JPH04315202A - Equivalent disturbance compensating method - Google Patents

Equivalent disturbance compensating method

Info

Publication number
JPH04315202A
JPH04315202A JP3108411A JP10841191A JPH04315202A JP H04315202 A JPH04315202 A JP H04315202A JP 3108411 A JP3108411 A JP 3108411A JP 10841191 A JP10841191 A JP 10841191A JP H04315202 A JPH04315202 A JP H04315202A
Authority
JP
Japan
Prior art keywords
controlled system
disturbance
integral
amount
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3108411A
Other languages
Japanese (ja)
Other versions
JP3295102B2 (en
Inventor
Atsushi Fujikawa
淳 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP10841191A priority Critical patent/JP3295102B2/en
Publication of JPH04315202A publication Critical patent/JPH04315202A/en
Application granted granted Critical
Publication of JP3295102B2 publication Critical patent/JP3295102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To execute required equivalent disturbance compensation without executing an integrating operation when an integrating element exists in a control block by directly operating an impressing input amount and operating a state amount based on the inverse function of a transmission function until the input of a controlled system. CONSTITUTION:The disturbance to the controlled system (not shown in the figure) is predictively operated according to an impressing input amount U and a state amount X of this controlled system, and an output Y is fed back to the impressing input amount U of the above-mentioned controlled system. When the above-mentioned controlled system is composed of the integrating element at such a time, the impressing input amount U is directly fetched and the state amount X is calculated by adding the results of multiplying the inverse functions of the transmission functions until the input of the above-mentioned controlled system. Thus, the output Y estimating the disturbance of the above-mentioned controlled system can be obtained without operating a complete integration system (1/S:S is a Laplace operator) and without executing any replacement to a primary delay filter. Namely, a processing due to approximate integrating operation and further an offset processing or the like due to an integration initial value and integration error can be omitted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は制御対象の入力と状態量
とから外乱を推定する等価外乱オブザーバに係る等価外
乱補償方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an equivalent disturbance compensation method using an equivalent disturbance observer that estimates disturbance from inputs and state quantities of a controlled object.

【0002】0002

【従来の技術】一般に、制御対象の中に積分要素が含ま
れる場合の等価外乱補償値を求めるためには、積分要素
の積分定数のノミナル値を使って、積分演算を行われて
いる。この積分演算は、数学的にも明らかなように積分
の初期値および積分演算による誤差の蓄積という問題が
あって、厳密な積分演算を実行することは困難であるこ
とから、実用上では近以積分演算として、例えば一次遅
れフイルタ演算に置換して処理していた。
2. Description of the Related Art Generally, in order to obtain an equivalent disturbance compensation value when an integral element is included in a controlled object, an integral calculation is performed using the nominal value of the integral constant of the integral element. As is clear from a mathematical perspective, this integral operation has the problem of accumulation of errors due to the initial value of the integral and the integral operation, and it is difficult to perform a strict integral operation. For example, the integral operation was replaced with a first-order lag filter operation.

【0003】0003

【発明が解決しようとする課題】前述した如くに、制御
対象がある状態から動作を始めるときは、その時点での
初期値を正確に入力してやらなければならない。また動
作が長時間にわたると、積分演算による僅かの積分誤差
が少しずつ蓄積して、この値が制御にオフセットとして
残り、正しい動作を続行することができなくなるため、
そのオフセット値を適時リセットしたり、常時誤差をみ
こしてその分を減算処理したりするという補正が必要で
あった。このため、実用面において試行錯誤による調整
や、積分演算を一次遅れフイルタで近以演算させようと
すると、一次遅れフイルタの定数の選定が課題となる。
As described above, when the controlled object starts operating from a certain state, the initial value at that point must be accurately input. Furthermore, if the operation continues for a long time, a small integral error due to the integral calculation will accumulate little by little, and this value will remain as an offset in the control, making it impossible to continue the correct operation.
It was necessary to perform corrections such as resetting the offset value at appropriate times or constantly subtracting the error. For this reason, in practical terms, when adjustments are made by trial and error or when an integral calculation is attempted to be performed using a first-order lag filter, selection of the constant of the first-order lag filter becomes a problem.

【0004】かような点に鑑み、本出願人は、先に平成
2年4月27日付の特許出願「電動機制御装置」を提案
しているところである。ここでは、これを以下に先の提
案として援用する。その先の提案における技術思想を表
す一例は図5の如く示される。
[0004] In view of the above points, the present applicant has previously proposed a patent application entitled "Electric Motor Control Device" dated April 27, 1990. Here, this will be referred to as the previous proposal. An example of the technical idea of the earlier proposal is shown in FIG.

【0005】すなわち、先の提案に示された第1図を簡
単化したものが図5である。図5において、1は安定化
装置、2は駆動側モータ21,捩りシャフト22および
負荷23を主構成とする制御対象、3は加減速調整器、
4A,4B,4Cはリミッタ、5はフィードフォワード
補償部、6A,6B は等価外乱補償部、7は逆函数ブ
ロック、8は非干渉ブロックである。
That is, FIG. 5 is a simplified version of FIG. 1 shown in the previous proposal. In FIG. 5, 1 is a stabilizing device, 2 is a controlled object whose main components are a drive-side motor 21, a torsion shaft 22, and a load 23, 3 is an acceleration/deceleration regulator,
4A, 4B, and 4C are limiters, 5 is a feedforward compensation section, 6A, 6B are equivalent disturbance compensation sections, 7 is an inverse function block, and 8 is a non-interference block.

【0006】また、ω*は指令入力、ω1 *は速度指
令、eは偏差、ωM は電動側速度、θは捩り、TL 
は負荷外乱、ωLは負荷側速度である。さらに符号中、
KC は捩りバネ系数、Jは慣性、Dは粘性系数、Sは
ラプラス演算子である。さらにまた、符号に付したNは
ノミナル値を表している。ここに、外乱TDLは負荷外
乱やパラメータ変動等の全てを含めた等価外乱と見倣す
ことができるものである。
Further, ω* is the command input, ω1 * is the speed command, e is the deviation, ωM is the electric side speed, θ is the torsion, and TL
is the load disturbance, and ωL is the load side speed. Furthermore, in the code,
KC is the torsion spring system, J is the inertia, D is the viscosity system, and S is the Laplace operator. Furthermore, N attached to the symbol represents a nominal value. Here, the disturbance TDL can be regarded as an equivalent disturbance including all load disturbances, parameter fluctuations, etc.

【0007】かかる図5は、先の提案の明細書で詳細説
明されているためここでは上記符号説明にとどめるが、
FCAN部においては、フイルタを通したTDLN は
等価外乱オブザーバを構成し、これを帰還することによ
り、等価外乱補償手段を施したものである。
FIG. 5 has been explained in detail in the specification of the previous proposal, so only the above-mentioned symbols will be explained here.
In the FCAN section, the TDLN passed through the filter constitutes an equivalent disturbance observer, and by feeding back this, equivalent disturbance compensation means is applied.

【0008】ここで、先の提案における第1図に関係す
る式3を変形すると、式■の如くである。   TDL=(△ω′/S)・KCN−(JLNS+D
LN)・ωL …………………  ■
[0008] Here, when formula 3 related to FIG. 1 in the previous proposal is transformed, it becomes formula (2). TDL=(△ω′/S)・KCN−(JLNS+D
LN)・ωL ………………… ■

【0009】そし
て、かような式■を忠実に実行すると、〔(△ω′/S
)・KCN〕の積分演算をしなければならない。そのた
めには、初期値をとり込まない限り、正確な積分演算を
実行し得ない。一般に完全積分演算は実行することが難
しいと言われるのは、これらのため、積分演算値が不正
確になるためである。そこで、一般的には積分演算を近
以演算として一次遅れフイルタしとて計算することがよ
く行われている。
[0009] Then, if we faithfully execute such equation
)・KCN] must be integrated. To this end, accurate integral calculations cannot be performed unless initial values are taken in. The reason why it is generally said that it is difficult to perform a complete integral operation is because the integral operation value becomes inaccurate due to these factors. Therefore, in general, calculations are often performed using a first-order lag filter as an integral calculation.

【0010】これは、(1/S)の積分演算の代わりに
、次式の一次遅れフイルタ演算に置換すると、式■とな
る。   〔T/(1+TS)〕=1/〔(1/T);S〕 
                     ≒1/S
            ……………………………… 
 ■故に〔(1/T)≪S〕したがって(T≫S)であ
る。 これより、積分時定数Tを系の動作周波数に対して大き
な値に選定すれば、等価積分演算となる。
If the (1/S) integral operation is replaced with the first-order lag filter operation of the following equation, this becomes equation (2). [T/(1+TS)]=1/[(1/T);S]
≒1/S
…………………………………
■Therefore, [(1/T)≪S] Therefore, (T≫S). From this, if the integration time constant T is selected to be a large value with respect to the operating frequency of the system, an equivalent integral calculation is performed.

【0011】したがって、〔KC ・(1/S)・△ω
′〕を〔KC ・T(1+TS)・△ω′〕と置換えす
ることにより、一般に近以計算されていた。ところで、
図5におけるFCANブロックを変形すれば、図6の如
く示すことができる。
[0011] Therefore, [KC・(1/S)・△ω
It has been generally calculated in the recent past by replacing [KC .T(1+TS).Δω'] for . by the way,
If the FCAN block in FIG. 5 is modified, it can be shown as shown in FIG. 6.

【0012】0012

【課題を解決するための手段】そして、かかる図6およ
び式■の演算式より、図1に示すようにブロック変換で
きるため、すなわちこのブロックによれば前述した如き
積分演算を解消することができる。これをさらに作用で
詳述する。
[Means for Solving the Problems] From the calculation formula shown in FIG. 6 and equation (2), it is possible to perform block conversion as shown in FIG. . This will be further explained in detail in terms of effects.

【0013】[0013]

【作用】ここで、制御対象の中に積分演算ブロックがあ
る基本ブロック図として、図5のFCANブロックを簡
略化して示した図2を参照して説明する。すなわち、制
御対象2の中に積分演算があるときは、制御対象の入力
Uと状態量Xがら外乱Tを推定するために、制御変数の
ノミナル値をそれぞれKN,JN,DN として、外乱
推定値TD は次式で表せる。
[Operation] Here, explanation will be made with reference to FIG. 2, which shows a simplified version of the FCAN block in FIG. 5 as a basic block diagram in which an integral calculation block is included in the controlled object. That is, when there is an integral operation in the controlled object 2, in order to estimate the disturbance T from the input U and state quantity X of the controlled object, the nominal values of the control variables are set as KN, JN, and DN, respectively, and the estimated disturbance value TD can be expressed by the following formula.

【0014】   U・(KCN/S)−(JN S+DN )X=T
D     ………………………  ■これをブロック
化すると、図2の如くとなる。このとき、積分(1/S
)は前述したように簡単に積分演算が実現できなく、外
乱推定オブザーバの出力Yまでの計算を式化する。   Y=(S/KN )TD     =(S/KN )〔U・(KCN/S)−(J
N S+D)・X〕    =U−〔(S/K)(JN
 S+DN )X〕………  ■したがって、式■とす
れば、積分演算をしなくてすむ。
[0014] U・(KCN/S)−(JNS+DN)X=T
D ……………………… ■If this is made into blocks, it will look like the one shown in Figure 2. At this time, the integral (1/S
) cannot be easily realized as an integral operation as described above, and the calculation up to the output Y of the disturbance estimation observer is expressed as a formula. Y=(S/KN)TD=(S/KN)[U・(KCN/S)−(J
N S+D)・X] =U-[(S/K)(JN
S + DN )

【0015】これをブロック化すると、図3の通りとな
る。このブロックにおいては、制御対象の外乱を推定す
るために、印加量の入力Uは直接にとり込み、また状態
量Xは制御対象の入力までの伝達関数の逆関数を掛算し
たものを加算処理することで求めることができる。こう
することにより、図3に示した場合のような完全積分系
(1/S)の演算をしなくてよく、また一次遅れフイル
タに置換することもなく、外乱推定の出力Yが得られる
When this is divided into blocks, it becomes as shown in FIG. In this block, in order to estimate the disturbance of the controlled object, the applied amount input U is directly taken in, and the state amount X is multiplied by the inverse function of the transfer function up to the input of the controlled object. It can be found by By doing so, the disturbance estimation output Y can be obtained without having to perform calculations using a complete integral system (1/S) as in the case shown in FIG. 3, and without replacing it with a first-order lag filter.

【0016】[0016]

【実施例】本発明の一実施例として、電動機と負荷との
間に、いわゆる捩り系が存在する場合の捩り振動制御方
式のものを示す。図4は図5に類して示した本発明が適
用された一実施例を示す。すなわち、負荷側の捩り角か
ら負荷側速度ωL 制御対象についての第2の等価外乱
補償手段に適用した場合である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a torsional vibration control system will be described in which a so-called torsional system exists between an electric motor and a load. FIG. 4 shows an embodiment to which the present invention shown similar to FIG. 5 is applied. That is, this is a case where the load side speed ωL is applied to the second equivalent disturbance compensation means for the controlled object from the load side torsion angle.

【0017】ここで、第2の補償出力の△ωの点には物
理的に帰還できないため、駆動側モータのトルク指令に
相当するT*の個所に帰還させてなるものである。なお
、ここへ帰還するためには、駆動側モータの伝達関数の
逆函数ブロック7を通して行う先の提案と同様であるこ
とは言うまでもない。
Here, since it is physically impossible to return to the point Δω of the second compensation output, the second compensation output is returned to the point T* corresponding to the torque command of the drive side motor. It goes without saying that in order to return to this point, it is the same as the previous proposal, which is performed through the inverse function block 7 of the transfer function of the drive side motor.

【0018】[0018]

【発明の効果】以上詳細説明した如く本発明によれば、
従来の制御対象の中に積分要素があるシステムの等価外
乱補償演算における何らかの近以積分演算による処理、
さらには積分初期値,積分誤差によりオフセット処理等
の煩わしさからも解放され、積分演算をしなくてすむア
ルゴリズムでプログラム構成し得る格別な方法を提供で
きる。また簡単化された演算方式により、処理時間・制
御精度も向上でき、実用上の効果は顕著である。
[Effects of the Invention] As explained in detail above, according to the present invention,
Processing using some kind of near-integral calculation in equivalent disturbance compensation calculation for a conventional system with an integral element in the controlled object,
Furthermore, it is possible to provide an exceptional method in which a program can be constructed using an algorithm that eliminates the need for integral calculations, and is freed from the troublesomeness of offset processing and the like based on integral initial values and integral errors. In addition, the simplified calculation method improves processing time and control accuracy, which has a significant practical effect.

【0019】[0019]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の解決手段の説明のため示したブ
ロック変換図である。
FIG. 1 is a block conversion diagram shown for explaining the solving means of the present invention.

【図2】図2は制御対象の中に積分演算ブロックが含ま
れる基本ブロックを示した図である。
FIG. 2 is a diagram showing basic blocks in which an integral calculation block is included in the controlled object.

【図3】図3は本発明の作用効果の理解を容易にするた
め示した図である。
FIG. 3 is a diagram shown to facilitate understanding of the effects of the present invention.

【図4】図4は図5に類して示した本発明の一実施例の
系統図である。
FIG. 4 is a system diagram of an embodiment of the present invention similar to FIG. 5;

【図5】図5は本出願人提案済の一例を説明するため示
した系統図である。
FIG. 5 is a system diagram shown to explain an example proposed by the present applicant.

【図6】図6は図5におけるFCANブロックを変形し
た図である。
FIG. 6 is a diagram in which the FCAN block in FIG. 5 is modified.

【0020】[0020]

【符号の説明】[Explanation of symbols]

1    安定化装置 2    制御対象 3    加減速調整器 4A    リミッタ 4B    リミッタ 4C    リミッタ 5    フィードフォワード補償部 6A    等価外乱補償部 6B    等価外乱補償部 7    逆函数ブロック 8    非干渉ブロック ω*  指令入力 ωM   電動側速度 θ    捩り ωL   負荷側速度 J    慣性 D    粘性係数 S    ラブラス演算子 TDL  外乱 U    入力 X    状態量 T    外乱 Y    出力 TD   外乱推進値 1 Stabilization device 2. Controlled object 3 Acceleration/deceleration adjuster 4A Limiter 4B Limiter 4C limiter 5 Feedforward compensation section 6A Equivalent disturbance compensation section 6B Equivalent disturbance compensation section 7 Inverse function block 8 Non-interference block ω* Command input ωM Electric side speed θ Torsion ωL Load side speed J Inertia D Viscosity coefficient S Labrasian operator TDL Disturbance U input X state quantity T Disturbance Y Output TD Disturbance propulsion value

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  制御対象の印加入力量と状態量から該
制御対象への外乱を推定演算するとともに、その出力を
制御対象の印加入力量に帰還する等価外乱補償手法を用
いるものにおいて、前記制御対象が積分要素で構成され
る場合、印加入力量は直接に状態量は制御対象の入力ま
での伝達関数の逆関数より演算するようにしたことを特
徴とする等価外乱補償方法。
1. An equivalent disturbance compensation method that estimates and calculates a disturbance to a controlled object from the applied input amount and state quantity of the controlled object, and feeds back the output to the applied input amount of the controlled object, wherein the control An equivalent disturbance compensation method characterized in that when the object is composed of integral elements, the applied input amount is calculated directly and the state amount is calculated from the inverse function of the transfer function to the input of the controlled object.
JP10841191A 1991-04-12 1991-04-12 Equivalent disturbance compensation method Expired - Fee Related JP3295102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10841191A JP3295102B2 (en) 1991-04-12 1991-04-12 Equivalent disturbance compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10841191A JP3295102B2 (en) 1991-04-12 1991-04-12 Equivalent disturbance compensation method

Publications (2)

Publication Number Publication Date
JPH04315202A true JPH04315202A (en) 1992-11-06
JP3295102B2 JP3295102B2 (en) 2002-06-24

Family

ID=14484076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10841191A Expired - Fee Related JP3295102B2 (en) 1991-04-12 1991-04-12 Equivalent disturbance compensation method

Country Status (1)

Country Link
JP (1) JP3295102B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255005A (en) * 1995-03-17 1996-10-01 Shinko Electric Co Ltd Control compensator
WO2010055673A1 (en) * 2008-11-13 2010-05-20 株式会社ニコン Moving body drive control method, exposure method, robot control method, drive control device, exposure device, and robot device
WO2011074403A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Apparatus and method for protecting power semiconductor switch element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281003A (en) * 1986-05-30 1987-12-05 Mitsubishi Heavy Ind Ltd Complementing device for control system
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller
JPS6464007A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Servo controller
JPH0325505A (en) * 1989-06-22 1991-02-04 Toyo Electric Mfg Co Ltd Multifunction controller
JPH0374188A (en) * 1989-08-12 1991-03-28 Mitsutoyo Corp Disturbance torque compensator
JPH03155383A (en) * 1989-11-08 1991-07-03 Mitsubishi Electric Corp Motor controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281003A (en) * 1986-05-30 1987-12-05 Mitsubishi Heavy Ind Ltd Complementing device for control system
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller
JPS6464007A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Servo controller
JPH0325505A (en) * 1989-06-22 1991-02-04 Toyo Electric Mfg Co Ltd Multifunction controller
JPH0374188A (en) * 1989-08-12 1991-03-28 Mitsutoyo Corp Disturbance torque compensator
JPH03155383A (en) * 1989-11-08 1991-07-03 Mitsubishi Electric Corp Motor controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255005A (en) * 1995-03-17 1996-10-01 Shinko Electric Co Ltd Control compensator
WO2010055673A1 (en) * 2008-11-13 2010-05-20 株式会社ニコン Moving body drive control method, exposure method, robot control method, drive control device, exposure device, and robot device
WO2011074403A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Apparatus and method for protecting power semiconductor switch element
JP2011130564A (en) * 2009-12-17 2011-06-30 Hitachi Ltd Apparatus and method for protecting power semiconductor switch element
CN102656763A (en) * 2009-12-17 2012-09-05 株式会社日立制作所 Apparatus and method for protecting power semiconductor switch element
CN102656763B (en) * 2009-12-17 2015-04-08 株式会社日立功率半导体 Apparatus and method for protecting power semiconductor switch element

Also Published As

Publication number Publication date
JP3295102B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
US7449857B2 (en) Servo control device
US20050228513A1 (en) Vibration control device
EP2157489B1 (en) Motor Control System
EP0518651B1 (en) Process control system
US20110044331A1 (en) Network control system
JPH06119001A (en) Controller
JP5208610B2 (en) Characteristic identification method and motor control device for controlling inertial resonance system
US6828749B2 (en) Full-closed control apparatus
JPH04315202A (en) Equivalent disturbance compensating method
JP4483314B2 (en) Servo control device
JP6930868B2 (en) Servo control device, servo control method and system
JP4446253B2 (en) Motor control device
EP1467265B1 (en) Control system
JP3220589B2 (en) Control device for mechanical system
US6266580B1 (en) Control apparatus and method of control system having dead time
JPH08331879A (en) Mechanical constant estimation circuit
JP2999330B2 (en) Control method using sliding mode control system
JP2817171B2 (en) Motor speed control device
KR20060121511A (en) Feedback control system
JP3972155B2 (en) Motor control device
JPH05300782A (en) Disturbance estimation compensator
JPH0535306A (en) Dead time compensation control device
JP2006244300A (en) Control unit
JPH0744863B2 (en) Motor control device
JP2923993B2 (en) Motor control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees