JPH0543989A - Hard magnetic material and its production - Google Patents

Hard magnetic material and its production

Info

Publication number
JPH0543989A
JPH0543989A JP3224577A JP22457791A JPH0543989A JP H0543989 A JPH0543989 A JP H0543989A JP 3224577 A JP3224577 A JP 3224577A JP 22457791 A JP22457791 A JP 22457791A JP H0543989 A JPH0543989 A JP H0543989A
Authority
JP
Japan
Prior art keywords
hard magnetic
magnetic material
gas
nitrogen
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3224577A
Other languages
Japanese (ja)
Inventor
Yasunori Matsunari
靖典 松成
Shogo Miki
章伍 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP3224577A priority Critical patent/JPH0543989A/en
Publication of JPH0543989A publication Critical patent/JPH0543989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To improve the magnetic properties of a hard magnetic material while using a composition having superior cost performance characteristic and to extend the use of the hard magnetic material. CONSTITUTION:The material is a hard magnetic material having the following composition formula, Fe100-alpha-betaMalphaXbeta where M means at least one element selected from the group consisting of Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, B, C, Si, P, and S, X means N and/or H, and the symbols (alpha and beta) stand for 1-20 and 1-25 by atomic ratio, respectively. The method for producing this hard magnetic material consists essentially of alloying the constituent elements, other than X, in the above composition formula, forming the resulting alloy into ribbon state or flake state by a melt-spin ribbon process, and then subjecting the above, in the above state or after crushing, to heat treatment at <=1500 deg.C in an atmosphere containing at least one kind among nitrogen gas, hydrogen gas, and ammonia gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性に優れ、且つ
コストパフォーマンスにも優れた硬質磁性材料とその製
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard magnetic material having excellent magnetic properties and cost performance, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、硬質磁性材料は永久磁石あるいは
磁気記録媒体の材料として使用量が増大している。以下
に従来の硬質磁性材料について、永久磁石を主体にして
説明する。一般に、硬質磁性材料に要求される特性は、
飽和磁化(以下4πIsと記す)及び残留磁束密度(以
下Brと記す)が大きいこと、保持力(以下iHcと記
す)が大きいこと、そしてこれらの結果としての最大磁
気エネルギー(以下(BH)max と記す)が大きいこ
と、キュリー点(以下Tcと記す)が十分高いことなど
が挙げられる。現在、硬質磁性材料としては、ハードフ
ェライト系、アルニコ系及び希土類−遷移金属系が使用
されており、例えば希土類−遷移金属系としては、Sm
−Co系の1−5型、2−17型、Nd−Fe−B系な
どが使用されている。
2. Description of the Related Art In recent years, hard magnetic materials have been used in increasing amounts as materials for permanent magnets or magnetic recording media. The conventional hard magnetic material will be described below mainly with respect to permanent magnets. Generally, the properties required for hard magnetic materials are
Saturation magnetization (hereinafter referred to as 4πIs) and residual magnetic flux density (hereinafter referred to as Br) are large, coercive force (hereinafter referred to as iHc) is large, and maximum magnetic energy as a result of these (hereinafter referred to as (BH) max) And the Curie point (hereinafter referred to as Tc) is sufficiently high. Currently, hard ferrite materials, alnico materials, and rare earth-transition metal materials are used as hard magnetic materials. For example, rare earth-transition metal materials include Sm.
-Co type 1-5 type, 2-17 type, Nd-Fe-B type, etc. are used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
硬質磁性材料は次のような問題点を有していた。即ち、
ハードフェライトは安価であるが磁気特性が低く、アル
ニコ系は比較的高価であるうえに磁気特性のうちiHc
が低く、また希土類−遷移金属系は磁気特性は高いもの
のかなり高価であるという問題がある。すなわち、従来
の硬質磁性材料はいずれも(BH)max /(グラム・
円)で表されるコストパフォーマンスがさほど大きくな
いため、工業的な使用に際して制限があり、また応用機
器の小型高性能化を十分に達成することができない問題
点を有していた。
However, the conventional hard magnetic materials have the following problems. That is,
Hard ferrite is inexpensive, but has low magnetic properties. Alnico is relatively expensive, and iHc is one of the magnetic properties.
Is low, and the rare earth-transition metal system has high magnetic properties, but is quite expensive. That is, the conventional hard magnetic materials are all (BH) max / (gram ·
Since the cost performance represented by (yen) is not so large, there are limitations in industrial use, and there is a problem that it is not possible to sufficiently achieve miniaturization and high performance of applied equipment.

【0004】本発明は、上記従来の問題点を解決するも
ので、安価且つ高磁気特性を有し優れた価格対比磁気特
性が発揮できるコストパフォーマンスに優れた硬質磁性
材料とその製法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a hard magnetic material which is inexpensive and has high magnetic properties and excellent magnetic properties against price, and which is excellent in cost performance, and a manufacturing method thereof. With the goal.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は以下の組成式を有する硬質磁性材料を提案す
る。
In order to achieve this object, the present invention proposes a hard magnetic material having the following composition formula.

【化2】 但し、MはCo、Ni、Ti、V、Cr、Mn、Zr、
Nb、Mo、Hf、Ta、W、B、C、Si、Pおよび
Sの内から選ばれる少なくとも一種。XはN、Hのうち
の少なくとも一種からなり、以下の原子比率の範囲を有
する。 1≦α≦20 1≦β≦25
[Chemical 2] However, M is Co, Ni, Ti, V, Cr, Mn, Zr,
At least one selected from Nb, Mo, Hf, Ta, W, B, C, Si, P and S. X is composed of at least one of N and H and has the following atomic ratio range. 1 ≦ α ≦ 20 1 ≦ β ≦ 25

【0006】また、上記組成の硬質磁性材料の製造は、
先ず上記の組成式のXを除く構成元素を先ず合金化した
後、これを急冷薄帯法でリボン状もしくはフレーク状と
し、そのままあるいは粉砕したのち1500℃以下の温
度において、窒素ガス、水素ガス又はアンモニアガスの
うちの少なくとも一種を含む雰囲気中で熱処理すること
を基本的な工程とすることによって得られる。
Further, the production of the hard magnetic material having the above composition is
First, the constituent elements other than X in the above composition formula are first alloyed, and then they are formed into ribbons or flakes by the quenching ribbon method, and are crushed as they are or after being crushed at a temperature of 1500 ° C. or lower, nitrogen gas, hydrogen gas or It can be obtained by performing a heat treatment in an atmosphere containing at least one kind of ammonia gas as a basic step.

【0007】[0007]

【作用】このような構成とすることによって、高い磁気
特性を有し、且つ鉄合金を主体とした安価な原料使用が
可能であるという両利点を兼ね備えることになり、高コ
ストパフォーマンスを有する硬質磁性材料を提供するこ
とができる。
With such a structure, it has both the advantages that it has high magnetic properties and that it is possible to use inexpensive raw materials mainly composed of iron alloys. Material can be provided.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。本
発明は、
EXAMPLES Examples of the present invention will be described below. The present invention is

【化3】 の一般式で示される組成を有する鉄主体の硬質磁性材料
である。MはCo(コバルト)、Ni(ニッケル)、T
i(チタン)、V(バナジウム)、Cr(クロム)、M
n(マンガン)、Zr(ジルコニウム)、Nb(ニオ
ブ)、Mo(モリブデン)、Hf(ハフニウム)、Ta
(タンタル)、W(タングステン)、B(ホウ素)、C
(炭素)、Si(ケイ素)、P(リン)又はS(硫黄)
の内から一種又は複数が選択され、その原子比αは1≦
α≦20の範囲に設定される。
[Chemical 3] The iron-based hard magnetic material has a composition represented by the general formula M is Co (cobalt), Ni (nickel), T
i (titanium), V (vanadium), Cr (chrome), M
n (manganese), Zr (zirconium), Nb (niobium), Mo (molybdenum), Hf (hafnium), Ta
(Tantalum), W (tungsten), B (boron), C
(Carbon), Si (silicon), P (phosphorus) or S (sulfur)
One or more are selected from among, and the atomic ratio α is 1 ≦
It is set in the range of α ≦ 20.

【0009】また、XはN(窒素)、H(水素)のうち
のいずれか、あるいは両方が選択され、その原子比βは
1≦β≦25の範囲に設定される。
Further, for X, one or both of N (nitrogen) and H (hydrogen) is selected, and the atomic ratio β is set within the range of 1 ≦ β ≦ 25.

【0010】1≦α≦20としたのは、α<1では安定
な窒素もしくは窒素と水素の含有合金が得られない為で
あり、またα>20では磁気特性のうちBrが低下する
為である。また1≦β≦25としたのは、β<1では窒
素もしくは窒素と水素の含有量が少なすぎて高磁気特性
を示さないし、β>25では非磁性成分が多くなりすぎ
る結果、やはり磁気特性に優れたものが得られない為で
ある。但し、βの値は熱処理によって多少調整すること
はできる。
The reason why 1 ≦ α ≦ 20 is set is that when α <1, stable nitrogen or an alloy containing nitrogen and hydrogen cannot be obtained, and when α> 20, Br in the magnetic properties is lowered. is there. Further, 1 ≦ β ≦ 25 is set so that when β <1, the content of nitrogen or nitrogen and hydrogen is too small to show high magnetic properties, and when β> 25, the amount of non-magnetic components becomes too large, resulting in magnetic properties. This is because the excellent product cannot be obtained. However, the value of β can be adjusted to some extent by heat treatment.

【0011】次にこのような硬質磁性材料の製法を、本
発明の硬質磁性材料の効果を確かめる為に行った実験手
順とともに述べる。実験は表1に示すFe−M合金構成
を対象とし、このFe−M系硬質磁性材料に窒素又は水
素を侵入処理もしくは化合処理して得られる本願実施例
のFe−M−X系硬質磁性材料の磁気特性を測定し、一
方、比較例として前記実施例と同じFe−M合金構成を
有しながらも窒素の侵入処理もしくは化合処理を行わな
かったものの磁気特性も測定してこれらを比較すること
によって行った。実験は次の手順によった。
Next, a method for producing such a hard magnetic material will be described together with an experimental procedure carried out to confirm the effect of the hard magnetic material of the present invention. The Fe-M alloy composition shown in Table 1 was used in the experiment, and the Fe-M-X hard magnetic material of the present embodiment obtained by injecting or compounding nitrogen or hydrogen into this Fe-M hard magnetic material. Of the Fe-M alloy composition as in the above-mentioned example, but without the nitrogen penetration treatment or the compounding treatment, the magnetic characteristics of the same are also measured and compared. Went by. The experiment was performed according to the following procedure.

【0012】元素Xの導入前の合金、すなわちFe−M
合金は、それぞれの金属元素あるいは半金属元素を秤量
混合し、これをアーク溶解することにより作製した。ア
ークボタンを必要により熱処理を施して均一化したの
ち、小片に砕き、これを急冷薄帯法でリボン状もしくは
フレーク状とした。Fe−M合金の組成によっては、射
出しにくいものもあったが、その場合はノズル径とガス
加圧力で調整した。また急冷薄帯法ではアモルファス状
のものか、あるいは微結晶粒集合体状のもののいずれを
得ることもできるが、急冷速度を調整することにより、
微結晶粒集合体とした。しかしながら、一旦アモルファ
ス化した後、熱処理によって微結晶を析出させること
も、他の実施態様として適宜採用される。
Alloy before introduction of element X, namely Fe-M
The alloy was prepared by weighing and mixing the respective metal elements or semi-metal elements and arc-melting them. The arc button was heat-treated as necessary to make it uniform, and then crushed into small pieces, which were then formed into ribbons or flakes by the rapid cooling ribbon method. Depending on the composition of the Fe-M alloy, it was difficult to inject it, but in that case, it was adjusted by the nozzle diameter and the gas pressure. In addition, by the quenching ribbon method, it is possible to obtain either an amorphous form or a fine crystal grain aggregate form, but by adjusting the quenching rate,
A fine crystal grain aggregate was used. However, once amorphized, the heat treatment to precipitate fine crystals is also appropriately adopted as another embodiment.

【0013】次に、このものを平均粒径が約100μm
となるまで粉砕して粉体とした。この粉体を熱処理炉に
入れ、窒素ガスまたはアンモニアガス雰囲気中で300
〜1500℃の温度で1〜10時間加熱し、窒素単独又
は窒素と水素を同時にFe−M合金に導入し、Fe−M
−X系硬質磁性材料粉末とした。この粉末のBrとiH
cをVSMにより測定した。結果を表1に示す。
Next, the average particle size of this product is about 100 μm.
It was pulverized until it became a powder. This powder is put in a heat treatment furnace, and is placed in a nitrogen gas or ammonia gas atmosphere for 300 times.
By heating at a temperature of ~ 1500 ° C for 1-10 hours, nitrogen alone or nitrogen and hydrogen are simultaneously introduced into the Fe-M alloy.
-X-based hard magnetic material powder was used. Br and iH of this powder
c was measured by VSM. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明かなように、本発明の硬質磁性
材料である実施例1〜15は、比較例1〜3に比べて高
いBrと高いiHcが得られることがわかり、特にiH
cに関しては実用上必要なiHcの大きさである1KO
e以上の優れた値が実現できていることがわかる。
As is clear from Table 1, Examples 1 to 15, which are hard magnetic materials of the present invention, can obtain higher Br and higher iHc than Comparative Examples 1 to 3, and particularly iH.
As for c, the size of iHc required for practical use is 1KO.
It can be seen that excellent values of e and above are realized.

【0016】なお、実施例においてはより好適なMとし
てCo、Ni、Ti、V、Cr、Mn、Zr、Nb、M
o、Hf、Ta、W、B、C、Si、PおよびSのうち
から選択される少なくとも一種としたが、磁気特性を向
上させる目的でこれら以外にAl(アルミニウム)、C
u(銅)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲ
ルマニウム)、Sn(スズ)、Sb(アンチモン)、B
i(ビスマス)、Mg(マグネシウム)、Ca(カルシ
ウム)又はミッシュメタル、ジジム合金などを合わせて
使用することもできる。
In the examples, more preferable M is Co, Ni, Ti, V, Cr, Mn, Zr, Nb, M.
At least one selected from o, Hf, Ta, W, B, C, Si, P and S is used, but Al (aluminum) and C are also used for the purpose of improving magnetic properties.
u (copper), Zn (zinc), Ga (gallium), Ge (germanium), Sn (tin), Sb (antimony), B
It is also possible to use i (bismuth), Mg (magnesium), Ca (calcium) or misch metal, didymium alloy, etc. together.

【0017】また工業的に不可避な不純物である酸素や
塩素などを組成上含むものも、当然本発明に包含され
る。また、前記実施例においては、より好適な製造方法
である急冷薄帯法を示し、リボン状もしくはフレーク状
のFe−M合金を得た後、これを粉砕して粉体とした
が、他の一般的に行われている合金化の手法や粉体化の
手法を採用することも可能であり、例えば高周波溶解や
各種ミリング法等が採用できる。また、急冷法について
も、片ロール法、双ロール法、ディスク法、アトマイズ
法、溶射法等の各種の高速急冷法を用いることができ
る。さらに、X成分の導入についても、好適には窒素ガ
ス、水素ガス又はアンモニアガスのうちの少なくとも1
種以上からなる雰囲気としたが、これらのガス以外にア
ルゴンガス等が混在していても良いし、浸炭性のあるガ
スが混在しても良い。また、ガス圧力も1気圧に限定す
ることはなく、例えば高圧下で熱処理することもでき
る。さらに、実施例では一旦粉体にして窒素等を導入し
たが、可能であればリボン状、フレーク状あるいは小塊
状のFe−M合金に窒素等を導入することもありうる。
また、各工程において、磁場の印加を組合せて、より高
特性の硬質磁性材料を製造することもできる。同じく、
各工程の前後に必要に応じて熱処理工程や養生工程を付
加することもできる。
Naturally, those containing oxygen and chlorine, which are industrially unavoidable impurities, in the composition are also included in the present invention. Further, in the above-mentioned Examples, a quenching ribbon method, which is a more preferable manufacturing method, is shown, and after a ribbon-shaped or flake-shaped Fe-M alloy is obtained, this is pulverized into a powder, It is also possible to employ a commonly used alloying method or powdering method, for example, high frequency melting or various milling methods. As the quenching method, various high-speed quenching methods such as a single roll method, a twin roll method, a disk method, an atomizing method, and a thermal spraying method can be used. Further, with respect to the introduction of the X component, at least one of nitrogen gas, hydrogen gas or ammonia gas is preferably used.
Although the atmosphere is made of at least one kind, an argon gas or the like may be mixed in addition to these gases, or a carburizing gas may be mixed. Further, the gas pressure is not limited to 1 atm, and the heat treatment may be performed under high pressure, for example. Further, although nitrogen or the like was once made into a powder in the examples, nitrogen or the like may be introduced into a ribbon-shaped, flake-shaped, or small-lump Fe-M alloy if possible.
Further, in each step, application of a magnetic field can be combined to manufacture a hard magnetic material having higher characteristics. Similarly,
Before or after each step, a heat treatment step or a curing step can be added if necessary.

【0018】このように本発明の硬質磁性材料によれ
ば、優れた磁気特性を有する粉末状の硬質磁性材料を安
価に得ることが可能で高いコストパフォーマンスを実現
することができるので、この粉末を用いてボンド磁石や
バルク状の永久磁石を製造することにより永久磁石の用
途拡大に貢献することができる。
As described above, according to the hard magnetic material of the present invention, a powdery hard magnetic material having excellent magnetic properties can be obtained at a low cost and high cost performance can be realized. By producing a bonded magnet or a bulk-shaped permanent magnet using the same, it is possible to contribute to the expansion of applications of the permanent magnet.

【0019】[0019]

【発明の効果】本発明の組成並びに製法によれば、高磁
気特性を有し且つ安価なコストパフォーマンスに優れた
鉄主体の硬質磁性材料を得ることができる。したがって
従来のハードフェライト系やアルニコ系、希土類−遷移
金属系の硬質磁性材料では実現困難であった安価な原材
料を使用しながら高い磁気特性を実現するという課題が
達成でき、硬質磁性材料の工業的使用における制約を大
きく緩和することが可能となって、硬質磁性材料の用途
の拡大がはかれる。
According to the composition and manufacturing method of the present invention, it is possible to obtain an iron-based hard magnetic material having high magnetic characteristics and being inexpensive and excellent in cost performance. Therefore, the problem of achieving high magnetic properties while using inexpensive raw materials, which was difficult to achieve with conventional hard ferrite-based, alnico-based, or rare earth-transition metal-based hard magnetic materials, can be achieved, and industrial use of hard magnetic materials can be achieved. It is possible to greatly relax the restrictions in use, and expand the applications of the hard magnetic material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display part H01F 1/06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の組成式を有する硬質磁性材料。 【化1】 但し、MはCo、Ni、Ti、V、Cr、Mn、Zr、
Nb、Mo、Hf、Ta、W、B、C、Si、P又はS
の内から選ばれる少なくとも一種。XはN、Hのうちの
少なくとも一種からなり、以下の原子比率の範囲を有す
る。 1≦α≦20 1≦β≦25
1. A hard magnetic material having the following composition formula: [Chemical 1] However, M is Co, Ni, Ti, V, Cr, Mn, Zr,
Nb, Mo, Hf, Ta, W, B, C, Si, P or S
At least one selected from. X is composed of at least one of N and H and has the following atomic ratio range. 1 ≦ α ≦ 20 1 ≦ β ≦ 25
【請求項2】 請求項1記載の組成式においてXを除く
構成元素を先ず合金化した後、これを急冷薄帯法でリボ
ン状もしくはフレーク状とし、そのままあるいは粉砕し
たのち1500℃以下の温度において、窒素ガス、水素
ガス又はアンモニアガスのうちの少なくとも一種を含む
雰囲気中で熱処理することから基本的に構成される硬質
磁性材料の製法。
2. The compositional elements according to claim 1, wherein the constituent elements except X are first alloyed and then formed into ribbons or flakes by the quenching ribbon method, and as such or after crushing, at a temperature of 1500 ° C. or lower. A method for producing a hard magnetic material, which is basically constituted by heat treatment in an atmosphere containing at least one of nitrogen gas, hydrogen gas and ammonia gas.
JP3224577A 1991-08-08 1991-08-08 Hard magnetic material and its production Pending JPH0543989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224577A JPH0543989A (en) 1991-08-08 1991-08-08 Hard magnetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224577A JPH0543989A (en) 1991-08-08 1991-08-08 Hard magnetic material and its production

Publications (1)

Publication Number Publication Date
JPH0543989A true JPH0543989A (en) 1993-02-23

Family

ID=16815921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224577A Pending JPH0543989A (en) 1991-08-08 1991-08-08 Hard magnetic material and its production

Country Status (1)

Country Link
JP (1) JPH0543989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394993B1 (en) * 2001-02-20 2003-08-19 한국과학기술연구원 FeCoNiN Based Soft Magnetic Thin Films Compositions
JP2018538437A (en) * 2015-10-30 2018-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Magneto-caloric material containing manganese, iron, silicon, phosphorus, and nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394993B1 (en) * 2001-02-20 2003-08-19 한국과학기술연구원 FeCoNiN Based Soft Magnetic Thin Films Compositions
JP2018538437A (en) * 2015-10-30 2018-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Magneto-caloric material containing manganese, iron, silicon, phosphorus, and nitrogen

Similar Documents

Publication Publication Date Title
US6290782B1 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
JP2001189206A (en) Permanent magnet
JPH0974006A (en) Magnetic material and bonded magnet
US5456769A (en) Magnetic material
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
US5968290A (en) Permanent magnet material and bonded magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPH06207203A (en) Production of rare earth permanent magnet
JPH05226123A (en) Magnetic material
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
JPH0543989A (en) Hard magnetic material and its production
JP3469496B2 (en) Manufacturing method of magnet material
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0146575B2 (en)
JP2004193207A (en) Magnet material and bonded magnet using the same
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP3959124B2 (en) Method for improving nitriding rate of rare earth-iron magnet alloy
JPS59219453A (en) Permanent magnet material and its production
WO2023054035A1 (en) Rare earth magnet material, and magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet