JPH06207724A - Ice heat storage apparatus - Google Patents

Ice heat storage apparatus

Info

Publication number
JPH06207724A
JPH06207724A JP5002291A JP229193A JPH06207724A JP H06207724 A JPH06207724 A JP H06207724A JP 5002291 A JP5002291 A JP 5002291A JP 229193 A JP229193 A JP 229193A JP H06207724 A JPH06207724 A JP H06207724A
Authority
JP
Japan
Prior art keywords
heat storage
ice
refrigerant
storage tank
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5002291A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakuma
勉 佐久間
Kazuo Saito
和夫 齊藤
Toshio Otaka
敏男 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5002291A priority Critical patent/JPH06207724A/en
Publication of JPH06207724A publication Critical patent/JPH06207724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve a filling rate of ice in an ice heat storage tank by injecting a fluid in the heat storage tank, a temperature of which fluid is lower than a solidifica tion point of a heat storage medium and which has a greater specific gravity than the heat storage medium and is not dissolvable in the heat storage medium, into the heat storage medium in the ice heat storage tank, and releasing an overcooled state of the fluid. CONSTITUTION:An ice heat storage tank 1 is filled with water M being a heat storage medium and with a refrigerant R being a nonaqueous fluid, a temperature of which is less than a solidification point of the heat storage medium, i.e., less than 0 deg.C and which has a greater specific gravity than the water M. To the lower end of a refrigerant storage part 3 there is connected one end of a refrigerant piping 5 for recovering the refrigerant R in the refrigerant storage part 3. The other end of the refrigerant piping 5 is connected with a lower side wall of the ice heat storage tank 1 and a nozzle 11 for injecting the refrigerant R into the ice heat storage tank 1 is attached to the tip end of the piping 5. At a location opposite to the nozzle 11 there is mounted on an ultrasonic vibrator 13 serving to release an overcooled state of the refrigerant injected from the nozzle 11. Thereby, heat exchange of the fluid with the heat storage medium is promoted and hence a portion where a distance required for the heat exchange is shortened can be extended as an ice storage region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄熱媒体と蓄熱媒体
の凝固点以下でかつ蓄熱媒体に溶解しない液体との直接
接触により蓄熱媒体を凍結製氷させ、この製氷物の吸熱
作用を利用する氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage system for freezing and ice-making a heat storage medium by direct contact between the heat storage medium and a liquid which is below the freezing point of the heat storage medium and does not dissolve in the heat storage medium, and utilizes the heat absorbing action of this ice-making product. Regarding the device.

【0002】[0002]

【従来の技術】氷蓄熱装置を備えた空気調和システム
は、夏期の昼間に集中する冷房用電力需要の一部を夜間
にシフトし、電力の平準化を可能とするものである。つ
まり、割安な夜間電力を利用して蓄冷熱を行い、この蓄
冷熱を昼間の冷房に使用することによって、ユーザは低
ランニングコストによる空調が得られ、一方電力会社は
電力需要のピークシフトにより設備稼働率の向上が図ら
れる。
2. Description of the Related Art An air conditioning system equipped with an ice heat storage device is capable of leveling electric power by shifting a part of the electric power demand for cooling concentrated during the daytime in summer to nighttime. In other words, low-cost nighttime electricity is used to store cold heat, and by using this cold heat for air conditioning in the daytime, users can obtain air conditioning with low running costs, while electric power companies can install equipment by peak shifting power demand. The operating rate is improved.

【0003】氷蓄熱装置における氷の製氷方法は、大別
すると製氷用熱交換器上で着氷・解氷を行うスタティッ
ク型と、製氷用熱交換器上で着氷させないダイナミック
型がある。
The methods of making ice in the ice heat storage device are roughly classified into a static type in which ice accretion / thawing is performed on the ice making heat exchanger and a dynamic type in which ice is not made to accrete on the ice making heat exchanger.

【0004】一般に、スタティック型は、構造が単純で
ある反面、氷の成長に伴って伝熱抵抗が増加するため、
製氷のための冷却温度を徐々に下げなければならず、効
率の低下を招くといった本質的な欠点があるのに対し、
ダイナミック型ではスタティック型に比較して冷媒の冷
却温度を高くすることができるため、冷凍機の成績係数
が良好となり、氷蓄熱槽内に熱交換器などを配置する必
要がなく、氷の充填率(IPF:Ice Packing Factor)
も向上する。
Generally, the static type has a simple structure, but on the other hand, the heat transfer resistance increases as the ice grows.
While the cooling temperature for ice making has to be gradually lowered, which has the essential drawback of lowering efficiency,
Since the dynamic type can raise the cooling temperature of the refrigerant higher than the static type, the coefficient of performance of the refrigerator is good and there is no need to arrange a heat exchanger in the ice heat storage tank and the filling rate of ice (IPF: Ice Packing Factor)
Also improves.

【0005】ダイナミック型にも種々の方式があるが、
そのーつに低温で比重が1以上の非水溶性液体(冷媒)
と水との直接接触により製氷する方式がある。これは、
蓄熱槽の底部に存在する非水溶性液体を0℃以下に冷却
して蓄熱槽内に配置されたノズルを介して水中に噴出さ
せるものである。この冷却された水溶性液体の循環によ
って蓄熱槽内ではシャーベット状の氷(氷粒)が生成さ
れ、この氷は浮力によって上昇し、蓄熱槽上部から貯溜
され、浮遊して存在することになる。そして、必要に応
じてこの氷の溶解時における吸熱作用を空調機の冷房運
転に利用する。
There are various types in the dynamic type,
At the same time, it is a non-water-soluble liquid (refrigerant) that has a specific gravity of 1 or more at low temperature.
There is a method to make ice by direct contact with water. this is,
The water-insoluble liquid existing at the bottom of the heat storage tank is cooled to 0 ° C. or less and jetted into water through a nozzle arranged in the heat storage tank. Due to the circulation of the cooled water-soluble liquid, sherbet-like ice (ice particles) is generated in the heat storage tank, and this ice rises due to buoyancy and is stored from the upper portion of the heat storage tank and floats. Then, if necessary, the endothermic action when the ice is melted is used for the cooling operation of the air conditioner.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ようなダイナミック型氷蓄熱システムにおいては、生成
されて浮遊するシャーベット状の氷では、氷間の圧縮が
ほとんどないため、氷の占める体積率が低く、IPFが
低い欠点があった。また、非水溶性液体と水との熱交換
はノズルから水中に噴出された非水溶性液体が水中を落
下する間に行われるため、ノズルの配置は、氷蓄熱槽の
底部より熱交換に必要な距離だけ上方でなければならな
い。通常、この落下距離は1m程度必要である。つま
り、ノズルより下方の1m程度までの領域は氷の製氷領
域で、ノズルより上方が氷の貯溜領域となる。この場
合、氷蓄熱槽においてノズルより低い領域はデッドスペ
ースとなることを意味し、氷を貯溜することはできず、
IPFの低い原因になっている。仮に、ノズルより下方
の領域でも氷の貯溜とともに製氷を行おうとすると、製
氷時にノズルが氷結し、噴出孔が詰まって冷媒の供給が
できなくなる。
However, in the dynamic ice heat storage system as described above, the sherbet-like ice that is generated and floats has almost no compression between the ices, so that the volume ratio of the ice is low. , The IPF was low. The heat exchange between the water-insoluble liquid and the water is performed while the water-insoluble liquid ejected from the nozzle into the water falls in the water.Therefore, the nozzle must be arranged for heat exchange from the bottom of the ice storage tank. Must be a certain distance above. Usually, this fall distance is required to be about 1 m. That is, the area below the nozzle up to about 1 m is the ice making area, and the area above the nozzle is the ice storage area. In this case, the area lower than the nozzle in the ice heat storage tank becomes a dead space, and it is not possible to store ice,
It is a cause of low IPF. If it is attempted to make ice together with ice storage in a region below the nozzle, the nozzle freezes during ice making, and the ejection holes are clogged, making it impossible to supply the refrigerant.

【0007】そこで、この発明は、氷蓄熱槽における氷
の充填率をより向上させることを目的としている。
Therefore, an object of the present invention is to further improve the filling rate of ice in the ice heat storage tank.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、蓄熱媒体と、液温が蓄熱媒体の凝固点
以下で蓄熱媒体より比重が大きくかつ蓄熱媒体に溶解し
ない液体とを氷蓄熱槽に収納し、この氷蓄熱槽の底部
に、前記液体を回収し途中に冷却手段を備えた液体回収
配管の一端を接続し、この液体回収配管の他端に氷蓄熱
槽内に液体を噴出する噴出手段を設け、この噴出手段か
ら噴出される液体の過冷却状態を解除する過冷却解除手
段を前記氷蓄熱槽内に設けた構成としてある。
In order to achieve the above object, the present invention provides a heat storage medium and a liquid having a liquid temperature below the freezing point of the heat storage medium and having a specific gravity larger than that of the heat storage medium and not dissolved in the ice. Stored in a heat storage tank, the bottom of this ice storage tank is connected to one end of a liquid recovery pipe that recovers the liquid and has a cooling means in the middle, and the other end of the liquid recovery pipe is filled with the liquid in the ice storage tank. A jetting means for jetting is provided, and a supercooling releasing means for releasing the supercooled state of the liquid jetted from the jetting means is provided in the ice heat storage tank.

【0009】また、過冷却解除手段を噴出手段に一体化
させる構成としてもよい。
The supercooling releasing means may be integrated with the jetting means.

【0010】[0010]

【作用】このような構成の氷蓄熱装置によれば、氷蓄熱
槽の底部に滞留する液体は、液体回収管から回収されて
冷却手段により冷却された後、噴出手段から氷蓄熱槽内
に噴出され、蓄熱媒体と直接接触して熱交換を行う。こ
の状態で過冷却解除手段を動作させると、噴出手段から
噴出された液体の過冷却状態が解除されて熱交換が促進
され、急速に製氷が行われる。
According to the ice heat storage device having such a configuration, the liquid staying at the bottom of the ice heat storage tank is recovered from the liquid recovery pipe and cooled by the cooling means, and then ejected from the ejection means into the ice heat storage tank. The heat is exchanged by directly contacting the heat storage medium. When the supercooling releasing means is operated in this state, the supercooled state of the liquid ejected from the ejecting means is released, heat exchange is promoted, and ice making is rapidly performed.

【0011】また、噴出手段に一体化された過冷却解除
手段を動作させると、噴出手段の噴出孔には着氷しにく
くなり、着氷した場合には剥離される。
Further, when the supercooling releasing means integrated with the jetting means is operated, it becomes difficult for the jetting holes of the jetting means to be iced, and when the ice is iced, it is peeled off.

【0012】[0012]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、この発明の第1実施例に係わるダ
イナミック型氷蓄熱装置の全体構成を示す断面図であ
る。氷蓄熱槽1内は、蓄熱媒体である水Mと、蓄熱媒体
の凝固点以下、つまり0℃以下の液温で水Mより比重が
大きい非水溶性の液体である冷媒Rとで満たされてい
る。氷蓄熱槽1の底部には、下方に突出する冷媒貯溜部
3が設けられ、水Mより比重の大きい冷媒Rは、水Mと
分離して大部分が冷媒貯溜部3に沈殿して存在すること
になる。
FIG. 1 is a sectional view showing the overall structure of a dynamic ice heat storage device according to the first embodiment of the present invention. The ice heat storage tank 1 is filled with water M, which is a heat storage medium, and a refrigerant R, which is a non-water-soluble liquid having a specific gravity not higher than the freezing point of the heat storage medium, that is, a liquid temperature of 0 ° C. or less and a specific gravity higher than that of the water M. . A refrigerant reservoir 3 protruding downward is provided at the bottom of the ice heat storage tank 1, and the refrigerant R, which has a larger specific gravity than the water M, is separated from the water M and mostly exists in the refrigerant reservoir 3. It will be.

【0014】冷媒貯溜部3の下端には、冷媒貯溜部3内
の冷媒Rを回収する液体回収配管としての冷媒配管5の
一端が接続されている。冷媒配管5には、冷媒貯溜部3
側から順に、冷媒Rを循環させる冷媒ポンプ7、冷媒ポ
ンプ7から送られる冷媒を冷却する冷却手段としての冷
凍機9が設けられている。冷媒配管5の他端は氷蓄熱槽
1の下部側側壁に接続され、その先端には氷蓄熱槽1内
に冷媒Rを噴出する噴出手段としてのノズル11が装着
されている。
One end of a refrigerant pipe 5 as a liquid recovery pipe for recovering the refrigerant R in the refrigerant reservoir 3 is connected to the lower end of the refrigerant reservoir 3. The refrigerant pipe 5 has a refrigerant reservoir 3
A refrigerant pump 7 that circulates the refrigerant R and a refrigerator 9 that serves as a cooling unit that cools the refrigerant sent from the refrigerant pump 7 are sequentially provided from the side. The other end of the refrigerant pipe 5 is connected to the lower side wall of the ice heat storage tank 1, and a nozzle 11 as a jetting means for jetting the refrigerant R into the ice heat storage tank 1 is attached to the tip thereof.

【0015】氷蓄熱槽1の下部側内壁の前記ノズル11
と対向する位置には、ノズル11から噴出する冷媒Rの
過冷却状態を解除して水Mとの熱交換を促進させる過冷
却解除手段としての超音波振動子13が装着されてい
る。超音波振動子13は、冷媒Rと水Mとが接触して製
氷される領域に向けて超音波が照射されるよう複数配置
されており、各超音波振動子13は高周波で高電圧を発
生する発振回路15に接続され、この発振回路15によ
って駆動される。
The nozzle 11 on the inner wall of the lower side of the ice heat storage tank 1
An ultrasonic transducer 13 as a supercooling canceling unit that cancels the supercooled state of the refrigerant R ejected from the nozzle 11 and promotes heat exchange with the water M is mounted at a position opposed to. A plurality of ultrasonic transducers 13 are arranged so that the ultrasonic waves are radiated toward the region where the refrigerant R and the water M come into contact with each other to produce ice, and each ultrasonic transducer 13 generates a high voltage at a high frequency. Connected to the oscillator circuit 15 and driven by the oscillator circuit 15.

【0016】このような構成の氷蓄熱装置において、ポ
ンプ7を駆動すると、冷媒貯溜部3内の冷媒Rは、冷凍
機9で任意の温度に冷却されてノズル11から氷蓄熱槽
1内の水M中に微粒子となって噴出される。水M中に噴
出した冷媒Rは、水Mと直接接触して熱交換を行い、水
Mを冷却しながら氷蓄熱槽1の底部に落下し、冷媒貯溜
部3に導かれる。そして、この行程を繰り返し、水Mの
温度が0℃に到達すると、冷媒Rと水Mとの接触により
氷の生成が開始される。
In the ice heat storage device having such a structure, when the pump 7 is driven, the refrigerant R in the refrigerant storage portion 3 is cooled to an arbitrary temperature by the refrigerator 9 and the water in the ice heat storage tank 1 is supplied from the nozzle 11 to the water. It is ejected as fine particles into M. The refrigerant R jetted into the water M directly contacts the water M to perform heat exchange, falls to the bottom of the ice heat storage tank 1 while cooling the water M, and is guided to the refrigerant reservoir 3. Then, this process is repeated, and when the temperature of the water M reaches 0 ° C., the refrigerant R and the water M come into contact with each other to start producing ice.

【0017】ここで、氷蓄熱槽1内に配置された超音波
振動子13を駆動させ、水Mと冷媒Rとの熱交換領域に
超音波を照射する。このときの製氷は、過冷却された冷
媒Rの粒子によるもので、生成された氷は氷粒(シャー
ベット状の氷)Kとなるが、超音波の照射によって急速
に冷媒Rの過冷却状態が解除されるため、氷の生成が促
進される。生成された氷粒Kは、浮力で水M中を上昇し
氷蓄熱槽1の上方に浮遊し、この状態を継続すると、氷
蓄熱槽1の上部から下部へと徐々に貯溜されて行くこと
になる。
Here, the ultrasonic transducer 13 arranged in the ice heat storage tank 1 is driven to irradiate the heat exchange region between the water M and the refrigerant R with ultrasonic waves. The ice making at this time is due to the particles of the refrigerant R supercooled, and the generated ice becomes ice particles (sherbet-like ice) K, but the supercooled state of the refrigerant R is rapidly changed by the irradiation of ultrasonic waves. As it is released, the production of ice is accelerated. The generated ice particles K rise in the water M due to buoyancy and float above the ice heat storage tank 1, and if this state is continued, they are gradually stored from the upper part to the lower part of the ice heat storage tank 1. Become.

【0018】超音波の照射により氷の生成が促進される
ので、冷媒Rがノズル11から噴出されて蓄熱槽1の底
部に達するまでの熱交換に必要な距離が短縮される。こ
のため、ノズル11は氷蓄熱槽1の低い位置に配置で
き、氷蓄熱槽1における氷の貯溜領域を下方まで拡大で
きて氷の充填率が向上する。
Since the generation of ice is accelerated by the irradiation of ultrasonic waves, the distance required for heat exchange until the refrigerant R is ejected from the nozzle 11 and reaches the bottom of the heat storage tank 1 is shortened. Therefore, the nozzle 11 can be arranged at a lower position in the ice heat storage tank 1, the ice storage area in the ice heat storage tank 1 can be expanded downward, and the ice filling rate is improved.

【0019】図2は、この発明の第2実施例を示す。こ
の実施例は、氷蓄熱槽1の側壁に装着するノズル17
に、過冷却解除手段としての超音波振動子19を一体化
したものである。ノズル17は、超音波振動子19を装
着する部位を膨大部17aとして氷蓄熱槽1の外部に露
出させ、いわゆる超音波ホーン形状としてある。超音波
振動子19には電極21が設けられ、ノズル17先端の
噴出孔17b周囲には、ヒータ23が装着されている。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the nozzle 17 mounted on the side wall of the ice heat storage tank 1 is used.
In addition, the ultrasonic transducer 19 as the supercooling releasing means is integrated. The nozzle 17 has a so-called ultrasonic horn shape in which the portion to which the ultrasonic transducer 19 is attached is exposed outside the ice heat storage tank 1 as an enlarged portion 17a. An electrode 21 is provided on the ultrasonic transducer 19, and a heater 23 is mounted around the ejection hole 17b at the tip of the nozzle 17.

【0020】この実施例においても、超音波振動子19
を駆動すると、ノズル11の先端から超音波が水M中に
照射されて冷媒Rの過冷却状態が解除され、氷の生成が
促進されるので、前記第1実施例と同様の効果が得られ
る。
Also in this embodiment, the ultrasonic transducer 19
When is driven, ultrasonic waves are radiated from the tip of the nozzle 11 into the water M, the supercooled state of the refrigerant R is released, and the generation of ice is promoted. Therefore, the same effect as in the first embodiment can be obtained. .

【0021】また、ノズル17の先端への着氷について
は、ノズル17近傍に氷粒Kが存在する場合はもちろん
であるが、ノズル17近傍に氷粒Kが存在せず水Mのみ
の場合であっても発生することがある。
Regarding ice accretion on the tip of the nozzle 17, not only when the ice particles K exist near the nozzle 17, but also when there is no ice particle K near the nozzle 17 and only water M is present. Even if there is, it may occur.

【0022】ところがこの実施例では、超音波振動子1
9の駆動により、ノズル11の先端の噴出孔17b付近
は着氷しにくくなり、例え着氷した場合であっても、着
氷を何等かの手段によって検出して超音波振動子19を
駆動するか、あるいは一定時間毎に超音波振動子19を
駆動すると、ノズル17の先端に超音波エネルギが集中
し、ノズル17の先端に着氷した氷を剥離させることが
できる。これにより、噴出孔17bの凍結及び詰まりが
防止され、この結果、冷媒Rの供給を連続してできるた
め、長時間の製氷が可能となる。超音波振動子19の駆
動とともに、ヒータ23を通電すると、着氷した氷の剥
離効果がさらに向上する。
However, in this embodiment, the ultrasonic transducer 1
By driving 9, the area around the ejection hole 17b at the tip of the nozzle 11 is less likely to be iced, and even if iced, ice is detected by some means and the ultrasonic transducer 19 is driven. Alternatively, when the ultrasonic transducer 19 is driven at regular intervals, ultrasonic energy is concentrated on the tip of the nozzle 17 and the ice that has accumulated on the tip of the nozzle 17 can be separated. As a result, the freezing and clogging of the ejection holes 17b are prevented, and as a result, the refrigerant R can be continuously supplied, which makes it possible to make ice for a long time. When the heater 23 is energized together with the driving of the ultrasonic transducer 19, the effect of peeling off the iced ice is further improved.

【0023】また、ノズル17から冷媒Rを噴出する際
に、超音波振動子19の入力レベルを変化させること
で、噴出孔17bから噴出する冷媒Rの微粒子の径を変
えることも可能で、これによって最適な製氷状態による
氷の生成が期待できる。
Further, when the refrigerant R is ejected from the nozzle 17, it is possible to change the diameter of the fine particles of the refrigerant R ejected from the ejection holes 17b by changing the input level of the ultrasonic transducer 19. Therefore, it can be expected that ice will be generated in the optimum ice-making state.

【0024】なお、この発明は、冷媒Rと水Mとの直接
接触により氷粒Kを生成する製氷方法の場合のみでな
く、例えば図3に示すように、氷蓄熱槽1内に配置した
伝熱パイプ25の下部のノズル11から冷媒Rを伝熱パ
イプ25内に噴出し、伝熱パイプ25の上端から流出す
る冷媒Rによる氷粒Kの生成と同時に、伝熱パイプ25
の外壁に氷塊Lを生成する製氷方法にも当然適用可能で
ある。
The present invention is not limited to the ice making method in which the ice particles K are produced by the direct contact between the refrigerant R and the water M, and, for example, as shown in FIG. The refrigerant R is jetted into the heat transfer pipe 25 from the nozzle 11 below the heat pipe 25, and the ice particles K are generated by the refrigerant R flowing out from the upper end of the heat transfer pipe 25.
It is naturally applicable to the ice making method for producing the ice blocks L on the outer wall of the.

【0025】[0025]

【発明の効果】以上説明してきたように、この発明によ
れば、液温が蓄熱媒体の凝固点以下で蓄熱媒体より比重
が大きくかつ蓄熱媒体に溶解しない液体を氷蓄熱槽内の
蓄熱媒体中に噴出させ、その液体の過冷却状態を過冷却
解除手段によって解除するようにしたため、液体と蓄熱
媒体との熱交換が促進され、熱交換に必要な距離が短縮
される部分を氷の貯溜領域として拡大でき、氷の充填率
の向上を図ることができる。
As described above, according to the present invention, a liquid whose liquid temperature is lower than the freezing point of the heat storage medium and has a specific gravity higher than that of the heat storage medium and which is not dissolved in the heat storage medium is stored in the heat storage medium in the ice storage tank. Since the supercooled state of the liquid is ejected by the supercooling releasing means, heat exchange between the liquid and the heat storage medium is promoted, and the portion where the distance required for heat exchange is shortened is set as the ice storage area. It can be expanded and the filling rate of ice can be improved.

【0026】また、過冷却解除手段を噴出手段に一体化
させる構成とすることで、噴出手段への着氷を防止する
ことができる。
Further, the supercooling releasing means is integrated with the jetting means, so that icing on the jetting means can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例に係わる氷蓄熱装置の全
体構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the overall configuration of an ice heat storage device according to a first embodiment of the present invention.

【図2】この発明の第2実施例を示す要部の断面図であ
る。
FIG. 2 is a sectional view of a main part showing a second embodiment of the present invention.

【図3】この発明の第3実施例に係わる氷蓄熱装置の全
体構成を示す断面図である。
FIG. 3 is a sectional view showing the overall structure of an ice heat storage device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

M 水(蓄熱媒体) R 冷媒(液体) 1 氷蓄熱槽 5 冷媒配管(液体回収配管) 9 冷凍機(冷却手段) 11 ノズル(噴出手段) 13,19 超音波振動子(過冷却解除手段) M Water (heat storage medium) R Refrigerant (liquid) 1 Ice heat storage tank 5 Refrigerant pipe (liquid recovery pipe) 9 Refrigerator (cooling means) 11 Nozzle (spouting means) 13,19 Ultrasonic transducer (supercooling releasing means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱媒体と、液温が蓄熱媒体の凝固点以
下で蓄熱媒体より比重が大きくかつ蓄熱媒体に溶解しな
い液体とを氷蓄熱槽に収納し、この氷蓄熱槽の底部に、
前記液体を回収し途中に冷却手段を備えた液体回収配管
の一端を接続し、この液体回収配管の他端に氷蓄熱槽内
に液体を噴出する噴出手段を設け、この噴出手段から噴
出される液体の過冷却状態を解除する過冷却解除手段を
前記氷蓄熱槽内に設けたことを特徴とする氷蓄熱装置。
1. A heat storage medium and a liquid whose liquid temperature is below the freezing point of the heat storage medium and whose specific gravity is greater than that of the heat storage medium and does not dissolve in the heat storage medium are stored in an ice heat storage tank, and at the bottom of this ice heat storage tank,
The liquid recovery pipe is connected to one end of a liquid recovery pipe provided with a cooling means on the way, and the other end of the liquid recovery pipe is provided with a jetting device for jetting the liquid into the ice heat storage tank, and jetted from the jetting device. An ice heat storage device, characterized in that supercooling release means for releasing a supercooled state of a liquid is provided in the ice heat storage tank.
【請求項2】 過冷却解除手段を噴出手段に一体化させ
たことを特徴とする請求項1記載の氷蓄熱装置。
2. The ice heat storage device according to claim 1, wherein the supercooling releasing means is integrated with the ejection means.
【請求項3】 過冷却解除手段を超音波振動子としたこ
とを特徴とする請求項1または2記載の氷蓄熱装置。
3. The ice heat storage device according to claim 1, wherein the supercooling releasing means is an ultrasonic vibrator.
JP5002291A 1993-01-11 1993-01-11 Ice heat storage apparatus Pending JPH06207724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002291A JPH06207724A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002291A JPH06207724A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Publications (1)

Publication Number Publication Date
JPH06207724A true JPH06207724A (en) 1994-07-26

Family

ID=11525277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002291A Pending JPH06207724A (en) 1993-01-11 1993-01-11 Ice heat storage apparatus

Country Status (1)

Country Link
JP (1) JPH06207724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242002A (en) * 2009-06-15 2009-10-22 Coors European Properties Gmbh Beverage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242002A (en) * 2009-06-15 2009-10-22 Coors European Properties Gmbh Beverage

Similar Documents

Publication Publication Date Title
CA1287045C (en) Water freezing enhancement for thermal storage brine tube
KR101133042B1 (en) Ice thermal storage tank having ultrasonic generator and method for preventing super cooling of heat storage material
JPH06207724A (en) Ice heat storage apparatus
JPH102644A (en) Ice cold heat storage apparatus
JPH06207725A (en) Ice heat storage apparatus
JP2002168483A (en) Ice storing method and ice storage device
JP2696046B2 (en) Latent heat storage device
JPH0763450A (en) Dynamic type ice heat accumulator
JPH0370928A (en) Ice heat accumulator
JPH06300320A (en) Dynamic type ice heat storing device
JP3541165B2 (en) Ice storage type cooling device
JP3344813B2 (en) Dynamic ice heat storage device
JPH0942715A (en) Ice thermal storage apparatus
JP2000274747A (en) Dynamic type ice storage system and its double pipe type heat-exchanger and supercooling release pipe
JPH06201162A (en) Dynamic ice heat accumulator
JPH1047823A (en) Ice making method and ice heat storage device
JP2002221343A (en) Internal melting type ice storage device
JPH06281210A (en) Dynamic type ice heat storing device
JP2547918B2 (en) Latent heat storage device
JPH06201163A (en) Dynamic ice heat accumulator
JPH0763449A (en) Dynamic type ice heat accumulator
JPH0518562A (en) Ice heat accumulator
JPH0755302A (en) Dynamic ice storage apparatus
JPH09210414A (en) Ice heat storing device
JPH05288372A (en) Ice accumulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees