JPH09136698A - Servo control system for rudder of air plane - Google Patents

Servo control system for rudder of air plane

Info

Publication number
JPH09136698A
JPH09136698A JP29845895A JP29845895A JPH09136698A JP H09136698 A JPH09136698 A JP H09136698A JP 29845895 A JP29845895 A JP 29845895A JP 29845895 A JP29845895 A JP 29845895A JP H09136698 A JPH09136698 A JP H09136698A
Authority
JP
Japan
Prior art keywords
control
natural frequency
fluctuation
controlled
rudder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29845895A
Other languages
Japanese (ja)
Other versions
JP3620907B2 (en
Inventor
Kosuke Sato
浩介 佐藤
Takeshi Mikami
毅 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP29845895A priority Critical patent/JP3620907B2/en
Publication of JPH09136698A publication Critical patent/JPH09136698A/en
Application granted granted Critical
Publication of JP3620907B2 publication Critical patent/JP3620907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a controller, which can always obtain the stabilized control characteristic even in the case where the natural frequency of an object to be controlled is fluctuated in a certain range and of which installation is facilitated. SOLUTION: In this system, operation of a rudder of an air plane to be operated by an actuator is controlled by a controller 10 provided with a compensating unit 14 for outputting the operated variable so that a target value and a controlled variable of the rudder coincide with each other. The actuator and the rudder are regulated as an object to be controlled, which generate the fluctuation of' the natural frequency, and this system is also provided with a means a for treating the fluctuation of the object to be controlled in a predetermined range, which includes the natural frequency thereof, as the fluctuation of parameter of the equivalent mass and the rigidity of the rudder, and provided with a linear compensating unit 14 designed by the robust control method so as to obtain the robust stability even in the case where the object to be controlled is fluctuated within the predetermined range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は航空機の舵面のサー
ボ制御システムの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a servo control system for a control surface of an aircraft.

【0002】[0002]

【従来の技術】従来の航空機の舵面操作の制御システム
として、例えば特開平3−12707号公報によって、
図8に示すようなものが提案されている。
2. Description of the Related Art A conventional control system for controlling the control surface of an aircraft is disclosed in, for example, Japanese Patent Laid-Open No. 3-12707.
The one shown in FIG. 8 has been proposed.

【0003】これは、制御対象の固有振動数が変動して
も安定した制御特性が得られるように、適応機構(適応
制御)により制御対象の固有振動数を同定し、この固有
振動数と合致するように補償器の係数を変更し、常に制
御対象の固有振動数域でのゲイン余裕を確保するもの
で、固有振動数を同定するアルゴリズムにはFFT、P
SDを利用している。
This is because the natural frequency of the controlled object is identified by an adaptive mechanism (adaptive control) so that stable control characteristics can be obtained even if the natural frequency of the controlled object fluctuates, and it matches with the natural frequency. The coefficient of the compensator is changed so that the gain margin in the natural frequency range of the controlled object is always ensured. The algorithm for identifying the natural frequency is FFT, P
I am using SD.

【0004】一般に制御におけるゲインを大きくすると
応答性が良好となる反面、ゲインが大きくなる周波数域
では共振が発生しやすいなど、制御システムは不安定に
なりやすい。制御対象の固有振動数域での共振を回避す
るため、例えばノッチフィルタにより特定の周波数域で
のゲインを低め、安定性を確保することが考えられる
が、航空機の舵面操作のように、制御対象の固有振動数
が変動する場合には、この変動に伴ってノッチフィルタ
よる補償が無効となり、固有振動数が変動しても常に制
御の安定性を維持できるというわけにはいかない。
Generally, when the gain in the control is increased, the responsiveness is improved, but on the other hand, the control system is liable to become unstable such that resonance is likely to occur in the frequency range where the gain is increased. In order to avoid resonance in the natural frequency range of the controlled object, it is conceivable to lower the gain in a specific frequency range with a notch filter, for example, to ensure stability. When the target natural frequency fluctuates, the compensation by the notch filter becomes invalid along with this fluctuation, and even if the natural frequency fluctuates, the control stability cannot always be maintained.

【0005】そこで、上記した制御システムでは、制御
対象の入出力データのパワースペクトル密度から、制御
対象の周波数応答を推定することにより、制御対象の固
有振動数を同定し、この固有振動数と合致するようにデ
ジタルフィルタの係数列を設定して、常に最適なフィル
タ効果を確保し、この結果、固有振動数が変動しても、
その固有振動数域においてのゲイン余裕を確保し、常に
安定した制御特性を維持することを可能にした。
Therefore, in the control system described above, the natural frequency of the controlled object is identified by estimating the frequency response of the controlled object from the power spectral density of the input / output data of the controlled object, and the natural frequency of the controlled object is matched. The coefficient sequence of the digital filter is set so that the optimum filter effect is always secured, and as a result, even if the natural frequency fluctuates,
The gain margin in the natural frequency range is secured, and stable control characteristics can always be maintained.

【0006】[0006]

【発明が解決しようとする課題】ところが、この制御シ
ステムでは適応機構を利用して、制御対象の変動する固
有振動数を同定するため、コントローラへの実装が必ず
しも容易ではないという問題があった。
However, in this control system, the adaptive mechanism is utilized to identify the fluctuating natural frequency of the controlled object, so that there is a problem that it is not always easy to implement the controller.

【0007】つまり、コントローラには固有振動数同定
のための適応機構として非線形特性が要求され、また、
適応機構では制御対象のモデルを変動要素に応じて絶え
ず修正する必要があり、また変動があまり速いと追従で
きない。
That is, the controller is required to have a non-linear characteristic as an adaptive mechanism for identifying the natural frequency.
In the adaptive mechanism, it is necessary to constantly modify the model of the controlled object according to the fluctuation element, and if the fluctuation is too fast, it cannot follow.

【0008】そこで本発明は、制御対象の固有振動数が
ある範囲で変動しても常に安定した制御特性が得られる
と共に、実装が容易なコントローラを実現することの可
能な航空機舵面のサーボ制御システムを提供することを
目的とする。
In view of the above, the present invention provides a servo control of an aircraft control surface that can always realize stable control characteristics even if the natural frequency of the controlled object fluctuates within a certain range and that can realize a controller that is easy to implement. The purpose is to provide a system.

【0009】[0009]

【課題を解決するための手段】第1の発明は、アクチュ
エータにより操作される航空機の舵面操作を、目標値と
舵面の制御量とが一致するように操作量を出力する補償
器を備えたコントローラにより制御するサーボ制御シス
テムにおいて、アクチュエータ及び舵面を固有振動数の
変動を生じるモデルとして規定した制御対象と、制御対
象の固有振動数のある定めた範囲の変動を舵面等価質
量、舵面剛性のパラメータ変動として扱う手段と、制御
対象が前記範囲内で変動してもロバスト安定であるよう
にロバスト制御手法により設計された線形補償器とを備
える。
A first aspect of the present invention includes a compensator for outputting the operation amount of an aircraft control surface operation operated by an actuator so that a target value and a control amount of the control surface match. In a servo control system controlled by a controller, the actuator and control surface are regulated as a model that causes fluctuations in natural frequency, and fluctuations within a certain range of the control target natural frequency A means for treating the surface rigidity as a parameter variation and a linear compensator designed by a robust control method so as to be robustly stable even if the controlled object varies within the above range.

【0010】第2の発明は、第1の発明において、線形
補償器はH2制御、H∞制御、μ制御手法により設計さ
れる。
In a second aspect based on the first aspect, the linear compensator is designed by H2 control, H∞ control and μ control method.

【0011】[0011]

【作用】本発明においては、例えば制御対象であるノミ
ナルモデルが、ある範囲で変動してもロバスト安定であ
るように、固有振動数の変動を舵面等価質量、舵面剛性
のパラメータ変動として扱い、ロバスト制御手法により
設計された線形補償器を備えるため、実際の制御対象の
固有振動数が所定の範囲内で変動しても、常に安定した
制御特性が維持される。
In the present invention, the fluctuation of the natural frequency is treated as the fluctuation of the rudder surface equivalent mass and the fluctuation of the rudder surface rigidity so that, for example, the nominal model to be controlled is robustly stable even if it fluctuates within a certain range. Since the linear compensator designed by the robust control method is provided, stable control characteristics are always maintained even if the natural frequency of the actual controlled object fluctuates within a predetermined range.

【0012】[0012]

【発明の実施の形態】本発明の実施の態様を図面にした
がって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0013】図1は制御系のブロック図、図2は制御対
象の構成図であり、まず、図2において、1は後述する
コントローラからの信号で作動するサーボ弁、2はサー
ボ弁1により制御される作動油に応じて作動する油圧ア
クチュエータである。油圧アクチュエータ2は機体8に
取付けられると共に、その伸縮作動により舵面5の舵角
を操作する。これら油圧アクチュエータ2及び舵面5
は、後述するように固有振動数の変動を生じるモデル化
された制御対象を構成する。3はアクチュエータ2の変
位量を検出する検出器3である。
FIG. 1 is a block diagram of a control system, and FIG. 2 is a configuration diagram of an object to be controlled. First, in FIG. 2, 1 is a servo valve operated by a signal from a controller to be described later, and 2 is a servo valve 1. It is a hydraulic actuator that operates according to the hydraulic oil that is used. The hydraulic actuator 2 is attached to the machine body 8 and operates the rudder angle of the control surface 5 by its expansion and contraction operation. These hydraulic actuator 2 and control surface 5
Constitutes a modeled controlled object that causes a change in natural frequency as described later. Reference numeral 3 is a detector 3 that detects the amount of displacement of the actuator 2.

【0014】なお、図中のK1は舵面5の概略の剛性、
Mは同じく舵面5の概略等価質量、K0はアクチュエー
タ2の概略の油圧等価剛性、Kcはアクチュエータ2の
機体8への取付剛性をそれぞれ表す。
In the figure, K 1 is the rough rigidity of the control surface 5,
Similarly, M is a rough equivalent mass of the control surface 5, K 0 is a rough hydraulic equivalent rigidity of the actuator 2, and K c is a mounting rigidity of the actuator 2 to the body 8.

【0015】本発明では、ロバスト制御の手法としてH
2制御を利用し、上記した舵面等価質量と舵面剛性の2
つのパラメータが制御対象の固有振動数の変動に大きく
関与することに着目し、実際の制御対象の固有振動数の
変動を、これら舵面等価質量と舵面剛性のパラメータ変
動として扱うことに特徴がある。
In the present invention, H is used as a robust control method.
2 control is used, and the control surface equivalent mass and the control surface rigidity 2
Focusing on the fact that the three parameters greatly influence the fluctuation of the natural frequency of the controlled object, the feature is that the fluctuation of the natural frequency of the actual controlled object is treated as the parameter fluctuation of these rudder surface equivalent mass and rudder surface rigidity. is there.

【0016】図1の制御系において、コントローラ10
は、制御対象P’を制御するための目標値rが入力する
と共に制御対象P’の出力(制御量)yがフィードバッ
クされる加算器13と、これらの偏差eを解消するよう
に操作量uを出力する補償器14とから構成される。ま
た、Pは制御対象P’の数学モデルとしてのノミナルモ
デル、また、Δaは制御対象P’がノミナルモデルPか
ら変動するとしたときの加法変動であり、このΔaに上
記した舵面等価質量と舵面剛性のパラメータ変動を含ま
せる。
In the control system of FIG. 1, the controller 10
Is an adder 13 to which a target value r for controlling the controlled object P ′ is input and the output (control amount) y of the controlled object P ′ is fed back, and a manipulated variable u so as to eliminate the deviation e between them. And a compensator 14 that outputs Further, P is a nominal model as a mathematical model of the controlled object P ′, and Δa is an additive fluctuation when the controlled object P ′ fluctuates from the nominal model P. Includes surface stiffness parameter variations.

【0017】図3は、図1をもとに、これを一般化プラ
ントとして表したもので、ここで、WsとWtは設計重
みで、z1とz2は、それぞれ偏差eと操作量uに設計重
みをつけた量を表す。
FIG. 3 shows this as a generalized plant based on FIG. 1, where Ws and Wt are design weights, and z 1 and z 2 are deviation e and manipulated variable u, respectively. Represents the amount with the design weight.

【0018】Wtを大きくするとロバスト安定性が高く
なり、Wsを大きくすると制御系の応答性が高くなる。
しかし、これらWtとWsはトレードオフの関係にあ
り、ロバスト安定性と応答性を同時に高くすることはで
きない。したがって、これらの設計重みを不必要に大き
くしないようにすることが重要となる。
When Wt is increased, the robust stability is increased, and when Ws is increased, the response of the control system is increased.
However, Wt and Ws are in a trade-off relationship, and robust stability and responsiveness cannot be increased at the same time. Therefore, it is important not to make these design weights unnecessarily large.

【0019】図4は舵面等価質量と舵面剛性のパラメー
タ変動をある一定の範囲に定めたときの加法変動Δaの
一例であるが、Wtの具体的な設定方法として、Wtが
Δaを覆い、かつモデル変動の影響の少ない部分ではな
るべく小さくなるように、図の点線で示すような特性に
設定する。
FIG. 4 shows an example of the additive variation Δa when the parameter variations of the control surface equivalent mass and the control surface rigidity are set within a certain range. As a concrete setting method of Wt, Wt covers Δa. In addition, the characteristic is set as shown by the dotted line in the figure so that it becomes as small as possible in the portion where the influence of the model variation is small.

【0020】そこで、公知のH2制御の設計手法に基づ
いて、次の評価関数
Therefore, based on the known H2 control design method, the following evaluation function is used.

【0021】[0021]

【数1】 (Equation 1)

【0022】を最小とする補償器Kを求める。なお、こ
のH2制御に関しては、次の参考文献1,2に詳細に記
載されているので、ここでは説明しない。
A compensator K that minimizes is obtained. The H2 control is described in detail in the following references 1 and 2 and will not be described here.

【0023】*参考文献1:美多勉「H∞制御」昭晃堂
6〜12頁、141〜147頁 *参考文献2:TheMathWorksInc「ロバ
ストコントロールツールボックスユーザーズガイド」サ
イバネットシステム株式会社 35〜37頁 以上の制御により、次のような作用を生じる。
* Reference 1: Tsutomu Mita "H∞ control" Shokoido
Pages 6 to 12, 141 to 147 * Reference 2: The MathWorks Inc. “Robust Control Toolbox User's Guide” Cybernet System Co., Ltd. Pages 35 to 37 The following operations produce the following effects.

【0024】図2において、制御対象の固有振動数ωn
とすると、
In FIG. 2, the natural frequency ω n of the controlled object
Then

【0025】[0025]

【数2】 (Equation 2)

【0026】として表すことができる。このことから、
制御対象の固有振動数ωnの変動は、舵面等価質量M、
舵面剛性K1、油圧等価剛性K0、機体取付剛性Kcの4
つのパラメータ変動で表すことができる。
Can be expressed as: From this,
The fluctuation of the natural frequency ω n of the controlled object is the control surface equivalent mass M,
Rudder surface rigidity K 1 , hydraulic equivalent rigidity K 0 , machine body mounting rigidity K c 4
It can be represented by one parameter variation.

【0027】Kcは剛性が高く、ωnの変動への影響は少
なく、また、制御系はフィードバック制御をとることに
より、K0が変動する影響はある程度抑えることができ
るので、K0の変動はM,K1に比較すると、ωnの変動
に及ぼす影響が小さい。これらのことから、制御対象の
固有振動数ωnの変動を、舵面等価質量Mと舵面剛性K1
のパラメータ変動に限って扱っても、信頼性は確保でき
る。
K c has a high rigidity and has little influence on the fluctuation of ω n. Further , the feedback control of the control system can suppress the influence of the fluctuation of K 0 to some extent, so that the fluctuation of K 0 can be suppressed. Has a smaller effect on the variation of ω n than M and K 1 . From these facts, the fluctuation of the natural frequency ω n of the controlled object is calculated by changing the control surface equivalent mass M and the control surface rigidity K 1
The reliability can be ensured even if it is handled only for the parameter fluctuation of.

【0028】そこで、MとK1のパラメータ変動を表す
加法変動Δaによって固有振動数の変動を表すことがで
きる。
Therefore, the fluctuation of the natural frequency can be expressed by the additive fluctuation Δa representing the parameter fluctuations of M and K 1 .

【0029】図5はロバスト安定性についての説明のた
めに、図1を変形したもので、この図5において、aか
らbの伝達関数が、次式、つまり
FIG. 5 is a modification of FIG. 1 for explaining the robust stability. In FIG. 5, the transfer function from a to b is expressed by the following equation:

【0030】[0030]

【数3】 (Equation 3)

【0031】を満たすとき、スモールゲイン定理により
ロバスト安定である。また、図4において、
When satisfying the condition, it is robustly stable according to the small gain theorem. Also, in FIG.

【0032】[0032]

【数4】 (Equation 4)

【0033】となる関数Wtを用いた次式、すなわちThe following equation using the function Wt

【0034】[0034]

【数5】 (Equation 5)

【0035】を満たすことができれば、第3式が成立す
るので、ロバスト安定の条件となる。したがって、この
第5式を満足させる補償器Kは、Δaの変動に対してロ
バスト安定である。
If the condition can be satisfied, the third expression is satisfied, and the condition for robust stability is satisfied. Therefore, the compensator K satisfying the fifth formula is robustly stable against the variation of Δa.

【0036】以上のことから、ノミナルモデルPがΔa
の範囲で変動してもロバスト安定であるように設計重み
Wtを設定し、H2制御の設計手法により線形の補償器
Kとして、実際の制御対象の固有振動数がΔaで制約さ
れる範囲内で変動しても安定した制御特性が得られる。
From the above, the nominal model P is Δa
The design weight Wt is set so as to be robustly stable even if it fluctuates in the range of, and as a linear compensator K by the design method of H2 control, within the range where the natural frequency of the actual controlled object is restricted by Δa. Even if it fluctuates, stable control characteristics can be obtained.

【0037】さらに、設計重みWsを調整することでロ
バスト安定性を保ちながら、制御系を高応答化すること
ができる。なお、ロバスト安定性については、前記した
参考文献1に詳細に記載されているので、説明は省略す
る。
Furthermore, by adjusting the design weight Ws, the control system can be made highly responsive while maintaining robust stability. Note that the robust stability is described in detail in Reference 1 described above, and thus description thereof will be omitted.

【0038】次に図6の実施の態様を説明すると、これ
はモデルの変動の表現方法として、加法変動Δaの代わ
りに、乗法変動Δmを採用したものであり、この場合に
も加法変動Δaのときと同じような作用、効果を生じ
る。
Next, the embodiment of FIG. 6 will be described. In this case, as the method of expressing the variation of the model, the multiplicative variation Δm is adopted instead of the additive variation Δa. In this case as well, the additive variation Δa It produces the same action and effect as when.

【0039】同じく図7は、フィードバック型変動Δf
を用いた実施の態様であり、この場合も同様である。
Similarly, FIG. 7 shows the feedback type fluctuation Δf.
Is an embodiment using, and the same applies in this case.

【0040】なお、補償器Kの設計手法としては、H2
制御の他にH∞制御、μ制御などのロバスト制御の手法
が利用できる。
The design method of the compensator K is H2
In addition to control, robust control methods such as H∞ control and μ control can be used.

【0041】[0041]

【発明の効果】以上のように本発明によれば、制御対象
の固有振動数の変動要素として、舵面等価質量と舵面剛
性を用い、固有振動数のある定めた範囲の変動に対して
常に安定となるロバスト制御設計された線形補償器を備
えるので、非線形な適応機構(適応制御)が必要なく、
コントローラへの実装が容易となる一方、線形補償器は
逐次演算で実現できるので、コントローラのリアルタイ
ム処理が容易となるという効果もある。
As described above, according to the present invention, the control surface equivalent mass and the control surface rigidity are used as the fluctuation elements of the natural frequency of the controlled object, and the fluctuation of the natural frequency within a predetermined range is performed. Since it has a linear compensator designed for robust control that is always stable, there is no need for a non-linear adaptive mechanism (adaptive control),
The linear compensator can be easily implemented on the controller, while the linear compensator can be realized by the sequential calculation, so that the controller can easily perform the real-time processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の態様を示す制御系のブロック図
である。
FIG. 1 is a block diagram of a control system showing an embodiment of the present invention.

【図2】制御対象の構成図である。FIG. 2 is a configuration diagram of a control target.

【図3】図1の内容を一般化プラントにより表したブロ
ック図である。
FIG. 3 is a block diagram showing the contents of FIG. 1 by a generalized plant.

【図4】加法変動Δaと設計重みWtとの関係を示す説
明図である。
FIG. 4 is an explanatory diagram showing a relationship between an additive variation Δa and a design weight Wt.

【図5】加法変動Δaのロバスト安定性を示すために図
1の内容を変形して表したブロック図である。
5 is a block diagram showing a modification of the contents of FIG. 1 to show the robust stability of the additive fluctuation Δa.

【図6】他の実施の態様の要部を示すブロック図であ
る。
FIG. 6 is a block diagram showing a main part of another embodiment.

【図7】さらに他の実施の態様の要部を示すブロック図
である。
FIG. 7 is a block diagram showing a main part of still another embodiment.

【図8】従来の制御系を示すブロック図である。FIG. 8 is a block diagram showing a conventional control system.

【符号の説明】[Explanation of symbols]

2 サーボ弁 3 油圧アクチュエータ 4 舵面 10 コントローラ 13 加算器 14 補償器 Δa 加法変動 P ノミナルモデル 2 Servo valve 3 Hydraulic actuator 4 Control surface 10 Controller 13 Adder 14 Compensator Δa Additive fluctuation P Nominal model

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アクチュエータにより操作される航空機の
舵面操作を、目標値と舵面の制御量とが一致するように
操作量を出力する補償器を備えたコントローラにより制
御するサーボ制御システムにおいて、 アクチュエータ及び舵面を固有振動数の変動を生じるモ
デルとして規定した制御対象と、 制御対象の固有振動数のある定めた範囲の変動を舵面等
価質量、舵面剛性のパラメータ変動として扱う手段と、 制御対象が前記範囲内で変動してもロバスト安定である
ようにロバスト制御手法により設計された線形補償器と
を備えることを特徴とする航空機舵面のサーボ制御シス
テム。
1. A servo control system in which a control surface operation of an aircraft operated by an actuator is controlled by a controller having a compensator for outputting a control value such that a target value and a control value of the control surface match. A control object that defines the actuator and the control surface as a model that causes fluctuations in the natural frequency, and a means that handles fluctuations within a predetermined range of the natural frequency of the control object as parameter fluctuations of the control surface equivalent mass and the control surface stiffness. A servo control system for an aircraft control surface, comprising a linear compensator designed by a robust control method so as to be robustly stable even if a control target fluctuates within the range.
【請求項2】前記線形補償器はH2制御、H∞制御、μ
制御手法により設計される請求項1に記載の航空機舵面
のサーボ制御システム。
2. The linear compensator is H2 control, H∞ control, μ
The aircraft control surface servo control system according to claim 1, which is designed by a control method.
JP29845895A 1995-11-16 1995-11-16 Servo control system for aircraft control surface Expired - Fee Related JP3620907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29845895A JP3620907B2 (en) 1995-11-16 1995-11-16 Servo control system for aircraft control surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29845895A JP3620907B2 (en) 1995-11-16 1995-11-16 Servo control system for aircraft control surface

Publications (2)

Publication Number Publication Date
JPH09136698A true JPH09136698A (en) 1997-05-27
JP3620907B2 JP3620907B2 (en) 2005-02-16

Family

ID=17859972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29845895A Expired - Fee Related JP3620907B2 (en) 1995-11-16 1995-11-16 Servo control system for aircraft control surface

Country Status (1)

Country Link
JP (1) JP3620907B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252997A (en) * 2001-02-23 2002-09-06 Aisin Seiki Co Ltd Controlling apparatus of electric motor
US7356240B2 (en) 2003-09-11 2008-04-08 Nikon Corporation Processing method of polymer crystal, processing system of polymer crystal, and observation system of polymer crystal
JP2011189818A (en) * 2010-03-15 2011-09-29 Nabtesco Corp Method of manufacturing actuator and link, method of designing actuator and link, and actuator and link
CN103809442A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Method for designing composite frequency robust controller for multi-loop model cluster of aircraft
CN105510034A (en) * 2014-09-23 2016-04-20 北京强度环境研究所 Jet-vane system non-linear frequency characteristic acquisition system and method
CN108216580A (en) * 2016-12-15 2018-06-29 利勃海尔航空航天林登贝格股份有限公司 For controlling the actuator controller of the actuator of aircraft
CN111056044A (en) * 2019-12-27 2020-04-24 中国航空工业集团公司沈阳飞机设计研究所 Airplane control surface double-hydraulic servo system detection method
CN111086626A (en) * 2019-12-27 2020-05-01 中国航空工业集团公司西安飞机设计研究所 Method for improving control surface control precision of airplane flight control system
CN112162573A (en) * 2020-10-14 2021-01-01 四川航天烽火伺服控制技术有限公司 Electric steering engine shake control method and device
CN112486193A (en) * 2020-11-19 2021-03-12 南京航空航天大学 Three-axis full-authority control method of flying-wing unmanned aerial vehicle based on self-adaptive augmentation control theory

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660941B2 (en) * 2001-02-23 2011-03-30 アイシン精機株式会社 Electric motor control device
JP2002252997A (en) * 2001-02-23 2002-09-06 Aisin Seiki Co Ltd Controlling apparatus of electric motor
US7356240B2 (en) 2003-09-11 2008-04-08 Nikon Corporation Processing method of polymer crystal, processing system of polymer crystal, and observation system of polymer crystal
US9097327B2 (en) 2010-03-15 2015-08-04 Nabtesco Corporation Actuator-link assembly for aircraft control surface
JP2011189818A (en) * 2010-03-15 2011-09-29 Nabtesco Corp Method of manufacturing actuator and link, method of designing actuator and link, and actuator and link
US8688255B2 (en) 2010-03-15 2014-04-01 Nabtesco Corporation Actuator-link assembly manufacturing method, actuator-link assembly designing method, and actuator-link assembly
CN103809442B (en) * 2014-02-28 2016-08-03 西安费斯达自动化工程有限公司 Aircraft multiloop model bunch combination frequency robust Controller Design method
CN103809442A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Method for designing composite frequency robust controller for multi-loop model cluster of aircraft
CN105510034A (en) * 2014-09-23 2016-04-20 北京强度环境研究所 Jet-vane system non-linear frequency characteristic acquisition system and method
CN108216580A (en) * 2016-12-15 2018-06-29 利勃海尔航空航天林登贝格股份有限公司 For controlling the actuator controller of the actuator of aircraft
CN111056044A (en) * 2019-12-27 2020-04-24 中国航空工业集团公司沈阳飞机设计研究所 Airplane control surface double-hydraulic servo system detection method
CN111086626A (en) * 2019-12-27 2020-05-01 中国航空工业集团公司西安飞机设计研究所 Method for improving control surface control precision of airplane flight control system
CN111056044B (en) * 2019-12-27 2022-08-19 中国航空工业集团公司沈阳飞机设计研究所 Airplane control surface double-hydraulic servo system detection method
CN111086626B (en) * 2019-12-27 2023-01-13 中国航空工业集团公司西安飞机设计研究所 Method for improving control surface control precision of airplane flight control system
CN112162573A (en) * 2020-10-14 2021-01-01 四川航天烽火伺服控制技术有限公司 Electric steering engine shake control method and device
CN112162573B (en) * 2020-10-14 2023-09-29 四川航天烽火伺服控制技术有限公司 Electric steering engine shake control method and device
CN112486193A (en) * 2020-11-19 2021-03-12 南京航空航天大学 Three-axis full-authority control method of flying-wing unmanned aerial vehicle based on self-adaptive augmentation control theory
CN112486193B (en) * 2020-11-19 2022-04-22 南京航空航天大学 Three-axis full-authority control method of flying-wing unmanned aerial vehicle based on self-adaptive augmentation control theory

Also Published As

Publication number Publication date
JP3620907B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
EP0823078B1 (en) Feedback method for controlling non-linear processes
JPH09136698A (en) Servo control system for rudder of air plane
WO1990004882A1 (en) Servo control apparatus
JPH0738128B2 (en) Control device
JP3164667B2 (en) Adjustment device
US6619086B1 (en) Control system for tandem rolling mill
JP4483314B2 (en) Servo control device
JPH096405A (en) Adjusting method of compensator
JP4982905B2 (en) Control method and control apparatus
KR100939754B1 (en) Control system
JP4549569B2 (en) Plant control equipment
JPH0434766B2 (en)
JP3972155B2 (en) Motor control device
JP2631225B2 (en) Model reference adaptive precedence controller with arithmetic circuit
JP3995899B2 (en) Plant control equipment
JP2002258905A (en) Control rule deciding method for automatic controller
JPH0721724B2 (en) Automatic control device
JP2004264979A (en) Servo control device
JPH04256102A (en) Model estimation controller
JP3774376B2 (en) Method and apparatus for identifying limit gain and transfer function of control system
JPH1124708A (en) Servo controller
JPH0511811A (en) Feedforward device by inverse function generator
JP3564760B2 (en) Adaptive control method and apparatus
JP2850076B2 (en) Control device
JPH0981206A (en) Fuzzy control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees