JPH0619291B2 - Vibration monitoring equipment for rotating machinery - Google Patents

Vibration monitoring equipment for rotating machinery

Info

Publication number
JPH0619291B2
JPH0619291B2 JP61208633A JP20863386A JPH0619291B2 JP H0619291 B2 JPH0619291 B2 JP H0619291B2 JP 61208633 A JP61208633 A JP 61208633A JP 20863386 A JP20863386 A JP 20863386A JP H0619291 B2 JPH0619291 B2 JP H0619291B2
Authority
JP
Japan
Prior art keywords
acceleration
value
average value
signal
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208633A
Other languages
Japanese (ja)
Other versions
JPS6363925A (en
Inventor
久和 日笠
勝夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI ENGINEERING
Original Assignee
ASAHI ENGINEERING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI ENGINEERING filed Critical ASAHI ENGINEERING
Priority to JP61208633A priority Critical patent/JPH0619291B2/en
Publication of JPS6363925A publication Critical patent/JPS6363925A/en
Publication of JPH0619291B2 publication Critical patent/JPH0619291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、回転機械の振動を監視してその異常を検知
する振動監視装置に関するものである。
Description: “Industrial field of use” The present invention relates to a vibration monitoring device for monitoring vibration of a rotating machine and detecting its abnormality.

「従来の技術」 従来、回転体の振動状態を連続的に監視するには 振動の振幅値及び振動増加率を検出して警報信号及
びトリップ信号を出力する振動監視方法(特公昭53-258
86)や、 振動監視対象物の各異なる位置からの振動情報を取
込み、その各振動間の位相差を求めることにより振動状
況を判定する方法(特開昭55-22124)や、 検出信号のパワースペクトルを分析して分数調波振
動の発生を識別した際に、上記検出信号をバイスペクト
ル分析し振動監視を行う方法(特開昭58-193425)など
が知られている。
“Prior Art” Conventionally, in order to continuously monitor the vibration state of a rotating body, a vibration monitoring method of detecting an amplitude value and a vibration increase rate of a vibration and outputting an alarm signal and a trip signal (Japanese Patent Publication No. 53-258).
86), a method of determining the vibration status by taking in the vibration information from different positions of the vibration monitoring target and obtaining the phase difference between the vibrations (Japanese Patent Laid-Open No. 55-22124), and the power of the detection signal. There is known a method (for example, Japanese Patent Laid-Open No. 58-193425) in which when the occurrence of subharmonic vibration is identified by analyzing the spectrum, the detection signal is bispectral analyzed to monitor the vibration.

「発明が解決しようとする問題点」 の方式では振動振幅及びその増加率のみの監視であ
り、通常数キロヘルツの振動が発生するころがり軸受の
監視は不可能であり、また振動値による原因の推定も不
可能であった。
In the method of "Problems to be solved by the invention", only the vibration amplitude and its increase rate are monitored, and it is impossible to monitor rolling bearings that normally generate vibrations of several kilohertz, and it is possible to estimate the cause by the vibration value. Was also impossible.

の方式は位相測定により監視対象物の振動が共振点に
近づきつつあるか判定するもので、軸受等、多くの場
合、共振点によらない振動を発生するものには不向きで
あった。
The method of (1) determines whether the vibration of the monitored object is approaching the resonance point by phase measurement, and is not suitable for bearings and the like that often generate vibrations that do not depend on the resonance point.

の方式ではパワースペクトル分析器としてフーリエ変
換分析器を用いることから、同時にはせいぜい2〜3点
の信号しか入力できず、また実時間での振動監視には精
度上の問題があった。
In the method (1), since a Fourier transform analyzer is used as a power spectrum analyzer, at the same time, only a few signals can be input at the same time, and there is a problem in accuracy in vibration monitoring in real time.

この発明の目的は簡単な構成により、実時間で、かつ多
点監視を可能とした振動監視装置を提供することにあ
る。
An object of the present invention is to provide a vibration monitoring device having a simple structure and capable of performing multipoint monitoring in real time.

「問題点を解決するための手段」 この発明の振動監視装置は、回転体の軸受部に加速度セ
ンサーが取付けられ、これら加速度センサーにより加速
度信号が検知され、これら検知した加速度信号に信号処
理が加えられて、加速度平均値、加速度ピーク値及び速
度平均値がそれぞれ導出される。これらはそれぞれデジ
タル量とされて、タイマー回路により一定時間単位で演
算器に取込まれる。この取込まれた加速度ピーク値を加
速度平均値で除算しクレストファクターが得られる。
[Means for Solving Problems] In the vibration monitoring device of the present invention, an acceleration sensor is attached to a bearing portion of a rotating body, acceleration signals are detected by these acceleration sensors, and signal processing is applied to the detected acceleration signals. Then, the acceleration average value, the acceleration peak value, and the velocity average value are derived. Each of these is converted into a digital amount and is taken into the arithmetic unit by the timer circuit in a constant time unit. The crest factor is obtained by dividing the captured acceleration peak value by the acceleration average value.

このようにして求めたクレストファクター、速度平均値
及び加速度平均値を監視項目として警報信号を出力する
とともに、それぞれの振動値のしきい値との大小をマト
リクス的に識別させることにより異常原因の推定を可能
とする。
An alarm signal is output using the crest factor, velocity average value, and acceleration average value thus obtained as monitoring items, and the cause of the abnormality is estimated by identifying the magnitude of each vibration value in a matrix. Is possible.

「実施例」 第1図はこの発明の実施例を示す。加速度センサー11
〜1nは例えば圧電型の加速度センサーであり、これら
は回転機械の転がり軸受部(図示せず)に取付けられ
る。加速度センサー11〜1nにより検出された信号は前
段増幅器21〜2nでそれぞれ電圧信号に変換され、さら
にそれぞれ帯域波器31〜3nにより3〜10ヘルツか
ら1キロヘルツまでの周波数成分が選出されて積分器4
1〜4nに供給され、積分器41〜4nによりそれぞれ速度
信号に変換され、更に平均化回路51〜5nによりそれぞ
れ平均化される。
"Embodiment" FIG. 1 shows an embodiment of the present invention. Accelerometer 1 1
1 to 1 n are, for example, piezoelectric type acceleration sensors, which are attached to a rolling bearing portion (not shown) of the rotating machine. The signals detected by the acceleration sensors 1 1 to 1 n are converted into voltage signals by the preamplifiers 2 1 to 2 n , and the frequency components from 3 to 10 Hz to 1 kHz are further converted by the band pass filters 3 1 to 3 n. Is selected and integrator 4
1 to 4 n , converted into velocity signals by integrators 4 1 to 4 n , and further averaged by averaging circuits 5 1 to 5 n .

一方、前段増幅器21〜2nの出力は帯域波器61〜6n
で1キロヘルツ以下が除去されて平均化回路71〜7n
供給されてそれぞれ平均化される。また帯域波器61
〜6nの各出力はピーク検出回路81〜8nによりそれぞ
れピーク値が検出される。
On the other hand, the outputs of the pre-stage amplifiers 2 1 to 2 n are bandpass filters 6 1 to 6 n.
1 kHz or less is removed and supplied to the averaging circuits 7 1 to 7 n for averaging. In addition, band wave device 6 1
Each output of the to 6 n peak values each of which is detected by the peak detection circuit 8 1 to 8 n.

平均化回路51〜5nより得られた各速度平均値はAD変
換器91〜9nでデジタル信号に変換され、平均化回路7
1〜7nより得られた各加速度平均値はAD変換器101
〜10nでデジタル信号に変換され、ピーク検出回路81
〜8nより各加速度ピーク値はデジタル変換器111〜1
nでデジタル信号へ変換される。上記により得られた
速度平均値、加速度平均値、加速度ピーク値は、演算器
12に内蔵されたタイマー回路により単位時間(例えば
7秒間以上)ごとに入力される。さらにその入力された
値のうち加速度平均値と加速度ピーク値とから、その
比、クレストファクター(ピーク値/平均値)が演算さ
れる。
Each velocity average value obtained from the averaging circuits 5 1 to 5 n is converted into a digital signal by the AD converters 9 1 to 9 n , and the averaging circuit 7
Each acceleration average value obtained from 1 to 7 n is the AD converter 10 1.
Is converted into a digital signal in to 10 n, the peak detection circuit 8 1
The acceleration peak value than to 8 n digital converter 11 1 to 1
It is converted into a digital signal at 1 n . The velocity average value, the acceleration average value, and the acceleration peak value obtained as described above are input by the timer circuit built in the calculator 12 every unit time (for example, 7 seconds or more). Further, the ratio and the crest factor (peak value / average value) are calculated from the acceleration average value and the acceleration peak value among the input values.

次に速度平均値、加速度平均値、クレストファクターは
あらかじめ設定された値と比較され、その設定された値
を越えていた場合は警報器13に警報を出力するととも
に、それぞれの入力値を速度平均値、加速度平均値及び
クレストファクターのしきい値との大小をマトリクス的
に識別し異常の原因を推定し、表示装置14と漢字プリ
ンター15とに出力する。
Next, the velocity average value, the acceleration average value, and the crest factor are compared with preset values, and if they exceed the preset values, an alarm is output to the alarm device 13 and the respective input values are velocity averaged. The magnitudes of the values, the average acceleration value, and the threshold value of the crest factor are identified in a matrix to estimate the cause of the abnormality, and output to the display device 14 and the kanji printer 15.

異常原因の推定にあたっては、不平衡、負荷変動等の全
体振動が1キロヘルツ以下の速度値の変化として表れる
こと、ころがり軸受の異常が1キロヘルツ以上の加速度
値の変化として表れることから、まず異常の発生周波数
帯域を識別する。第2図に示すように、ボール21が外
輪22、内輪23間のレースをころがり運動を行う場
合、その運動の振動加速度波形を考えると、正常であれ
ば第3図に示すように振幅の小さな振動となり、油切れ
であれば、第4図に示すように振幅の大きな雑音に近い
ショック振動のない波形となり、傷25があれば第5図に
示すように正常波形の中に傷によるショック振動26が
乗ったものになる。この波形の特徴を加速度平均値とク
レストファクターとの変化としてとらえて軸受異常の診
断を行う。
In estimating the cause of the abnormality, the total vibration such as unbalance and load fluctuation appears as a change in speed value of 1 kHz or less, and the abnormality of the rolling bearing appears as a change in acceleration value of 1 kHz or more. Identify the frequency band of occurrence. As shown in FIG. 2, when the ball 21 makes a rolling motion in the race between the outer ring 22 and the inner ring 23, considering the vibration acceleration waveform of that motion, if the motion is normal, the amplitude is small as shown in FIG. If there is vibration, if there is no oil, it becomes a waveform without shock vibration close to noise with large amplitude as shown in Fig. 4, and if there is a scratch 25, shock vibration due to scratches in the normal waveform as shown in Fig. 5 26 will be on board. Bearing abnormalities are diagnosed by observing the characteristics of this waveform as changes in the average acceleration value and the crest factor.

平均化回路5により検出された速度が基準値より低いか
高いかに応じて“0”か“1”を出力し、平均化回路7
により検出された加速度平均値が基準値より低いか高い
かに応じて“0”か“1”を出力し、クレストファクタ
が高領域、中領域、低領域かに応じて2ビットの2値信
号を出力し、これら合計4ビットの出力に応じて、診断
結果記憶部を読出し、その読出した診断結果をプリンタ
に出力する。例えば“0”“0”低領域が出力された場
合には「ベアリングに微細な傷が発生するおそれがあ
り、今後の変化に注意すると共に精密診断を実施のこ
と」とプリント出力される。
"0" or "1" is output according to whether the speed detected by the averaging circuit 5 is lower or higher than the reference value, and the averaging circuit 7
"0" or "1" is output depending on whether the acceleration average value detected by is lower or higher than the reference value, and a 2-bit binary signal is output depending on whether the crest factor is in the high region, the medium region, or the low region. The diagnostic result storage section is read out in accordance with the output of these 4 bits in total, and the read diagnostic result is output to the printer. For example, when "0" or "0" low region is output, "there is a possibility that minute scratches will occur on the bearing, so be careful of future changes and carry out precise diagnosis."

このような診断結果は過去の経験から前記4ビット出力
の各組合について予め記憶部に記憶しておく。また装置
やその設置場所に応じて前記各基準値や領域値を修正で
きるようにされてある。
Such a diagnosis result is stored in advance in the storage unit for each combination of the 4-bit outputs based on past experience. Further, the respective reference values and area values can be modified according to the device and its installation location.

前述では検出した加速度信号を帯域ろ波器3.6により
分離して積分器4と平均化回路7、ピーク検出回路8と
に供給したが、このように帯域分離することなく積分
器、平均化回路、ピーク検出回路へ供給してもよい。
In the above description, the detected acceleration signal is separated by the bandpass filter 3.6 and supplied to the integrator 4, the averaging circuit 7, and the peak detection circuit 8. However, the integrator and averaging are performed without band separation in this way. It may be supplied to the circuit and the peak detection circuit.

「実験例1」 第6図に示す円筒押出板型連続遠心分離機(月島機械
製)の駆動用モーター(55kW, 1500回転/分、400
V 東芝電気製)にセンサー1(圧電形加速度センサ
ー、電荷感度10PC/g±20%、共振周波数40キロ
ヘルツ以上)を取付けて振動加速度信号を検知し、前段
増幅器2で信号増幅し、第1図に示した処理回路で信号
処理を行ない漢字プリンタ15に出力させた。その結果
を第7図に示す。
"Experimental Example 1" A drive motor (55 kW, 1500 revolutions / minute, 400) for a cylindrical extrusion plate type continuous centrifuge (manufactured by Tsukishima Kikai) shown in FIG.
Attaching a sensor 1 (Piezoelectric accelerometer, charge sensitivity 10PC / g ± 20%, resonance frequency 40kHz or more) to V Toshiba Toshiba Electric) to detect vibration acceleration signal and amplify it with pre-amplifier 2 and Signal processing was performed by the processing circuit shown in (1) and output to the Kanji printer 15. The results are shown in FIG.

第7図において速度平均値曲線31、及びクレストファ
クター曲線33は大きな変化はないが、加速度平均値曲
線32のみが記録終りに近い部分で上昇し、軸受の油切
れの特徴が出ていることがわかる。
In FIG. 7, the velocity average value curve 31 and the crest factor curve 33 do not change significantly, but only the acceleration average value curve 32 rises in the portion near the end of the recording, and there is a characteristic that the bearing runs out of oil. Recognize.

「実験例2」 第8図に示す遠心機械(シャープレススーパーデカンタ
ー(回転数3250回/分、出力22kW、巴工業製)の駆動
側軸受部に、センサー1を取付け、実験例1と同じ処理
回路により、漢字プリンタ15に出力させ、その結果を
第9図に示す。第9図において、速度平均値曲線34の
みが変化し、加速度平均値曲線35は基準値20mm/s
以下であり、クレストファクター曲線36は4以下で非
常に安定しており、不平衡等の全体振動特有の振動が発
生していることがわかる。また第9図によれば速度平均
値曲線34や加速度平均値曲線35の変化に比べクレス
トファクター曲線36が非常に安定していることが明ら
かであり、軸受の傷等のショック振動のみが表れること
が証明されている。
"Experimental Example 2" The same process as in Experimental Example 1 was carried out by attaching the sensor 1 to the drive side bearing portion of the centrifugal machine (Sharpless Super Decanter (rotational speed 3250 rpm, output 22 kW, manufactured by Tomoe Kogyo)) shown in FIG. The circuit causes the kanji printer 15 to output the result, and the result is shown in Fig. 9. In Fig. 9, only the velocity average value curve 34 changes, and the acceleration average value curve 35 has a reference value of 20 mm / s.
It can be seen that the crest factor curve 36 is very stable at 4 or less, and vibrations such as unbalance that are peculiar to the overall vibration occur. Further, according to FIG. 9, it is clear that the crest factor curve 36 is much more stable than changes in the velocity average value curve 34 and the acceleration average value curve 35, and only shock vibrations such as bearing scratches appear. Has been proven.

「発明の効果」 以上述べたようにこの発明によれば次の効果が得られ
る。
"Effects of the Invention" As described above, according to the present invention, the following effects can be obtained.

1)しきい値による連続監視項目として、従来よりの速度
平均値及び加速度平均値に加え、加速度ピーク値及びク
レストファクターを取入れることにより、軸受部に発生
する振動の識別精度を高め油切れや傷等の早期発見が可
能となった。
1) As a continuous monitoring item using a threshold value, in addition to the conventional velocity average value and acceleration average value, the acceleration peak value and the crest factor are incorporated to improve the accuracy of identifying the vibration generated in the bearing and reduce the oil shortage. Early detection of scratches is possible.

2)1)で異常を早期に発見できても、従来のような警報等
の出力のみでは処置に結びつかない。
2) Even if an abnormality can be detected early in 1), it is not possible to deal with the problem only by outputting an alarm or the like as in the past.

しかしこの発明は1)で得た各種振動特性を従来以上に性
格分類でき、それぞれの特性とその定量値の組合せ判定
により異常原因の推定や処置のための指示の自動出力を
可能としている。
However, according to the present invention, the various vibration characteristics obtained in 1) can be classified more than ever before, and the combination of each characteristic and its quantitative value makes it possible to estimate the cause of the abnormality and automatically output an instruction for treatment.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明による回転機械の多点連続監視装置の
一例を示すブロック図、第2図はころがり軸受を示す
図、第3図はころがり軸受の正常状態における加速度信
号生波形を示す図、第4図は同じく油切れ発生時の加速
度信号生波形を示す図、第5図は傷発生時の加速度信号
生波形を示す図、第6図は円筒押出板型連続遠心分離機
を示す図、第7図はその振動監視出力を示す図、第8図
は遠心機械を示す図、第9図はその振動監視出力図を示
す。
FIG. 1 is a block diagram showing an example of a multi-point continuous monitoring apparatus for a rotary machine according to the present invention, FIG. 2 is a diagram showing a rolling bearing, and FIG. 3 is a diagram showing an acceleration signal raw waveform in a normal state of the rolling bearing. FIG. 4 is a diagram showing a raw waveform of an acceleration signal when an oil shortage occurs, FIG. 5 is a diagram showing a raw waveform of an acceleration signal when a flaw is generated, and FIG. 6 is a diagram showing a cylindrical extrusion plate type continuous centrifuge, FIG. 7 shows the vibration monitoring output, FIG. 8 shows the centrifugal machine, and FIG. 9 shows the vibration monitoring output.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転機械の軸受部に取付けられ、加速度を
検出する加速度センサーと、 その加速度センサーよりの検出した加速度信号を平均化
して加速度平均値を検出する第1平均化回路と、 上記加速度信号のピーク値を検出するピーク検出回路
と、 上記加速度信号を積分して速度信号を出力する積分器
と、 その積分器よりの速度信号を平均化して速度平均値を検
出する第2平均化回路と、 上記の加速度平均値、上記加速度ピーク値及び上記速度
平均値を一定時間単位で取込むタイマー回路と、 その取込まれた加速度ピーク値を加速度平均値で除算し
たクレストファクターを求め、そのクレストファクタ
ー、上記速度平均値及び上記加速度平均値を監視項目と
して警報信号を出力する演算器と、 その警報信号により駆動される警報器とを具備する回転
機械の振動監視装置。
1. An acceleration sensor mounted on a bearing of a rotating machine for detecting acceleration, a first averaging circuit for averaging acceleration signals detected by the acceleration sensor to detect an average acceleration value, and the acceleration described above. A peak detection circuit for detecting a peak value of a signal, an integrator for integrating the acceleration signal to output a speed signal, and a second averaging circuit for averaging the speed signals from the integrator to detect a speed average value. And a timer circuit that takes in the acceleration average value, the acceleration peak value, and the velocity average value in a constant time unit, and obtains a crest factor by dividing the taken acceleration peak value by the acceleration average value, and obtains the crest factor. A factor, an arithmetic unit that outputs an alarm signal with the average speed value and the average acceleration value as monitoring items, and an alarm device driven by the alarm signal are provided. Vibration monitoring device for rotating machinery.
JP61208633A 1986-09-04 1986-09-04 Vibration monitoring equipment for rotating machinery Expired - Lifetime JPH0619291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208633A JPH0619291B2 (en) 1986-09-04 1986-09-04 Vibration monitoring equipment for rotating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208633A JPH0619291B2 (en) 1986-09-04 1986-09-04 Vibration monitoring equipment for rotating machinery

Publications (2)

Publication Number Publication Date
JPS6363925A JPS6363925A (en) 1988-03-22
JPH0619291B2 true JPH0619291B2 (en) 1994-03-16

Family

ID=16559461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208633A Expired - Lifetime JPH0619291B2 (en) 1986-09-04 1986-09-04 Vibration monitoring equipment for rotating machinery

Country Status (1)

Country Link
JP (1) JPH0619291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326033A (en) * 1998-05-07 1999-11-26 Rion Co Ltd Vibration meter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833325B2 (en) * 1989-07-12 1996-03-29 新コスモス電機株式会社 Rotating machine abnormality monitoring device
JP2997755B2 (en) * 1992-03-06 2000-01-11 東急建設株式会社 Noise and vibration measurement and monitoring equipment
JP3256324B2 (en) * 1993-04-14 2002-02-12 出光石油化学株式会社 Rotary machine abnormality diagnosis method and apparatus
JP2903286B2 (en) * 1994-03-15 1999-06-07 鹿島建設株式会社 Vibration speed meter
JP2009115537A (en) * 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd Vibration measuring method
CN111623869B (en) * 2020-05-20 2022-01-04 北京必创科技股份有限公司 Data processing method based on edge calculation and data monitoring and edge calculation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326033A (en) * 1998-05-07 1999-11-26 Rion Co Ltd Vibration meter

Also Published As

Publication number Publication date
JPS6363925A (en) 1988-03-22

Similar Documents

Publication Publication Date Title
KR920002072B1 (en) Diagnastic system of revolution machine
EP0693176B1 (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
TW201843549A (en) Status diagnosing system for rolling guide device, and status diagnosing method
EP0028081B1 (en) Method and apparatus for detecting frictional wear in plain metal bearings
McClintic et al. Residual and difference feature analysis with transitional gearbox data
JPH0619291B2 (en) Vibration monitoring equipment for rotating machinery
JP2006518455A (en) Method for detecting solid conduction sound in rolling bearings
JPH07218334A (en) Method and device for diagnosing bearing
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP2020056686A (en) Abnormality diagnostic method and abnormality diagnostic device of rolling bearing, sensor unit, and abnormality diagnostic system of rolling bearing
JPH07311082A (en) Failure diagnostic device of rotating equipment
JP4542918B2 (en) Bearing abnormality detection device
JP2006189333A (en) Device for diagnosing abnormality of bearing
JP3501593B2 (en) Monitoring method and system for equipment diagnosis of blower in tunnel
JP3121488B2 (en) Bearing diagnostic device and escalator
JPS6120734B2 (en)
JP7367535B2 (en) Diagnostic method and device for rotating bearings
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP3264480B2 (en) Abnormality diagnosis method for wheels with built-in bearings and low-speed rotating bearings
JPH05248938A (en) Rubber exfoliation diagnostic method for rubber-lined roller
JPH0238930A (en) Measuring instrument for gear noise
JP3392350B2 (en) Abnormality diagnosis method for wheels with built-in bearings and low-speed rotating bearings
JPH05231992A (en) Abnormality detection method of low speed rotation bearing
JPH05231361A (en) Method and device for diagnosing oil-free screw compressor
JPH03221818A (en) Abnormality diagnostic device for rolling bearing

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term