より噴
出する為に、ノズル管32開口での氷結も防止される。
According to this embodiment, since the mixing is performed by the ejector 17 in advance, the cooling effect in the regenerator is greatly improved, and the nozzle is sprayed from the nozzle tube 32 in a state of being mixed in an atomized state. Freezing at the 32 openings is also prevented.

第4図は熱交換域3Bを省略した他の実施例で、受液器
14とノズル管32間にエゼクター17とスタティックミキサ
ー18を直列に配設するとともに、バイパス管34を介して
前記蓄冷域3C内で液化したブラインをエゼクター17に導
き、未だ凝縮熱を保有する冷媒液をエゼクター17内でほ
ぼ氷結温度と同等の温度を有するブラインとの混合を図
りつつその吐出側に設けたスタティックミキサー18によ
り予備熱交換をしながら両液の温度を一定にしつつ、ノ
ズル管32より蓄冷槽3内に噴射可能に構成している。
FIG. 4 shows another embodiment in which the heat exchange area 3B is omitted.
The ejector 17 and the static mixer 18 are arranged in series between 14 and the nozzle pipe 32, and the brine liquefied in the cold storage area 3C is guided to the ejector 17 via the bypass pipe 34, and the refrigerant liquid that still retains the condensation heat In the ejector 17, while mixing with brine having a temperature substantially equal to the freezing temperature, while preliminarily exchanging heat with the static mixer 18 provided on the discharge side thereof and keeping the temperature of both liquids constant, from the nozzle tube 32 It is configured so that it can be injected into the cold storage tank 3.

かかる実施例によれば前もってエゼクタ17で混合され
た後のブラインと冷媒液との混合液を、更にスタティッ
クミキサー18によりで熱交換しほぼ氷結温度付近まで冷
媒液を降温させる為に、該混合液をノズル管32より噴出
させた場合、その上方より噴射させたブラインの奪熱が
より効果的に行われ、熱交換域3Bを設けなくても前記実
施例とほぼ同様な効果を得る事が出来る。
According to this embodiment, the mixed liquid of the brine and the refrigerant liquid that has been mixed in the ejector 17 in advance is further subjected to heat exchange by the static mixer 18 to lower the refrigerant liquid to near the freezing temperature. Is ejected from the nozzle tube 32, the heat of the brine ejected from above is more effectively removed, and substantially the same effect as in the above embodiment can be obtained without providing the heat exchange area 3B. .

尚、本発明に用いられる冷媒C318は、R114の代替品と
して用いられる冷媒で米国食品添加物として指定されて
いる為に環境公害が生じる恐れもなく、又R12やR22のよ
うにクラスレート(冷媒が氷で包接されたもの)が生成
する事もなく好ましい。
The refrigerant C318 used in the present invention is a refrigerant used as a substitute for R114 and is designated as a U.S. food additive, so there is no danger of causing environmental pollution, and a clathrate (refrigerant) such as R12 or R22 is used. Is preferably included without the inclusion of ice.

又前記冷媒には、脂肪酸エステル系界面活性剤、プロ
ピレングリコール.エチレングリコール等を混合するの
がよい。
The refrigerant includes a fatty acid ester-based surfactant, propylene glycol. It is preferable to mix ethylene glycol and the like.

「発明の効果」 以上記載した如く本発明によれば、前記ブラインと冷
媒と円滑な接触を図りつつ熱交換効率の面で又運転効率
の面で極めて好ましい直接接触式冷却装置を提供し得る
とともに、特にノズルが配置されている噴射域と、ブラ
インと冷媒の熱交換を行う熱交換域、及び蓄冷域を、蓄
冷槽として機能する閉鎖空間内に上下に区別して配設し
た為に、ノズルの閉塞防止とともに、長期に亙って安定
した運転が可能となり、冷凍能力に支障を来すこともな
い。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a direct contact cooling device that is extremely preferable in terms of heat exchange efficiency and operation efficiency while ensuring smooth contact between the brine and the refrigerant. In particular, since the injection area where the nozzle is arranged, the heat exchange area for exchanging heat between the brine and the refrigerant, and the cold storage area are vertically arranged in a closed space that functions as a cold storage tank, In addition to preventing blockage, stable operation can be performed for a long period of time, and there is no hindrance to the refrigeration capacity.

等の種々の著効を有す。And so on.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の一実施例を示すフローシー
ト図、第4図は本発明の他の実施例を示すフローシート
図である。 第3図(a)、(b)は前記第1実施例の蓄冷槽内の熱
交換域を形成する充填材形状を示す概略図である。
1 and 2 are flow sheet diagrams showing one embodiment of the present invention, and FIG. 4 is a flow sheet diagram showing another embodiment of the present invention. FIGS. 3 (a) and 3 (b) are schematic views showing the shape of a filler forming a heat exchange area in the regenerator of the first embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 靖信 千葉県市川市島尻3―3 新豊荘 (56)参考文献 特開 昭61−147075(JP,A) 特開 昭60−126530(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasunobu Omori 3-3 Shimajiri, Ichikawa-shi, Chiba Shintoyoso (56) References JP-A-61-147075 (JP, A) JP-A-60-126530 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水その他のブラインに冷媒液を直接接触さ
せながら前記ブラインを氷晶化するまで冷却させて、該
ブラインより氷晶化された冷却源を生成する直接接触式
冷却装置において、 冷却源生成槽兼蓄冷槽として機能する閉鎖空間内に、前
記ブラインと冷媒液を個別に又は前もって混合化させた
状態で噴射させる噴射域と、前記冷媒とブラインとを直
接接触にて熱交換させる熱交換域と、該熱交換域で生成
した冷却源をスラリー状に貯溜させる蓄冷域とを、上方
より順次形成するとともに、前記噴射域が、ブラインを
噴射するノズル群の下方に冷媒液を噴射するノズル群を
配置して形成される噴射域である事を特徴とする直接接
触式冷却装置
1. A direct contact type cooling device for cooling a brine to be crystallized while bringing a coolant liquid into direct contact with water or other brine to generate a cooling source crystallized from the brine. An injection zone in which the brine and the refrigerant liquid are injected individually or in a state of being mixed in advance in a closed space functioning as a source generation tank and a regenerator, and heat for directly exchanging heat between the refrigerant and the brine. An exchange region and a cool storage region for storing a cooling source generated in the heat exchange region in a slurry form are sequentially formed from above, and the injection region injects the refrigerant liquid below a group of nozzles that injects brine. Direct contact cooling device characterized by being an injection area formed by disposing nozzle groups
【請求項2】水その他のブラインに冷媒液を直接接触さ
せながら前記ブラインを氷晶化するまで冷却させて、該
ブラインより氷晶化された冷却源を生成する直接接触式
冷却装置において、 冷却源生成槽兼蓄冷槽として機能する閉鎖空間内に、前
記ブラインと冷媒液を個別に又は前もって混合化させた
状態で噴射させる噴射域と、前記冷媒とブラインとを直
接接触にて熱交換させる熱交換域と、該熱交換域で生成
した冷却源をスラリー状に貯溜させる蓄冷域とを、上方
より順次形成するとともに、前記噴射域の上流側で、冷
媒液とブラインとをエゼクターで混合した後、前記噴射
域に導かれるようにした事を特徴とする直接接触式冷却
装置
2. A direct contact cooling device for cooling a brine until it is crystallized while bringing a coolant liquid into direct contact with water or other brine to generate a cooling source crystallized from the brine. An injection zone in which the brine and the refrigerant liquid are injected individually or in a state of being mixed in advance in a closed space functioning as a source generation tank and a regenerator, and heat for directly exchanging heat between the refrigerant and the brine. An exchange zone and a cold storage zone for storing a cooling source generated in the heat exchange zone in a slurry state are sequentially formed from above, and after mixing the refrigerant liquid and brine with an ejector on the upstream side of the injection zone. Direct contact cooling device characterized in that it is guided to the injection zone
【請求項3】水その他のブラインに冷媒液を直接接触さ
せながら前記ブラインを氷晶化するまで冷却させて、該
ブラインより氷晶化された冷却源を生成する直接接触式
冷却装置において、 冷却源生成槽兼蓄冷槽として機能する閉鎖空間内に、前
記ブラインと冷媒液を個別に又は前もって混合化させた
状態で噴射させる噴射域と、前記冷媒とブラインとを直
接接触にて熱交換させる熱交換域と、該熱交換域で生成
した冷却源をスラリー状に貯溜させる蓄冷域とを、上方
より順次形成するとともに、前記熱交換域が、表面に前
記冷媒とブラインとが接触可能な形状を有する多数の充
填材を集積させて形成される熱交換域であることを特徴
とする直接接触式冷却装置
