JPH06204016A - Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound - Google Patents

Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound

Info

Publication number
JPH06204016A
JPH06204016A JP4061893A JP6189392A JPH06204016A JP H06204016 A JPH06204016 A JP H06204016A JP 4061893 A JP4061893 A JP 4061893A JP 6189392 A JP6189392 A JP 6189392A JP H06204016 A JPH06204016 A JP H06204016A
Authority
JP
Japan
Prior art keywords
rare earth
intermetallic compound
boron
carbon
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061893A
Other languages
Japanese (ja)
Inventor
Kinya Adachi
吟也 足立
Kenichi Machida
憲一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4061893A priority Critical patent/JPH06204016A/en
Publication of JPH06204016A publication Critical patent/JPH06204016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture rare earth intermetallic compound magnetic material which contains nitrogen, carbon, boron, etc., at low cost by using corresponding rare earth nitride, carbide, boride, etc., as the material. CONSTITUTION:Rare earth nitride, carbide, boride, etc., composed of rare earth compounds such as rare earth oxide and halide lower in cost than metal are high frequency fused or arc fused with iron, cobalt, titanium, etc., and intermetallic compound which contains corresponding non-metal ingredients such as nitrogen, carbon, boron, etc., is manufactured. The concentration of nitrogen, carbon, boron, etc., contained in a sample is adjusted at need by heat treatment in various types of atmospheres such as hydrogen and adding a small quantity of rare earth metal, iron, cobalt, carbon, boron, etc., and fusing it again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、従来の希土類金属に替
わり安価な希土類窒化物、炭化物、ほう化物等を出発原
料とする希土類金属間化合物磁性材料の製造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of rare earth intermetallic compound magnetic materials starting from inexpensive rare earth nitrides, carbides, borides, etc., in place of conventional rare earth metals.

【0002】[0002]

【従来の技術】従来の希土類金属間化合物は、高価な希
土類金属を原料として、これに鉄、コバルト、チタン、
炭素、ほう素等を加え溶融すること、および引き続き得
られた母合金を窒素あるいはアンモニア雰囲気中で加熱
することにより製造されている。
2. Description of the Related Art Conventional rare earth intermetallic compounds are prepared by using expensive rare earth metals as raw materials, iron, cobalt, titanium,
It is manufactured by adding carbon, boron, etc. and melting, and subsequently heating the obtained mother alloy in a nitrogen or ammonia atmosphere.

【0003】[0003]

【発明が解決しようという課題】従来の希土類金属間化
合物の製造方法では、高価な希土類金属を出発原料とす
るため、その製造コストが高くなり、磁性材料としての
需要の大きな妨げとなっていた。従って、高価な希土類
金属を原料とせずに希土類金属間化合物を製造し、その
製造コストを大幅に低減する必要がある。
In the conventional method for producing a rare earth intermetallic compound, an expensive rare earth metal is used as a starting material, so that the production cost is high and the demand as a magnetic material is largely hindered. Therefore, it is necessary to produce a rare earth intermetallic compound without using an expensive rare earth metal as a raw material, and to significantly reduce the production cost.

【0004】[0004]

【課題を解決するための手段】前記の目的を達成するた
めには、希土類金属間化合物に占める希土類成分の製造
コストを大幅に低減した製造プロセスの開発が不可欠で
あり、本発明では希土類金属と比べより安価な希土類窒
化物、炭化物、ほう化物等を出発原料として、希土類金
属間化合物を製造することを特徴としている。
In order to achieve the above object, it is indispensable to develop a manufacturing process in which the manufacturing cost of the rare earth component in the rare earth intermetallic compound is significantly reduced. It is characterized in that a rare earth intermetallic compound is produced using a cheaper rare earth nitride, carbide, boride or the like as a starting material.

【0005】[0005]

【作用】本発明では、安価な希土類酸化物あるいはハロ
ゲン化物から公知の方法で得られる希土類窒化物、炭化
物、ほう化物等を出発原料として、希土類金属間化合物
を製造することができる。
In the present invention, the rare earth intermetallic compound can be produced by using, as a starting material, a rare earth nitride, a carbide or a boride obtained by a known method from an inexpensive rare earth oxide or halide.

【0006】製造は、希土類窒化物、炭化物、ほう化物
等に適当量の鉄、コバルト、チタンなどを加え、高周波
あるいはアーク溶融することにより行うことができる。
The production can be carried out by adding an appropriate amount of iron, cobalt, titanium or the like to rare earth nitrides, carbides, borides and the like, and high frequency or arc melting.

【0007】また、得られた化合物を水素を始めとする
適当な雰囲気中で加熱処理すること、および適当量の希
土類金属、鉄、コバルト、炭素、ほう素等をその化合物
にさらに加え再度溶融することで、Ln2Fe17Nx、Ln2Fe17
CyNx、NdFe11TiNx、Nd2Fe14Bを始めとする希土類金属間
化合物を製造することができる。
Further, the obtained compound is heat-treated in an appropriate atmosphere including hydrogen, and an appropriate amount of rare earth metal, iron, cobalt, carbon, boron or the like is further added to the compound and melted again. Therefore, Ln 2 Fe 17 N x , Ln 2 Fe 17
It is possible to produce rare earth intermetallic compounds such as C y N x , NdFe 11 TiN x , and Nd 2 Fe 14 B.

【0008】[0008]

【実施例】図1に示す製造工程により、希土類窒化物、
炭化物、ほう化物等を出発原料として、Ln2Fe17Nx、Ln2
Fe17CyNx、NdFe11TiNx、Nd2Fe14Bを始めとする希土類金
属間化合物を製造することができる。
EXAMPLE A rare earth nitride,
Ln 2 Fe 17 N x , Ln 2 with carbides and borides as starting materials
Fe 17 C y N x , NdFe 11 TiN x , Nd 2 Fe 14 B and other rare earth intermetallic compounds can be produced.

【0009】製造は、上記の希土類化合物に鉄、コバル
ト、チタン等を加え、高周波あるいはアーク溶融をする
ことにより行った。また必要に応じ、得られた化合物を
水素を始めとする適当な雰囲気中で加熱処理すること、
およびこれにさらに適当量の希土類金属、鉄、コバル
ト、炭素、ほう素等を加え高周波溶融することで上記の
金属間化合物が得られた。
The production was carried out by adding iron, cobalt, titanium or the like to the above rare earth compound and subjecting it to high frequency or arc melting. If necessary, the obtained compound is heat-treated in a suitable atmosphere including hydrogen.
Further, an appropriate amount of rare earth metal, iron, cobalt, carbon, boron or the like was added to this and high frequency melting was performed to obtain the above intermetallic compound.

【0010】図2に、モル比2:17のSmN-Fe混合物を高周
波溶融した際に得られた試料のX線回折パターンを、溶
融前の混合物のそれと併せて示す。溶融前では、SmNと
α-Feに帰属される回折ピークが観測されるのに対し、
溶融後ではSmNのピークが消失すると共に、α-Feのピー
クがブロードになった。これは、溶融に伴いSmNがFeと
反応し、非晶質のSm-Fe-N相と結晶性が低下したα-Fe相
が生成したことを示している。なお、この試料の組成は
モル比でほぼSm:Fe:N=2:17:2であった。
FIG. 2 shows the X-ray diffraction pattern of a sample obtained by high-frequency melting of a SmN-Fe mixture having a molar ratio of 2:17, together with that of the mixture before melting. Before melting, diffraction peaks attributed to SmN and α-Fe are observed, whereas
After melting, the SmN peak disappeared and the α-Fe peak became broad. This indicates that SmN reacted with Fe as it melted, producing an amorphous Sm-Fe-N phase and an α-Fe phase with reduced crystallinity. The composition of this sample was about Sm: Fe: N = 2: 17: 2 in molar ratio.

【0011】一方、上記の試料に組成がSm2Fe17Nとなる
ようにSmとFeを加え溶融した試料のX線回折パターンを
図2(c)に示す。2θ=41〜42°にSm2Fe17Nxの主要ピー
クをもつ回折パターンが観測され、目的とする希土類金
属間化合物が生成したことがわかる。また、回折ピーク
の強度が弱くブロードであることから、試料の結晶化度
は低いと考えられるが、これは窒素含有量と密接に関係
し、窒素量を低減させることにより結晶性は向上する。
On the other hand, FIG. 2 (c) shows an X-ray diffraction pattern of a sample obtained by adding Sm and Fe to the above sample so as to have a composition of Sm 2 Fe 17 N and melting the sample. A diffraction pattern having a main peak of Sm 2 Fe 17 N x was observed at 2θ = 41 to 42 °, which shows that the target rare earth intermetallic compound was formed. Further, since the intensity of the diffraction peak is weak and broad, the crystallinity of the sample is considered to be low, but this is closely related to the nitrogen content, and the crystallinity is improved by reducing the nitrogen content.

【0012】図3に、酸化サマリウムとグラファイト粉
末から公知の方法で合成したSmC2のX線回折パターンと
モル比2:17のSmC2とFeとをアーク溶融した試料の同様の
X線回折パターンを示す。アーク溶融により、Sm-Fe-N
系の場合と同様にSmC2の回折ピークは消失し、ブロード
なα-Feのピークのみが観測された。これも、SmC2がFe
と反応し、無定形のSm-Fe-C相と結晶性の低下したα-Fe
相が生成したことを示している。なお、この試料の組成
はSm成分が若干減少したものの、モル比でSm:Fe:C=2:1
7:4に近い値であった。
FIG. 3 shows an X-ray diffraction pattern of SmC 2 synthesized by a known method from samarium oxide and graphite powder and a similar X-ray diffraction pattern of a sample obtained by arc melting SmC 2 and Fe with a molar ratio of 2:17. Indicates. Sm-Fe-N by arc melting
Similar to the system, the SmC 2 diffraction peak disappeared, and only the broad α-Fe peak was observed. Again, SmC 2 is Fe
Reacts with the amorphous Sm-Fe-C phase and α-Fe with reduced crystallinity
It indicates that a phase has formed. Although the composition of this sample was slightly reduced in Sm component, the molar ratio was Sm: Fe: C = 2: 1.
It was close to 7: 4.

【0013】同様に、上記の試料に組成がSm2Fe17C0.5
となるようにSmとFeを加え、溶融して得た試料のX線回
折パターンを図3(c)に示す。2θ=42〜43°にSm2Fe17
Cxの主要ピークをもつ回折パターンが観測され、目的と
する希土類金属間化合物が生成したことがわかる。この
場合も炭素含有量の増大と共に、試料の結晶性は低下し
た。
Similarly, the composition of Sm 2 Fe 17 C 0.5
3 (c) shows the X-ray diffraction pattern of the sample obtained by adding Sm and Fe so that Sm 2 Fe 17 at 2θ = 42 to 43 °
The diffraction pattern with the main peak of C x is observed, which shows that the target rare earth intermetallic compound is produced. Also in this case, the crystallinity of the sample decreased as the carbon content increased.

【0014】[0014]

【発明の効果】本発明は、安価な希土類化合物を出発原
料として用いるため、通常の希土類金属から製造される
希土類金属間化合物と比べ、その製造コストの大幅な低
減に効果がある。
INDUSTRIAL APPLICABILITY Since the present invention uses an inexpensive rare earth compound as a starting material, it is effective in significantly reducing the production cost thereof as compared with a rare earth intermetallic compound produced from a usual rare earth metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】希土類金属間化合物の製造工程図である。FIG. 1 is a manufacturing process drawing of a rare earth intermetallic compound.

【図2】粉末X線回折図である。ただし、(a)はSmN/Fe
(モル比=2:17)混合物、(b)は高周波溶融後の同試
料、および(c)はSm2Fe17Nとなるように試料(b)にSmとFe
を加え高周波溶融した試料である。
FIG. 2 is a powder X-ray diffraction pattern. However, (a) is SmN / Fe
(Mole ratio = 2:17) mixture, (b) the same sample after high frequency melting, and (c) Sm 2 Fe 17 N in the sample (b) so that Sm 2 Fe 17 N.
Is a sample obtained by high-frequency melting.

【図3】粉末X線回折図である。ただし、(a)はSmC2
(b)はSmC2をモル比が2:17となるようにFeを加えアーク
溶融した試料、および(c)はSm2Fe17C0.5となるように試
料(b)にSmとFeを加えアーク溶融した試料である。
FIG. 3 is a powder X-ray diffraction pattern. However, (a) is SmC 2 ,
(b) is a sample in which SmC 2 was arc-melted by adding Fe so that the molar ratio was 2:17, and (c) was added Sm and Fe to sample (b) so that it was Sm 2 Fe 17 C 0.5. It is a sample melted by arc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ln2Fe17Nx、Ln2Fe17CyNx、NdFe11TiNx
Nd2Fe14B(Ln:希土類元素)等に代表される希土類金属
間化合物を、希土類金属と比べより安価な希土類化合
物、例えば希土類窒化物、炭化物、ほう化物等を出発原
料として、これに鉄、コバルト、チタン等を混合し溶融
することで、高性能な磁性材料を製造する技術。
1. Ln 2 Fe 17 N x , Ln 2 Fe 17 C y N x , NdFe 11 TiN x ,
Rare earth intermetallic compounds represented by Nd 2 Fe 14 B (Ln: rare earth element), etc. are used as starting materials for rare earth compounds that are cheaper than rare earth metals, such as rare earth nitrides, carbides and borides. A technology for producing high-performance magnetic materials by mixing and melting cobalt, cobalt, titanium, etc.
JP4061893A 1992-03-18 1992-03-18 Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound Pending JPH06204016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061893A JPH06204016A (en) 1992-03-18 1992-03-18 Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061893A JPH06204016A (en) 1992-03-18 1992-03-18 Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound

Publications (1)

Publication Number Publication Date
JPH06204016A true JPH06204016A (en) 1994-07-22

Family

ID=13184283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061893A Pending JPH06204016A (en) 1992-03-18 1992-03-18 Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound

Country Status (1)

Country Link
JP (1) JPH06204016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275024A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet containing Nitride Phase and manufacture method
CN109036752A (en) * 2018-08-14 2018-12-18 徐靖才 A kind of method that nitrogen class rare earth compounding prepares high-coercive force samarium iron nitrogen magnet
CN113421762A (en) * 2021-07-02 2021-09-21 泮敏翔 Preparation method of high-performance samarium-iron-nitrogen magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275024A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet containing Nitride Phase and manufacture method
CN107275024B (en) * 2016-04-08 2018-11-23 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet and manufacturing method containing Nitride Phase
CN109036752A (en) * 2018-08-14 2018-12-18 徐靖才 A kind of method that nitrogen class rare earth compounding prepares high-coercive force samarium iron nitrogen magnet
CN109036752B (en) * 2018-08-14 2019-08-30 中国计量大学 A kind of method that nitrogen class rare earth compounding prepares high-coercive force samarium iron nitrogen magnet
CN113421762A (en) * 2021-07-02 2021-09-21 泮敏翔 Preparation method of high-performance samarium-iron-nitrogen magnet
CN113421762B (en) * 2021-07-02 2022-12-16 中国计量大学 Preparation method of high-performance samarium-iron-nitrogen magnet

Similar Documents

Publication Publication Date Title
Tsuzuki et al. High temperature and pressure preparation and properties of iron carbides Fe 7 C 3 and Fe 3 C
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
KR20000058055A (en) Quenched thin ribbon of rare earth/iron/boron-based magnet alloy
WO1990015785A1 (en) Method of producing ceramic sinter
US5690889A (en) Production method for making rare earth compounds
CN1254338C (en) Method for producing Sm-Fe-N permanent magnet alloy powder by reduction diffusion
JPH06204016A (en) Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound
JPH0512320B2 (en)
JPH024940A (en) Hard magnetic material and production thereof
US4824734A (en) Tin-containing iron base powder and process for making
US5733384A (en) Process for producing hard-magnetic parts
JPH05226123A (en) Magnetic material
US3066022A (en) Process for the manufacture of pulverized iron
JPH02228470A (en) Sputtering target
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
CA1239812A (en) Tin-containing iron base powder and process for making
JPS6249345B2 (en)
JPS63250429A (en) Production of ytterbium-transition metal alloy
JPH0543989A (en) Hard magnetic material and its production
JPS5823451B2 (en) Manufacturing method of rare earth cobalt magnet
JPS6280249A (en) Production of amorphous alloy
Izumi et al. Synthesis and Magnetic Properties of NdFe10Mo2Cx and NdFe10Mo2CxNy Using NdC2 as a Starting Material.
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPS6043449A (en) Manganese-bismuth alloy for addition to steel
JPH08188803A (en) Production of powdery rare earth-transition metal alloy