JPH0619553A - Servo controller - Google Patents

Servo controller

Info

Publication number
JPH0619553A
JPH0619553A JP19744392A JP19744392A JPH0619553A JP H0619553 A JPH0619553 A JP H0619553A JP 19744392 A JP19744392 A JP 19744392A JP 19744392 A JP19744392 A JP 19744392A JP H0619553 A JPH0619553 A JP H0619553A
Authority
JP
Japan
Prior art keywords
disturbance
transfer characteristic
control
command value
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19744392A
Other languages
Japanese (ja)
Inventor
Kenichi Okamoto
健一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19744392A priority Critical patent/JPH0619553A/en
Publication of JPH0619553A publication Critical patent/JPH0619553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compensation signal which can cancel the influence of disturbance even if the disturbance varies with time and then obtain such high control performance that a controlled system never vibrates. CONSTITUTION:Transfer character are set corresponding to the transfer characteristics of the controlled system so that transfer characteristics from the disturbance to the controlled variable of the controlled system zero, and a disturbance compensator 16 compensates a driving command value calculated by a control part 15 according to the set transfer characteristics, the controlled variable of the controlled system, and the state observed quantity of a driving part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、制御対象に加わる外
乱の影響を相殺できるサーボ制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a servo control device capable of canceling the influence of disturbance applied to a controlled object.

【0002】[0002]

【従来の技術】図2は例えば特開平3−110605号
公報に示された従来のサーボ制御装置を示す構成図であ
り、図において、1は例えばX・Yステージ等の制御対
象、2は制御対象1を駆動するモータ(駆動部)、3は
モータ2の駆動回路、4は制御対象1の制御量、即ち、
モータ2の角度位置θを検出する角度位置検出器であ
る。
2. Description of the Related Art FIG. 2 is a block diagram showing a conventional servo control device disclosed in, for example, Japanese Patent Laid-Open No. 3-110605, in which 1 is a control target such as an X / Y stage and 2 is a control target. A motor (driving unit) that drives the object 1, 3 is a drive circuit for the motor 2, 4 is a control amount of the controlled object 1, that is,
It is an angular position detector that detects the angular position θ of the motor 2.

【0003】また、5は角度位置検出器4により検出さ
れたモータ2の角度位置θ、オブザーバ6(詳細は後述
する)により推定されたモータ2の角速度v(モータ2
の状態観測量)及び角度位置θに対する目標値である目
標位置指令mに基づいてモータ2を制御する駆動指令値
nを演算する制御部、6は位置検出器4により検出され
たモータ2の角度位置θと駆動指令値r(駆動指令値n
を補償した値)に基づいてモータ2の角速度vを推定す
るとともに、制御部5により演算された駆動指令値nを
補償するオブザーバ、7は制御部5及びオブザーバ6よ
り構成されたサーボ制御装置である。
Further, 5 is an angular position θ of the motor 2 detected by the angular position detector 4, and an angular velocity v of the motor 2 estimated by an observer 6 (details will be described later) (motor 2
State observation amount) and a control unit that calculates a drive command value n for controlling the motor 2 based on a target position command m that is a target value for the angular position θ, and 6 is an angle of the motor 2 detected by the position detector 4. Position θ and drive command value r (drive command value n
Is an observer for estimating the angular velocity v of the motor 2 on the basis of the compensation value) and for compensating the drive command value n calculated by the control unit 5, and 7 is a servo control device composed of the control unit 5 and the observer 6. is there.

【0004】次に動作について説明する。まず、制御部
5は、位置検出器4により検出されたモータ2の角度位
置θと目標位置指令mの偏差eに、比例要素KP と積分
要素KI /sを作用させるPI補償と速度フィードバッ
クからなっているので、その偏差e等に基づいて下記に
示すような駆動指令値nを演算して出力する。 n=(KP +KI /s)e+KV ・v ・・・(1) ここで、KV は比例要素
Next, the operation will be described. First, the control unit 5 applies PI compensation and velocity feedback that causes the proportional element K P and the integral element K I / s to act on the deviation e between the angular position θ of the motor 2 and the target position command m detected by the position detector 4. Therefore, the drive command value n as shown below is calculated and output based on the deviation e and the like. n = (K P + K I / s) e + K V · v (1) where K V is a proportional element

【0005】次に、オブザーバ6は、上記の駆動指令値
nでモータ2を制御した場合において、外乱dが制御対
象1に加わると、適正な制御ができなくなるので、外乱
dの影響を相殺すべく、駆動指令値nを補償する。
Next, the observer 6 cancels the influence of the disturbance d when the disturbance d is added to the controlled object 1 when the motor 2 is controlled by the above-mentioned drive command value n and proper control cannot be performed. Therefore, the drive command value n is compensated.

【0006】即ち、オブザーバ6は、下記のようにして
駆動指令値nを補償する補償信号hを決定する。まず、
モータ2の発生トルクをTm、モータ2の慣性モーメン
トをJとすると下記の運動方程式が成立する。
That is, the observer 6 determines the compensation signal h for compensating the drive command value n as follows. First,
When the torque generated by the motor 2 is Tm and the moment of inertia of the motor 2 is J, the following equation of motion is established.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで、x1=θ、x2=(d/dt)
θ、x3=d、y=x1=θ、u=Tmとし、外乱が時
間の経過に従って変化しないと仮定とすると、 (d/dt)・外乱d=0 ・・・(3) 下記に示すような状態方程式が得られる。
Here, x1 = θ, x2 = (d / dt)
Assuming that θ, x3 = d, y = x1 = θ, u = Tm, and that the disturbance does not change with the passage of time, (d / dt) · disturbance d = 0 (3) A state equation is obtained.

【0009】[0009]

【数2】 [Equation 2]

【0010】また、式(4)・(5)をそれぞれ式
(6)・(7)のように簡略して表すとともに、式
(8)が正則になるような定数行列C# を選定する。
Further, the expressions (4) and (5) are simply represented as the expressions (6) and (7), respectively, and the constant matrix C # is selected so that the expression (8) is regular.

【0011】[0011]

【数3】 [Equation 3]

【0012】このとき、C# xを推定するzがあるなら
ば下記の式が成立する。
At this time, if there is z for estimating C # x, the following formula is established.

【0013】[0013]

【数4】 [Equation 4]

【0014】従って、式(10)より、xを求めること
ができる。このように、xが求まれば、上記のごとくx
2=(d/dt)θ、x3=dの関係から、モータ2の
角速度v(v=x2)、補償信号h(h=外乱d=x
3)を求めることができる。
Therefore, x can be obtained from the equation (10). In this way, if x is obtained, x as described above
From the relationship of 2 = (d / dt) θ and x3 = d, the angular velocity v (v = x2) of the motor 2 and the compensation signal h (h = disturbance d = x
3) can be obtained.

【0015】最後に、このようにして求められた補償信
号hで、駆動指令値nを補償することにより、駆動指令
値rが得られ、この駆動指令値rでモータ2を制御す
る。
Finally, by compensating the drive command value n with the compensation signal h thus obtained, the drive command value r is obtained, and the motor 2 is controlled by this drive command value r.

【0016】[0016]

【発明が解決しようとする課題】従来のサーバ制御装置
は以上のように構成されているので、補償信号を求める
に際し、外乱が時間の経過に従って変化しないという前
提の下に求められるため、外乱が時間の経過に従って変
化した場合、外乱の影響を相殺する補償信号を求めるこ
とができず、その結果、例えば、制御対象に振動等が生
じ、制御性能が劣化するなどの問題点があった。
Since the conventional server control device is configured as described above, when the compensation signal is obtained, it is required on the assumption that the disturbance does not change with the passage of time. When it changes with the passage of time, it is not possible to obtain a compensation signal that cancels the influence of disturbance, and as a result, there is a problem that, for example, vibration or the like occurs in the controlled object and control performance deteriorates.

【0017】この発明は上記のような問題点を解消する
ためになされたもので、外乱が時間の経過に従って変化
した場合でも外乱の影響を相殺できる補償信号を求める
ことができ、その結果、制御対象に振動等が生じること
のない高い制御性能を有するサーボ制御装置を得ること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to obtain a compensation signal capable of canceling the influence of the disturbance even when the disturbance changes with the passage of time, and as a result, the control can be performed. An object of the present invention is to obtain a servo control device having high control performance that does not cause vibration or the like on a target.

【0018】[0018]

【課題を解決するための手段】この発明に係わるサーボ
制御装置は、外乱から制御対象の制御量への伝達特性が
零になるように該制御対象の伝達特性に応じて伝達特性
が設定され、その設定された伝達特性、該制御対象の制
御量及び駆動部の状態観測量に基づいて、制御部により
演算された駆動指令値を補償する外乱補償器を設けたも
のである。
In the servo controller according to the present invention, the transfer characteristic is set according to the transfer characteristic of the controlled object so that the transfer characteristic from the disturbance to the controlled variable of the controlled object becomes zero. A disturbance compensator for compensating the drive command value calculated by the control unit based on the set transfer characteristic, the controlled variable of the controlled object and the state observation amount of the driving unit is provided.

【0019】[0019]

【作用】この発明におけるサーボ制御装置は、制御部に
より演算された駆動指令値を補償する外乱補償器を設け
たことにより、外乱が時間の経過に従って変化した場合
でも外乱の影響が相殺されるような補償信号が求められ
る。
The servo controller according to the present invention is provided with the disturbance compensator for compensating the drive command value calculated by the controller, so that the influence of the disturbance is canceled even when the disturbance changes with the passage of time. A compensating signal is required.

【0020】[0020]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の一実施例によるサーボ制御装置
を示す構成図であり、図において、従来のものと、同一
符号は同一または相当部分を示すので説明を省略する。
11は駆動指令値rから駆動部における状態観測量f
(例えば、モータの角速度)への伝達特性Prf、12
は駆動指令値rから制御対象1における制御量gへの伝
達特性Prg、13は外乱dから駆動部における状態観
測量fへの伝達特性Pdf、14は外乱dから制御対象
1における制御量gへの伝達特性Pdgである。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a servo control apparatus according to an embodiment of the present invention. In the figure, the same reference numerals as those of the conventional one indicate the same or corresponding portions, and therefore the description thereof will be omitted.
11 is the state observation amount f in the drive unit from the drive command value r
(For example, the angular velocity of the motor) Transfer characteristics Prf, 12
Is a transfer characteristic Prg from the drive command value r to the controlled variable g in the controlled object 1, 13 is a transfer characteristic Pdf from the disturbance d to the state observed amount f in the drive unit, and 14 is a controlled characteristic g from the external disturbance d to the controlled variable g in the controlled object 1. Is a transfer characteristic Pdg.

【0021】また、15は制御対象1の制御量g、その
制御対象1を駆動する駆動部の状態観測量f及びその制
御量gに対する目標値mに基づいてその駆動部を制御す
る駆動指令値nを演算する制御部、15aは伝達特性C
1を有するサーボ補償器、15bは伝達特性C2を有す
るサーボ補償器、15cは伝達特性C3を有するサーボ
補償器である。
Reference numeral 15 denotes a control amount g of the controlled object 1, a state observation amount f of a drive unit for driving the controlled object 1 and a drive command value for controlling the drive unit based on a target value m for the controlled amount g. A control unit for calculating n, 15a is a transfer characteristic C
1 is a servo compensator having a transfer characteristic C2, 15b is a servo compensator having a transfer characteristic C2, and 15c is a servo compensator having a transfer characteristic C3.

【0022】また、16は外乱dから上記制御量gへの
伝達特性が零になるように制御対象1の伝達特性11〜
14に応じて伝達特性CA 、CB が設定され、その設定
された伝達特性CA 、CB 、制御対象1の制御量g及び
駆動部の状態観測量fに基づいて、制御部1により演算
された駆動指令値nを補償する外乱補償器である。
Further, 16 is the transfer characteristics 11 to 11 of the controlled object 1 so that the transfer characteristics from the disturbance d to the control amount g become zero.
The transfer characteristics C A and C B are set according to No. 14, and based on the set transfer characteristics C A and C B , the control amount g of the controlled object 1 and the state observation amount f of the drive unit, the control unit 1 It is a disturbance compensator for compensating the calculated drive command value n.

【0023】次に動作について説明する。まず、予め、
制御対象1の伝達特性11〜14を例えば有限要素法や
実験的手法等をもとにして求めておく。
Next, the operation will be described. First, in advance
The transfer characteristics 11 to 14 of the controlled object 1 are obtained based on, for example, a finite element method or an experimental method.

【0024】次に、外乱dが時間の経過に従って変化し
た場合でも、常に外乱dの影響を相殺できるような補償
信号hを得られるようにするため、外乱補償器16の伝
達特性CA 、CB を下記のようにして求める。
Next, even if the disturbance d changes with the passage of time, the transfer characteristics C A , C of the disturbance compensator 16 are obtained in order to always obtain the compensation signal h that can cancel the influence of the disturbance d. Calculate B as follows.

【0025】まず、図1の構成図より、次の関係式が求
まる。 r=(C1・m−C2・g−C3・f)+h ・・・(11) f=Prf・r+Pdf・d ・・・(12) g=Prg・r+Pdg・d ・・・(13) h=CA ・f+CB ・g ・・・(14)
First, the following relational expression is obtained from the configuration diagram of FIG. r = (C1 · m−C2 · g−C3 · f) + h (11) f = Prf · r + Pdf · d (12) g = Prg · r + Pdg · d (13) h = C A · f + C B · g ··· (14)

【0026】ここで、式(14)を式(11)に代入
し、hを消去して整理すると、下記のようになる。 r=C1・m+(CB −C2)g+(CA −C3)f ・・・(15) さらに、式(15)に式(12)を代入してfを消去す
ると、下記のようになる。 {1−(CA −C3)Prf}r=C1・m+(CB −C2)g+(CA −C3)Pdf・d ・・・(16)
Here, when the equation (14) is substituted into the equation (11), h is erased and rearranged, the following is obtained. r = C1 · m + (C B -C2) g + (C A -C3) f ··· (15) Furthermore, when erasing the f by substituting equation (12) into equation (15), becomes: . {1- (C A -C3) Prf } r = C1 · m + (C B -C2) g + (C A -C3) Pdf · d ··· (16)

【0027】また、式(13)において、rについて解
くと、下記のようになる。 r=(g−Pdg・d)/Prg ・・・(17) 式(17)を式(16)に代入してrを消去すると、下
記のようになる。 {1−(CA −C3)Prf}(g−Pdg・d)/Prg =C1・m+(CB −C2)g+(CA −C3)Pdf・d ・・・(18)
In equation (13), solving for r yields the following. r = (g−Pdg · d) / Prg (17) When equation (17) is substituted into equation (16) and r is deleted, the following is obtained. {1- (C A -C3) Prf } (g-Pdg · d) / Prg = C1 · m + (C B -C2) g + (C A -C3) Pdf · d ··· (18)

【0028】式(18)を整理すると、下記のようにな
る。
The equation (18) can be summarized as follows.

【数5】 [Equation 5]

【0029】これより、サーボ系の外乱dから制御量g
への伝達特性(外乱補償器16を含めた場合の伝達特
性)をGdとすると、Gdは下記のように表せる。
From the above, the control amount g can be calculated from the disturbance d of the servo system.
Let Gd be the transfer characteristic to (the transfer characteristic when the disturbance compensator 16 is included), Gd can be expressed as follows.

【0030】[0030]

【数6】[Equation 6]

【0031】ここで、伝達特性Gd=0であれば、制御
対象1は外乱dの影響を受けないので、式(20)の分
子を0にすることにより、外乱補償器16の伝達特性C
A を求めることができる。 Pdg+(Pdf・Prg−Prf・Pdg)(CA −C3)=0 ・・・(21) ゆえに、 CA =Prg/(Pdf・Prg−Prf・Pdg)+C3 ・・・(22)
Here, if the transfer characteristic Gd = 0, the controlled object 1 is not affected by the disturbance d, so that the transfer characteristic C of the disturbance compensator 16 is set by setting the numerator of the equation (20) to 0.
You can ask for A. Pdg + (Pdf · Prg-Prf · Pdg) (C A -C3) = 0 Thus ··· (21), C A = Prg / (Pdf · Prg-Prf · Pdg) + C3 ··· (22)

【0032】また、上記のごとく外乱補償器16の伝達
特性CA を決定することで、目標値mから制御量gへの
伝達特性を劣化させないようにするために、式(20)
の分母を、外乱補償器16がなかった場合の分母と同じ
にする必要がある。 1−(CB −C2)Prg−(CA −C3)Prf =1+C2・Prg+C3・Prf ・・・(23)
Further, by determining the transfer characteristic C A of the disturbance compensator 16 as described above, in order to prevent the transfer characteristic from the target value m to the control amount g to be deteriorated, equation (20)
It is necessary to make the denominator of the same as the denominator when there is no disturbance compensator 16. 1- (C B -C2) Prg- ( C A -C3) Prf = 1 + C2 · Prg + C3 · Prf ··· (23)

【0033】そして、式(23)より、外乱補償器16
の伝達特性CB を求めることができ、伝達特性CB は下
記のようになる。 CB =−(Prf/Prg)CA ・・・(24)
Then, from the equation (23), the disturbance compensator 16
It is possible to obtain the transfer characteristics C B, transfer characteristics C B is as follows. = C B - (Prf / Prg ) C A ··· (24)

【0034】このようにして、外乱補償器16の伝達特
性CA 、CB を求めることができたので、実際の運用に
際して、外乱補償器16は、制御対象1から制御量g及
び駆動部から状態観測量fを入力し、この制御量g及び
状態観測量fを式(14)に代入して、補償信号hを求
める。これにより、制御部15により演算された駆動指
令値n(従来のものと同様に式(1)を用いて求められ
る。但し、角度位置θは制御量g、角速度vは状態観測
量fに置き換える。)は、補償信号hにより補償されて
駆動指令値rとなり、この値をもって駆動部を制御する
ことになる。
Since the transfer characteristics C A and C B of the disturbance compensator 16 can be obtained in this way, the disturbance compensator 16 can be controlled from the controlled object 1 to the controlled variable g and the driving unit in actual operation. The state observation amount f is input, and the control amount g and the state observation amount f are substituted into the equation (14) to obtain the compensation signal h. As a result, the drive command value n calculated by the control unit 15 (obtained by using the equation (1) as in the conventional case. However, the angular position θ is replaced with the control amount g, and the angular velocity v is replaced with the state observation amount f. .) Is compensated by the compensation signal h to become the drive command value r, and this value is used to control the drive unit.

【0035】なお、サーボ系の外乱dから制御量gへの
伝達特性が、上記の通り、常に零になるように外乱補償
器16の伝達特性CA 、CB を設定しているので(従来
のもののように、外乱dが時間の経過に従って変動しな
いという仮定をせずにすむ)、たとえ外乱dが時間の経
過に従って変動しても、制御対象が外乱dの影響を受け
ることがない。
As described above, the transfer characteristics C A and C B of the disturbance compensator 16 are set so that the transfer characteristic from the disturbance d of the servo system to the control amount g is always zero as described above (conventionally, It is not necessary to assume that the disturbance d does not change with the passage of time like the above), but the controlled object is not affected by the disturbance d even if the disturbance d changes with the passage of time.

【0036】[0036]

【発明の効果】以上のように、この発明によれば、外乱
から制御対象の制御量への伝達特性が零になるように該
制御対象の伝達特性に応じて伝達特性が設定され、その
設定された伝達特性、該制御対象の制御量及び駆動部の
状態観測量に基づいて、制御部により演算された駆動指
令値を補償する外乱補償器を設けた構成にしたので、外
乱が時間の経過に従って変化した場合でも外乱の影響を
相殺できる補償信号を求められるため、制御対象に振動
等が生じることのない高い制御性能を得ることができる
などの効果がある。
As described above, according to the present invention, the transfer characteristic is set in accordance with the transfer characteristic of the controlled object so that the transfer characteristic from the disturbance to the controlled variable of the controlled object becomes zero, and the setting is performed. Since the disturbance compensator for compensating the drive command value calculated by the control unit is provided based on the transferred transfer characteristic, the controlled variable of the controlled object, and the state observation amount of the driving unit, the disturbance is time-lapse. Since a compensation signal capable of canceling out the influence of disturbance even when it is changed according to the above is obtained, there is an effect that high control performance can be obtained in which vibration or the like does not occur in the controlled object.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるサーボ制御装置を示
す構成図である。
FIG. 1 is a configuration diagram showing a servo controller according to an embodiment of the present invention.

【図2】従来のサーボ制御装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional servo control device.

【符号の説明】[Explanation of symbols]

1 制御対象 15 制御部 16 外乱補償器 1 Control Target 15 Control Unit 16 Disturbance Compensator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月8日[Submission date] December 8, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】ここで、伝達特性Gd=0であれば、制御
対象1は外乱dの影響を受けないので、式(20)の分
子を0にすることにより、外乱補償器16の伝達特性C
A を求めることができる。 Pdg+(Pdf・Prg−Prf・Pdg)(CA −C3)=0 ・・・(21) ゆえに、 CA =Prg/(Pdf・Prg−Prf・Pdg)+C3 ・・・(22)ここで、式(22)の右辺第1項は分子の次数が分母の
次数より高いため、例えば、適当な帯域をもったローパ
ス特性Gfを用いて、下記の通りCA を表現する。 A =Gf・Prg/(Pdf・Prg−Prf・Pdg)+C3 ・・・(22’
If the transfer characteristic Gd = 0, the controlled object 1 is not affected by the disturbance d. Therefore, the transfer characteristic C of the disturbance compensator 16 is set to 0 by setting the numerator of the equation (20) to zero.
You can ask for A. Pdg + Hence (Pdf · Prg-Prf · Pdg ) (C A -C3) = 0 ··· (21), C A = Prg / (Pdf · Prg-Prf · Pdg) + C3 ··· (22) where The first term on the right side of equation (22) is the denominator of the numerator order
Since it is higher than the order, for example, a roper with an appropriate band
C A is expressed as follows using the characteristic Gf. C A = Gf · Prg / (Pdf · Prg−Prf · Pdg) + C3 ... (22 ′ )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 制御対象の制御量、その制御対象を駆動
する駆動部の状態観測量及びその制御量に対する目標値
に基づいてその駆動部を制御する駆動指令値を演算する
制御部と、外乱から上記制御量への伝達特性が零になる
ように上記制御対象の伝達特性に応じて伝達特性が設定
され、その設定された伝達特性、該制御対象の制御量及
び上記駆動部の状態観測量に基づいて、上記制御部によ
り演算された駆動指令値を補償する外乱補償器とを備え
たサーボ制御装置。
1. A control unit for calculating a drive command value for controlling the drive unit based on a control amount of the control target, a state observation amount of a drive unit for driving the control target, and a target value for the control amount, and a disturbance. The transfer characteristic is set according to the transfer characteristic of the controlled object such that the transfer characteristic from the control variable to the controlled variable becomes zero, and the set transfer characteristic, the controlled variable of the controlled object, and the state observation amount of the drive unit. And a disturbance compensator for compensating the drive command value calculated by the controller based on the above.
JP19744392A 1992-07-02 1992-07-02 Servo controller Pending JPH0619553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19744392A JPH0619553A (en) 1992-07-02 1992-07-02 Servo controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19744392A JPH0619553A (en) 1992-07-02 1992-07-02 Servo controller

Publications (1)

Publication Number Publication Date
JPH0619553A true JPH0619553A (en) 1994-01-28

Family

ID=16374596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19744392A Pending JPH0619553A (en) 1992-07-02 1992-07-02 Servo controller

Country Status (1)

Country Link
JP (1) JPH0619553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045667A (en) * 2014-08-22 2016-04-04 株式会社ニコン Control system and control method, exposure device and exposure method, as well as device fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045667A (en) * 2014-08-22 2016-04-04 株式会社ニコン Control system and control method, exposure device and exposure method, as well as device fabrication method

Similar Documents

Publication Publication Date Title
US6566837B1 (en) Position controller for motor
EP0446362A1 (en) Sliding mode control method
WO1992014195A1 (en) Oscillation damper
JP2006215626A (en) Position controller
JP5208610B2 (en) Characteristic identification method and motor control device for controlling inertial resonance system
US6828749B2 (en) Full-closed control apparatus
JPH0619553A (en) Servo controller
JPH09136698A (en) Servo control system for rudder of air plane
US5420490A (en) Apparatus and method for compensating for warm-up drift in a servo motor
EP0498891A1 (en) System for controlling servomotor
JPH08168280A (en) Speed controller and speed and position controller for motor
JPH06335275A (en) Printer head carriage speed control system
JP3972155B2 (en) Motor control device
JPH0954601A (en) Parameter identifying device
JP4220366B2 (en) Torsional vibration system controller
JPH04315202A (en) Equivalent disturbance compensating method
JPH117303A (en) Driving controller for servo system
JPH03226284A (en) Controller for mechanical system
JPH0756452B2 (en) State observation method
JPS59612A (en) State observer
JPH10257789A (en) Motor controller
JPH0318715A (en) Space stabilization servo device
JP2527393B2 (en) Robot position control device and control method
JP3016521B2 (en) Motor control device
JP3329163B2 (en) Servo motor control device