3. A direct contact cooling device for cooling a brine until it is crystallized while bringing a coolant liquid into direct contact with water or other brine to generate a cooling source crystallized from the brine. An injection zone in which the brine and the refrigerant liquid are injected individually or in a state of being mixed in advance in a closed space functioning as a source generation tank and a regenerator, and heat for directly exchanging heat between the refrigerant and the brine. An exchange area and a cold storage area for storing a cooling source generated in the heat exchange area in a slurry form are sequentially formed from above, and the heat exchange area has a shape such that the surface of the heat exchange area can contact the refrigerant and the brine. A direct-contact cooling device characterized by being a heat exchange area formed by accumulating a large number of fillers having
【請求項4】水その他のブラインに冷媒液を直接接触さ
せながら前記ブラインを氷晶化するまで冷却させて、該
ブラインより氷晶化された冷却源を生成する直接接触式
冷却装置において、 冷却源生成槽兼蓄冷槽として機能する閉鎖空間内に、前
記ブラインと冷媒液を個別に又は前もって混合化させた
状態で噴射させる噴射域と、前記冷媒とブラインとを直
接接触にて熱交換させる熱交換域と、該熱交換域で生成
した冷却源をスラリー状に貯溜させる蓄冷域とを、上方
より順次形成するとともに、前記ブライン中に界面活性
作用を有する物質を混和させたことを特徴とする直接接
触式冷却装置。
4. A direct contact cooling device for cooling a brine to ice crystal while directly contacting a coolant liquid with water or other brine to generate a cooling source crystallized from the brine. An injection zone in which the brine and the refrigerant liquid are injected individually or in a state of being mixed in advance in a closed space functioning as a source generation tank and a regenerator, and heat for directly exchanging heat between the refrigerant and the brine. An exchange area and a cold storage area for storing a cooling source generated in the heat exchange area in a slurry state are sequentially formed from above, and a substance having a surface active effect is mixed in the brine. Direct contact cooling device.
【請求項5】前記充填材表面に低摩擦抵抗膜が形成され
ている請求項3)記載の直接接触式冷却装置。
5. The direct contact cooling device according to claim 3, wherein a low friction resistance film is formed on the surface of the filler.
【請求項6】水その他のブラインに冷媒液を直接接触さ
せながら前記ブラインを氷晶化するまで冷却させて、該
ブラインより氷晶化された冷却源を生成する直接接触式
冷却装置において、 冷媒液とブラインとをエジェクタにより混合させる混合
手段と、該混合させた混合流体をミキシングにより熱接
触をしながら冷媒液をブラインのほぼ氷結温度付近まで
降温させるミキシング手段とを直列に配設し、該ミキシ
ング手段で熱交換した混合流体を、冷却源生成槽兼蓄冷
槽として機能する閉鎖空間内に噴射させながら氷晶化さ
れた冷却源を生成させ、該冷却源を閉鎖空間下方の蓄冷
域に貯溜させる事を特徴とする直接接触式冷却装置。
6. A direct contact type cooling device for cooling a brine to be crystallized while bringing a refrigerant liquid into direct contact with water or other brine to generate a cooling source crystallized from the brine. Mixing means for mixing the liquid and brine by an ejector, and mixing means for lowering the temperature of the refrigerant liquid to approximately the freezing temperature of the brine while thermally contacting the mixed fluid by mixing are arranged in series. The mixed fluid subjected to heat exchange by the mixing means is sprayed into a closed space functioning as a cooling source generating tank and a cold storage tank to generate an ice crystallized cooling source, and the cooling source is stored in a cold storage area below the closed space. A direct contact cooling device characterized by the following.
JP63299516A 1988-11-29 1988-11-29 Direct contact cooling system Expired - Fee Related JP2709485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299516A JP2709485B2 (en) 1988-11-29 1988-11-29 Direct contact cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299516A JP2709485B2 (en) 1988-11-29 1988-11-29 Direct contact cooling system

Publications (2)

Publication Number Publication Date
JPH02146438A JPH02146438A (en) 1990-06-05
JP2709485B2 true JP2709485B2 (en) 1998-02-04

Family

ID=17873601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299516A Expired - Fee Related JP2709485B2 (en) 1988-11-29 1988-11-29 Direct contact cooling system

Country Status (1)

Country Link
JP (1) JP2709485B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512852B2 (en) * 1992-07-16 1996-07-03 鹿島建設株式会社 Refrigerant for ice making
JPH06272916A (en) * 1993-03-23 1994-09-27 Mitsui Eng & Shipbuild Co Ltd Ice heat storing tank
CN109084495B (en) * 2018-08-14 2023-09-26 中节能城市节能研究院有限公司 Jet type artificial snow refrigerating cold storage system
CN111256254A (en) * 2020-02-13 2020-06-09 西安工程大学 Multi-stage evaporation cooling composite air conditioning unit
CN115195065B (en) * 2021-05-20 2024-07-12 青岛海佰利机械有限公司 Cooling method for injection molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126530A (en) * 1983-12-08 1985-07-06 Hitachi Zosen C B I Kk Method and apparatus for producing, storing and using ice for performing cooling and refrigeration
JPS61147075A (en) * 1984-12-19 1986-07-04 三菱重工業株式会社 Cold accumulator

Also Published As

Publication number Publication date
JPH02146438A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
US5435155A (en) High-efficiency liquid chiller
US5655373A (en) Gas turbine intake air cooling apparatus
CN107449213A (en) Refrigerator
JP2709485B2 (en) Direct contact cooling system
US5572883A (en) Cold storage apparatus
US4321802A (en) Ice and water-making refrigeration apparatus
JPH05296503A (en) Ice heat storage device
US2016056A (en) Liquid circulating system
WO2002016836A1 (en) Stirling cooling device, cooling chamber, and refrigerator
RU2661363C1 (en) Device for low-temperature cooling
KR20170034997A (en) Refrigerator
KR100290258B1 (en) Direct cooling type slurry ice storage cooling system
KR20040063634A (en) The Instant Ice Cream Machine
JPH0359335A (en) Thermal accumulation system
JP3852801B2 (en) Internal / external melting double flow type ice heat storage system
JP3801232B2 (en) Intake air cooling system for gas turbine
KR100189625B1 (en) Defroster and its method of a refrigerator
JPH07174372A (en) Heat exchanging method as well as ice making method employing it and ice heat accumulating device utilizing said ice making method
JP2883168B2 (en) Heat storage device
JP2548637B2 (en) Operating method of supercooled water production equipment
JP2004251541A (en) Dual freezing equipment
JPH07104088B2 (en) Ice storage device for ice heat storage
JPH0792311B2 (en) Ice making, cold storage and heat storage device
JP2853439B2 (en) Absorption type ice machine
JPH02263076A (en) Direct contact type ice heat accumulation method and apparatus therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees