JP7367535B2 - Diagnostic method and device for rotating bearings - Google Patents

Diagnostic method and device for rotating bearings Download PDF

Info

Publication number
JP7367535B2
JP7367535B2 JP2020006143A JP2020006143A JP7367535B2 JP 7367535 B2 JP7367535 B2 JP 7367535B2 JP 2020006143 A JP2020006143 A JP 2020006143A JP 2020006143 A JP2020006143 A JP 2020006143A JP 7367535 B2 JP7367535 B2 JP 7367535B2
Authority
JP
Japan
Prior art keywords
frequency
vibration
sensor
signal
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006143A
Other languages
Japanese (ja)
Other versions
JP2021113726A (en
Inventor
智敏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020006143A priority Critical patent/JP7367535B2/en
Publication of JP2021113726A publication Critical patent/JP2021113726A/en
Application granted granted Critical
Publication of JP7367535B2 publication Critical patent/JP7367535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、回転軸受けの振動による振動波およびAE波を測定し、その測定結果に基づいて回転軸受けの診断を行う方法および装置に関するものである。 The present invention relates to a method and apparatus for measuring vibration waves and AE waves caused by vibrations of a rotating bearing and diagnosing the rotating bearing based on the measurement results.

AE(アコースティックエミッション)とは、材料が変形または破壊する際に、それまで内部に蓄えていたひずみエネルギーを解放する結果として発生する弾性振動である。従来、回転軸受けの診断は、振動センサまたはAEセンサを用いて行っているが、殆どの場合、コスト面の問題で振動波およびAE波のうちの何れか一方だけを測定できるセンサを回転軸受けに取り付けて行っており、この種の装置としては、例えば特許文献1に記載されたものが知られている。 AE (acoustic emission) is an elastic vibration that occurs when a material deforms or breaks, as a result of releasing the strain energy that had been stored inside. Conventionally, diagnosis of rotating bearings has been performed using vibration sensors or AE sensors, but in most cases, due to cost considerations, a sensor that can only measure either vibration waves or AE waves is used for rotating bearings. This type of device is known, for example, as described in Patent Document 1.

この従来の装置は、用途に応じて振動センサとAEセンサとを使い分け、各センサの信号を処理して異常の状態を診断するものとなっている。それゆえこの装置では、振動波とAE波との両方を測定しようとした場合、軸受けに複数のセンサを設置することになる。また、センサの信号をローパスフィルタによりエンベロープ(包絡線)処理し、生成されたエンベロープ波形をさらにハイパスフィルタ処理してそこから直流成分を除去する手法が用いられている。 This conventional device uses a vibration sensor and an AE sensor depending on the purpose and processes the signals of each sensor to diagnose abnormal conditions. Therefore, in this device, if an attempt is made to measure both vibration waves and AE waves, a plurality of sensors will be installed on the bearing. Furthermore, a method is used in which a sensor signal is subjected to envelope processing using a low-pass filter, and the generated envelope waveform is further processed with a high-pass filter to remove a DC component therefrom.

特開2011-154020号公報Japanese Patent Application Publication No. 2011-154020

しかしながらAE波は、発生周波数帯が例えば100kHz付近となる高周波のため高速サンプリングが必要となり、低速回転機械の様に長時間測定が必要な設備に対する測定ではサンプリングした信号が大容量になって、従来の装置では記録および処理に費用が嵩むという問題があった。また、従来の装置では高速サンプリングした信号をエンベロープ処理するので、微小な周波数変化を捕捉できないという問題があった。 However, since AE waves are generated at a high frequency around 100 kHz, high-speed sampling is required, and when measuring equipment that requires long-term measurements such as low-speed rotating machinery, the sampled signal becomes large in volume, making it difficult to use conventional methods. The problem with this device is that recording and processing costs are high. Furthermore, since conventional devices perform envelope processing on signals sampled at high speed, there is a problem in that minute frequency changes cannot be captured.

さらに、AE波と振動波との両方の測定を行う場合には、従来の装置ではAEセンサと振動センサとの両方を軸受けに取り付ける必要があり、小さな軸受けでは設置スペースが足らず、両方を取り付けることができないという問題があった。また、AEセンサと振動センサとの二つのセンサおよびそれらのためのケーブルが必要で、費用が嵩むという問題があった。 Furthermore, when measuring both AE waves and vibration waves, with conventional equipment it is necessary to install both the AE sensor and the vibration sensor on a bearing, and since there is not enough space for installation with a small bearing, it is necessary to install both. The problem was that it was not possible. In addition, two sensors, an AE sensor and a vibration sensor, and cables for them are required, resulting in an increase in cost.

ところで、本発明者は、AE発生器により発生させたAE波の測定を振動センサとAEセンサとを使って行ったところ、振動センサでも低周波の振動波だけでなく高周波のAE波を測定することが可能であるとの知見が得られた。 By the way, the present inventor measured the AE waves generated by the AE generator using a vibration sensor and an AE sensor, and found that the vibration sensor also measured not only low-frequency vibration waves but also high-frequency AE waves. We found that this is possible.

それゆえ本発明の課題は、上記知見に基づいて、AE波の低速サンプリングと微小な信号変化の捕捉とを可能にした回転軸受けの診断方法および装置を提供することにあり、さらに、AE波と振動波との両方を一つのセンサで測定するようにした回転軸受けの診断方法および装置を提供することにある。 Therefore, an object of the present invention is to provide a diagnostic method and device for a rotary bearing that enables low-speed sampling of AE waves and capture of minute signal changes, and furthermore, based on the above knowledge, An object of the present invention is to provide a method and device for diagnosing a rotating bearing, in which both vibration waves and vibration waves are measured with one sensor.

上記課題を有利に解決することを目的とした本発明の回転軸受けの診断方法は、
回転軸受けの状態を診断する方法であって、
前記回転軸受けに直接取り付けたセンサで、その回転軸受けのAE波を測定してそのAE波を示すセンサ信号を出力し、
前記センサ信号から所定の周波数範囲の高周波成分を取り出し、
前記高周波成分を所定の基準周波数で周波数変調してAE低周波信号に変換し、
前記AE低周波信号を所定の時間間隔でサンプリングして記録し、
前記記録したAE低周波信号の読み出しおよび解析により前記回転軸受けの状態を判定してその判定結果を出力することを特徴としている。
The rotating bearing diagnosis method of the present invention, which aims to advantageously solve the above problems, includes:
A method for diagnosing the condition of a rotating bearing,
A sensor directly attached to the rotary bearing measures the AE wave of the rotary bearing and outputs a sensor signal indicating the AE wave,
extracting high frequency components in a predetermined frequency range from the sensor signal;
Frequency modulating the high frequency component at a predetermined reference frequency and converting it into an AE low frequency signal,
sampling and recording the AE low frequency signal at predetermined time intervals;
The apparatus is characterized in that the state of the rotary bearing is determined by reading and analyzing the recorded AE low frequency signal, and the determination result is output.

本発明の回転軸受けの診断方法においては、さらに、
前記センサで、その回転軸受けの振動波を測定してその振動波を示すセンサ信号も出力し、
前記センサ信号から所定の周波数範囲の低周波成分を取り出して振動低周波信号とし、
前記振動低周波信号を所定の時間間隔でサンプリングして記録し、
前記記録したAE低周波信号の読み出しおよび解析に加えて、前記記録した振動低周波信号の読み出しおよび解析により前記回転軸受けの状態を判定してその判定結果を出力するようにする
In the rotary bearing diagnosing method of the present invention, further:
The sensor measures vibration waves of the rotation bearing and also outputs a sensor signal indicating the vibration waves;
extracting a low frequency component in a predetermined frequency range from the sensor signal as a vibration low frequency signal;
sampling and recording the vibration low frequency signal at predetermined time intervals;
In addition to reading and analyzing the recorded AE low frequency signal, the state of the rotary bearing is determined by reading and analyzing the recorded vibration low frequency signal, and the determination result is output.

また、上記課題を有利に解決することを目的とした本発明の回転軸受けの診断装置は、
回転軸受けの状態を診断する装置であって、
前記回転軸受けに直接取り付けられてその回転軸受けのAE波を測定し、そのAE波を示すセンサ信号を出力するセンサと、
前記センサ信号から所定の周波数範囲の高周波成分を取り出すハイパスフィルタと、
前記高周波成分を所定の基準周波数で周波数変調してAE低周波信号に変換するAE変換部と、
前記AE低周波信号を所定の時間間隔でサンプリングして記録するAE記録部と、
前記AE記録部に記録したAE低周波信号の読み出しおよび解析により前記回転軸受けの状態判定を行い、その判定結果を出力する診断部と、
を具えることを特徴としている。
Further, the rotating bearing diagnostic device of the present invention, which aims to advantageously solve the above problems, includes:
A device for diagnosing the condition of a rotating bearing,
a sensor that is directly attached to the rotary bearing and measures the AE wave of the rotary bearing and outputs a sensor signal indicative of the AE wave;
a high-pass filter that extracts high frequency components in a predetermined frequency range from the sensor signal;
an AE converter that frequency modulates the high frequency component at a predetermined reference frequency and converts it into an AE low frequency signal;
an AE recording unit that samples and records the AE low frequency signal at predetermined time intervals;
a diagnosis unit that determines the state of the rotary bearing by reading and analyzing the AE low frequency signal recorded in the AE recording unit, and outputs the determination result;
It is characterized by having the following.

本発明の回転軸受けの診断装置においては、さらに、
前記回転軸受けに直接取り付けられてその回転軸受けの振動波も測定し、その振動波を示すセンサ信号を出力する前記センサと、
前記センサ信号から所定の周波数範囲の低周波成分を取り出して振動低周波信号とするローパスフィルタと、
前記振動低周波信号を所定の時間間隔でサンプリングして記録する振動記録部と、
前記AE記録部に記録したAE低周波信号の読み出しおよび解析に加えて、前記振動記録部に記録した振動低周波信号の読み出しおよび解析により前記回転軸受けの状態判定を行い、その判定結果を出力する診断部と、
を具えている
In the rotary bearing diagnostic device of the present invention, further:
the sensor that is directly attached to the rotary bearing and also measures vibration waves of the rotary bearing and outputs a sensor signal indicative of the vibration waves;
a low-pass filter that extracts low-frequency components in a predetermined frequency range from the sensor signal to generate a vibration low-frequency signal;
a vibration recording unit that samples and records the vibration low frequency signal at predetermined time intervals;
In addition to reading and analyzing the AE low frequency signal recorded in the AE recording unit, the state of the rotation bearing is determined by reading and analyzing the vibration low frequency signal recorded in the vibration recording unit, and the determination result is output. Diagnostic department and
It is equipped with

本発明の回転軸受けの診断方法および装置によれば、回転軸受けに直接取り付けたセンサで測定して出力したAE波を示すセンサ信号から所定の周波数範囲の高周波成分を取り出し、その高周波成分を所定の基準周波数で周波数変調してAE低周波信号に変換し、そのAE低周波信号をサンプリングして記録し、その記録したAE低周波信号を読み出しおよび解析して回転軸受けの疲労摩耗、傷発生、異物混入および/または潤滑不良等の異常の状態を判定し、その判定結果を出力するので、AE波の低速サンプリングにより、低速回転機械の様に長時間測定が必要な設備に対する測定でもサンプリングした信号の容量が抑えられて、記録および処理の費用を安価なものとすることができ、また、低速サンプリングした信号をエンベロープ処理できるので、微小な周波数変化も捕捉することができる。 According to the rotary bearing diagnostic method and device of the present invention, a high frequency component in a predetermined frequency range is extracted from a sensor signal indicating an AE wave measured and output by a sensor directly attached to the rotary bearing, and the high frequency component is converted into a predetermined frequency component. Frequency modulation is performed using a reference frequency and converted to an AE low frequency signal, the AE low frequency signal is sampled and recorded, and the recorded AE low frequency signal is read out and analyzed to detect fatigue wear, scratches, and foreign objects in the rotating bearing. Since abnormal conditions such as contamination and/or poor lubrication are determined and the determination results are output, the low-speed sampling of the AE wave allows for the measurement of sampled signals even when measuring equipment that requires long-term measurement, such as low-speed rotating machinery. Since the capacity is suppressed, recording and processing costs can be reduced, and since signals sampled at low speed can be subjected to envelope processing, even minute frequency changes can be captured.

さらに本発明の回転軸受けの診断方法および装置によれば、前記センサで、その回転軸受けの振動波も測定してその振動波を示すセンサ信号も出力し、前記センサ信号から所定の周波数範囲の低周波成分を取り出して振動低周波信号とし、前記振動低周波信号を所定の時間間隔でサンプリングして記録し、前記記録したAE低周波信号の読み出しおよび解析に加えて、前記記録した振動低周波信号の読み出しおよび解析により前記回転軸受けの状態を判定して判定結果を出力するようにしたので、回転軸受けに直接取り付けた一つの共通センサで測定したAE波と振動波とから状態診断を行うことで状態診断の精度を高めることができ、しかも、振動センサとAEセンサとの両方を軸受けに取り付ける必要がないため、小さな軸受けでも設置スペースが不足することがなく、また、AEセンサと振動センサとの二つのセンサおよびそれらのためのケーブルが必要でないため、設置費用を安価なものとすることができる。 Furthermore, according to the method and device for diagnosing a rotating bearing of the present invention, the sensor also measures vibration waves of the rotating bearing and outputs a sensor signal indicating the vibration wave. A frequency component is extracted to produce a vibration low frequency signal, the vibration low frequency signal is sampled and recorded at a predetermined time interval, and in addition to reading and analyzing the recorded AE low frequency signal, the recorded vibration low frequency signal is The condition of the rotary bearing is determined by reading and analyzing the information, and the determination result is output. Therefore , the condition can be diagnosed from the AE waves and vibration waves measured by one common sensor directly attached to the rotary bearing. It is possible to improve the accuracy of condition diagnosis, and since it is not necessary to install both the vibration sensor and the AE sensor on the bearing, there is no shortage of installation space even with a small bearing. Since two sensors and their cables are not required, installation costs can be kept low.

本発明の回転軸受けの診断方法および装置においては、前記周波数変調は所定の基準周波数でのヘテロダイン変換で行う。ここで、前記所定の基準周波数はAE波の発生周波数帯に含まれる例えば100kHz以上の1または複数の周波数とする。前記所定の基準周波数は、好ましくは100kHz、150kHz、200kHzおよび300kHzの少なくとも一つとしてもよい。また、前記所定の基準周波数は、前記センサの感度に応じて設定してもよい。 In the rotary bearing diagnosing method and apparatus of the present invention, the frequency modulation is performed by heterodyne conversion at a predetermined reference frequency . Here, the predetermined reference frequency is one or more frequencies, for example, 100 kHz or more, which are included in the AE wave generation frequency band. The predetermined reference frequency may preferably be at least one of 100kHz, 150kHz, 200kHz and 300kHz. Further, the predetermined reference frequency may be set depending on the sensitivity of the sensor.

さらに、前記AE低周波信号および振動低周波信号の少なくとも一方の解析は、従来の振動の解析手法である、例えば振幅変化、FFT(高速フーリエ変換)および、エンベロープ(包絡線)処理による周波数解析等の何れか1種類以上を行ってもよい。 Furthermore, the analysis of at least one of the AE low frequency signal and the vibration low frequency signal is performed using conventional vibration analysis methods, such as frequency analysis using amplitude change, FFT (Fast Fourier Transform), and envelope processing. You may perform one or more of these.

本発明の一実施形態の回転軸受けの診断方法に用いる本発明の一実施形態の回転軸受けの診断装置の構成を示すブロック線図である。1 is a block diagram showing the configuration of a rotary bearing diagnosing apparatus according to an embodiment of the present invention used in a rotary bearing diagnosing method according to an embodiment of the present invention. (a)および(b)は、上記実施形態の回転軸受けの診断装置の変調処理部が行うヘテロダイン変換の方法を示す説明図である。(a) and (b) are explanatory diagrams showing a method of heterodyne conversion performed by the modulation processing section of the rotary bearing diagnostic device of the above embodiment. 上記実施形態の回転軸受けの診断装置の共用センサが測定する回転軸受けの磨耗の初期と末期とについてのAE波のS/N比と周波数との関係を示すグラフである。It is a graph showing the relationship between the S/N ratio and the frequency of the AE wave at the initial stage and the final stage of wear of the rotary bearing measured by the shared sensor of the rotary bearing diagnostic device of the above embodiment.

以下、本発明の実施形態につき、図面に基づき詳細に説明する。ここに、図1は、本発明の一実施形態の回転軸受けの診断方法に用いる本発明の一実施形態の回転軸受けの診断装置の構成を示すブロック線図である。この実施形態の診断装置は、一つの共通センサで測定したAE波と振動波とから回転軸受けの状態診断を行うものであり、図1に示すように、共用センサ1と、チャージアンプ2と、ハイパスフィルタ3と、変調処理部4と、AE記録部5と、を具えている。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a block diagram showing the configuration of a rotary bearing diagnosing apparatus according to an embodiment of the present invention used in a rotary bearing diagnosing method according to an embodiment of the present invention. The diagnostic device of this embodiment diagnoses the condition of a rotating bearing from AE waves and vibration waves measured by one common sensor, and as shown in FIG. 1, a common sensor 1, a charge amplifier 2, It includes a high-pass filter 3, a modulation processing section 4, and an AE recording section 5.

共用センサ1は、回転機械設備の玉軸受けやローラ軸受けや滑り軸受け等の回転軸受けに直接取り付けられてその回転軸受けにおける金属接触や軸受け傷等によって生じるAE波および振動波を測定し、それらAE波および振動波を含むセンサ信号を出力するものであり、振動センサでもAEセンサでもよい。特にアンプ非内蔵型センサは、振動センサとAEセンサとで構造が互いに似ていて、上述のように振動センサでも高周波のAE波を検出できることが確認されており、一方、AEセンサでも低周波の振動波を検出できるはずだからである。このような共用センサ1は、例えば圧電素子を用いて構成することができる。 The shared sensor 1 is directly attached to a rotating bearing such as a ball bearing, roller bearing, or sliding bearing of rotating mechanical equipment, and measures AE waves and vibration waves caused by metal contact or bearing damage in the rotating bearing, and detects the AE waves. The sensor outputs a sensor signal including vibration waves, and may be a vibration sensor or an AE sensor. In particular, the structure of non-amplifier sensors is similar to that of vibration sensors and AE sensors, and as mentioned above, it has been confirmed that even vibration sensors can detect high-frequency AE waves.On the other hand, even AE sensors can detect low-frequency AE waves. This is because it should be possible to detect vibration waves. Such a shared sensor 1 can be configured using a piezoelectric element, for example.

チャージアンプ2は、共用センサ1が出力するセンサ信号を増幅する増幅回路であり、共用センサ1の種類に合わせたアンプ、すなわち共用センサ1が振動センサなら振動アンプ、共用センサ1がAEセンサならAEアンプを使用する。なお、振動アンプの場合もAE波の周波数のセンサ信号まで増幅可能なものとする。 The charge amplifier 2 is an amplifier circuit that amplifies the sensor signal output by the shared sensor 1, and is an amplifier tailored to the type of the shared sensor 1, i.e., a vibration amplifier if the shared sensor 1 is a vibration sensor, and an AE if the shared sensor 1 is an AE sensor. Use an amplifier. Note that the vibration amplifier is also capable of amplifying sensor signals up to the frequency of the AE wave.

ハイパスフィルタ3は、チャージアンプ2が出力するセンサ信号中のAE波を抽出するフィルタ回路であり、そのセンサ信号中の例えば50kHz以上、好ましくは70kHz以上の高周波成分を通過させる。共用センサ1に振動センサを用いた場合の共振周波数での低周波ノイズを削除するためである。 The high-pass filter 3 is a filter circuit that extracts the AE wave in the sensor signal output from the charge amplifier 2, and passes high frequency components of, for example, 50 kHz or more, preferably 70 kHz or more in the sensor signal. This is to eliminate low frequency noise at the resonant frequency when a vibration sensor is used as the shared sensor 1.

変調処理部4は、センサ信号から、回転軸受けの異常によるAE波の発生周波数の特徴的な範囲である例えば100kHz以上の高周波成分を取り出すために、所定の基準周波数、例えば100kHzの変調用基準信号を発生させ、ハイパスフィルタ3を通過した上記センサ信号の高周波成分をその基準周波数の変調用基準信号で例えばヘテロダイン変換により周波数変調してAE低周波信号に変換する。従って、変調処理部4はAE変換部として機能する。 The modulation processing unit 4 generates a modulation reference signal of a predetermined reference frequency, for example, 100 kHz, in order to extract high frequency components of 100 kHz or more, which is a characteristic range of the frequency of AE waves generated due to an abnormality in the rotating bearing, from the sensor signal. The high-frequency component of the sensor signal that has passed through the high-pass filter 3 is frequency-modulated by a modulation reference signal of the reference frequency, for example, by heterodyne conversion, and converted into an AE low-frequency signal. Therefore, the modulation processing section 4 functions as an AE conversion section.

ヘテロダイン変換の基準周波数はAEの発生周波数帯である例えば100kHz以上としているが、共用センサ1として使用するセンサの周波数特性によりその感度が変化するため、その使用するセンサの感度に合わせて基準周波数を決定することが好ましく、ここでは、以下の事前実験により100kHzとした。またAEの発生周波数帯は広いため、複数の周波数、例えば100kHzだけでなく150kHz、200kHzおよび300kHzを切り替えあるいは並行して、または100kHzから300kHzまで変化させて用いることもできる。 The reference frequency for heterodyne conversion is set to the AE generation frequency band, for example, 100 kHz or higher, but the sensitivity changes depending on the frequency characteristics of the sensor used as shared sensor 1, so the reference frequency should be set according to the sensitivity of the sensor used. It is preferable to determine the frequency, and in this case, it is set to 100 kHz through the following preliminary experiment. Furthermore, since the AE generation frequency band is wide, a plurality of frequencies, for example, not only 100 kHz, but also 150 kHz, 200 kHz, and 300 kHz, can be switched or used in parallel, or the frequency can be varied from 100 kHz to 300 kHz.

図2(a)および図2(b)は、上記実施形態の回転軸受けの診断装置の変調処理部が行うヘテロダイン変換の方法を示す説明図である。図2(a)に示すように、入力信号に基準周波数fの変調用基準信号を掛けるヘテロダイン変換により入力信号を周波数変調すると、基準周波数f以下の周波数の入力信号が基準周波数fからの偏差に応じて矢印で示すように裏返ってその基準周波数f以上の周波数の信号に重なり、図2(b)に示すように、基準周波数を0kHzとする変調波形の低周波信号になる。 FIGS. 2(a) and 2(b) are explanatory diagrams showing a method of heterodyne conversion performed by the modulation processing section of the rotary bearing diagnostic device of the above embodiment. As shown in Fig. 2(a), when the input signal is frequency modulated by heterodyne conversion, which multiplies the input signal by the modulation reference signal of the reference frequency f, the input signal with a frequency lower than the reference frequency f becomes a deviation from the reference frequency f. Accordingly, as shown by the arrow, the signal turns over and overlaps with the signal having a frequency higher than the reference frequency f, resulting in a low frequency signal with a modulated waveform having a reference frequency of 0 kHz, as shown in FIG. 2(b).

これにより、センサ信号中の高周波成分が低周波帯に変換され、従来の振動測定で用いられているサンプリング周波数の低速サンプリングでのAE波の測定が可能となる。また本来、5MHz程度の高速サンプリングのAE測定ではデータロガーの能力により極短時間しか測定することができなかったが、低周波帯の低速サンプリングになったことで長時間の測定が可能となった。 As a result, the high frequency component in the sensor signal is converted to a low frequency band, and it becomes possible to measure the AE wave at a low sampling rate of the sampling frequency used in conventional vibration measurement. In addition, originally, AE measurements with high-speed sampling of about 5 MHz could only be measured for a very short time due to the data logger's ability, but by switching to low-speed sampling in the low frequency band, long-term measurements are now possible. .

AE記録部5は、この周波数変調後のAE低周波信号を所定周期、例えば軸受け傷の周期に対応する30kHzで低速サンプリングして、所定期間分のサンプリングデータを例えばメモリやハードディスク等に記録する。なお、この低速サンプリングの前に図示しないバンドパスフィルタで、AE低周波信号の周波数帯域を狭めるレンジ調整を行い、直流成分を除去しておいてもよい。 The AE recording unit 5 performs low-speed sampling of the frequency-modulated AE low-frequency signal at a predetermined period, for example, 30 kHz corresponding to the period of bearing damage, and records the sampled data for the predetermined period in, for example, a memory or a hard disk. Note that before this low-speed sampling, range adjustment may be performed to narrow the frequency band of the AE low-frequency signal using a bandpass filter (not shown) to remove the DC component.

この実施形態の診断装置はまた、図1に示すように、ローパスフィルタ6と、振動記録部7と、を具えている。ローパスフィルタ6は、チャージアンプ2が出力するセンサ信号中の振動波を抽出するフィルタ回路であり、そのセンサ信号中の例えば50kHz以下の低周波成分を通過させて振動低周波信号とする。これにより、センサ信号からノイズとなる高周波成分が除去される。 The diagnostic device of this embodiment also includes a low-pass filter 6 and a vibration recording section 7, as shown in FIG. The low-pass filter 6 is a filter circuit that extracts vibration waves in the sensor signal output by the charge amplifier 2, and passes low frequency components of, for example, 50 kHz or less in the sensor signal to generate vibration low frequency signals. Thereby, high frequency components that become noise are removed from the sensor signal.

振動記録部7は、振動低周波信号を所定周期、例えば軸受け傷の周期に対応する30kHzで低速サンプリングして、所定期間分のサンプリングデータを例えばメモリやハードディスク等に記録する。AE記録部5と振動記録部7とは、共通の一つの記録部としてもよい。なお、この低速サンプリングの前に図示しないバンドパスフィルタで、振動低周波信号の周波数帯域を狭めるレンジ調整を行い、直流成分を除去しておいてもよい。 The vibration recording unit 7 performs low-speed sampling of the vibration low-frequency signal at a predetermined period, for example, 30 kHz corresponding to the period of bearing damage, and records the sampled data for the predetermined period in, for example, a memory or a hard disk. The AE recording section 5 and the vibration recording section 7 may be one common recording section. Note that before this low-speed sampling, range adjustment may be performed to narrow the frequency band of the vibration low-frequency signal using a bandpass filter (not shown) to remove the DC component.

この実施形態の診断装置はさらに、図1に示すように、判定処理部8と、警報出力部9と、を具えている。判定処理部8は、AE記録部5に記録したAE低周波信号の読み出しおよび解析に加えて、振動記録部7に記録した振動低周波信号の読み出しおよび解析により回転軸受けの状態判定を行い、それらの状態判定の結果回転軸受けの異常の状態が所定以上悪化したと判定処理部8が判定した場合に、警報出力部9は判定結果として警報を出力する。従って、これら判定処理部8および警報出力部9は診断部として機能する。 The diagnostic device of this embodiment further includes a determination processing section 8 and an alarm output section 9, as shown in FIG. In addition to reading and analyzing the AE low-frequency signal recorded in the AE recording unit 5, the determination processing unit 8 determines the state of the rotating bearing by reading and analyzing the vibration low-frequency signal recorded in the vibration recording unit 7. When the determination processing section 8 determines that the abnormality of the rotating bearing has worsened by a predetermined level or more as a result of the state determination, the alarm output section 9 outputs an alarm as the determination result. Therefore, these determination processing section 8 and alarm output section 9 function as a diagnosis section .

図3は、本発明者が事前実験により取得した、回転軸受けの磨耗の初期と末期とについてのAE波のS/N比と周波数との関係を示すグラフである。実験では、軸受けの異常が悪化すると高周波帯のレベルが上昇することが確認できた。これにより、初期擦れの際生じるAE波と末期に生じるAE波とを基準周波数を変えて測定することで磨耗の状態の把握ができ、AE波が100kHz付近で生じると初期異常、300kHz付近で生じると異常の状態が悪化したと判断できる。 FIG. 3 is a graph showing the relationship between the S/N ratio and the frequency of AE waves at the initial and final stages of wear of a rotary bearing, which the inventor obtained through preliminary experiments. In experiments, it was confirmed that as the bearing abnormality worsened, the level of the high frequency band increased. This makes it possible to understand the state of wear by measuring the AE waves that occur at the initial stage of rubbing and the AE waves that occur at the final stage while changing the reference frequency.If the AE wave occurs around 100kHz, it is an early abnormality, and when it occurs around 300kHz, it is possible to understand the state of wear. It can be determined that the abnormal condition has worsened.

従って判定処理部8は、AE波については変換処理部4での基準周波数を例えば100kHzと300kHzとに設定し、それぞれの基準周波数でのAE低周波信号を評価することで、回転軸受けの異常磨耗が初期か末期かを判定することができる。 Therefore, the determination processing section 8 sets the reference frequencies in the conversion processing section 4 to, for example, 100kHz and 300kHz for the AE waves, and evaluates the AE low frequency signal at each reference frequency to detect abnormal wear of the rotating bearing. It is possible to determine whether the disease is in its early stages or in its final stage.

ところで、本発明者は事前実験により、回転軸受けの疲労摩耗では突発的なAE波は検知されるが振動波は検知されず、傷発生では突発的なAE波と振動波とが検知され、異物混入では突発的なAE波は検知されるが振動波は殆ど検知されず、そして潤滑不良では連続型のAE波と振動波とが検知されることを確認しており、このことからも、共用センサ1の出力信号から回転軸受けの異常の状態の判定が可能であることが判る。 By the way, the present inventor has determined through preliminary experiments that sudden AE waves are detected in fatigue wear of rotating bearings, but vibration waves are not detected, and sudden AE waves and vibration waves are detected in the case of scratches, and foreign objects are detected. It has been confirmed that sudden AE waves are detected in the case of contamination, but vibration waves are hardly detected, and that continuous AE waves and vibration waves are detected in the case of poor lubrication. It can be seen that it is possible to determine the abnormal state of the rotation bearing from the output signal of the sensor 1.

なお、AE低周波信号は、従来行っていた振動の解析手法をそのまま用いることができる。このため、AE低周波信号も振動低周波信号も何れも、振幅変化、FFT(高速フーリエ変換)、エンベロープ処理による周波数解析等を行って解析することができる。判定処理部8は、振動波と同様の低周波のAE信号の解析を行うので、既存のCMS(状態監視システム)を用いることもできる。 Note that the conventional vibration analysis method can be used as is for the AE low frequency signal. Therefore, both the AE low frequency signal and the vibration low frequency signal can be analyzed by frequency analysis using amplitude changes, FFT (Fast Fourier Transform), envelope processing, and the like. Since the determination processing unit 8 analyzes low-frequency AE signals similar to vibration waves, an existing CMS (condition monitoring system) can also be used.

以上、図示例に基づき説明したが、本発明は上述の例に限定されるものでなく、例えば警報出力部9に代えて、異常の状態や程度にかかわらず回転軸受けの状態判定の結果をディスプレイ装置にグラフ等で出力する状態出力部を設けてもよい。 Although the above has been described based on the illustrated example, the present invention is not limited to the above-mentioned example . For example, instead of the alarm output unit 9, the result of the state determination of the rotating bearing is displayed regardless of the state or degree of abnormality. The device may be provided with a status output unit that outputs the status in the form of a graph or the like .

かくして本発明の回転軸受けの診断方法および装置によれば、AE波の低速サンプリングにより、低速回転機械の様に長時間測定が必要な設備に対する測定でもサンプリングした信号の容量が抑えられて、記録および処理の費用を安価なものとすることができ、また、低速サンプリングした信号をエンベロープ処理できるので、微小な周波数変化も捕捉することができる。
さらに、本発明の回転軸受けの診断方法および装置によれば、回転軸受けに直接取り付けた一つの共通センサで測定したAE波と振動波とから状態診断を行うことで状態診断の精度を高めることができ、しかも、振動センサとAEセンサとの両方を軸受けに取り付ける必要がないため、小さな軸受けでも設置スペースが不足することがなく、また、AEセンサと振動センサとの二つのセンサおよびそれらのためのケーブルが必要でないため、設置費用を安価なものとすることができる。
Thus, according to the rotary bearing diagnostic method and device of the present invention, by low-speed sampling of AE waves, the capacity of the sampled signal is suppressed even when measuring equipment that requires long-time measurement, such as low-speed rotating machinery, and recording is possible. Moreover, since the processing cost can be reduced, and since the signal sampled at low speed can be subjected to envelope processing, even minute frequency changes can be captured.
Furthermore, according to the rotary bearing diagnostic method and device of the present invention, the accuracy of condition diagnosis can be improved by diagnosing the condition from the AE waves and vibration waves measured by one common sensor directly attached to the rotary bearing. Moreover, since it is not necessary to install both the vibration sensor and the AE sensor on the bearing, there is no shortage of installation space even with a small bearing, and the two sensors, the AE sensor and the vibration sensor, and their Since no cables are required, installation costs can be reduced.

1 共用センサ
2 チャージアンプ
3 ハイパスフィルタ
4 変調処理部
5 AE記録部
6 ローパスフィルタ
7 振動記録部
8 判定処理部
9 警報出力部
f 基準周波数
1 Common sensor 2 Charge amplifier 3 High pass filter 4 Modulation processing section 5 AE recording section 6 Low pass filter 7 Vibration recording section 8 Judgment processing section 9 Alarm output section f Reference frequency

Claims (10)

回転軸受けの状態を診断する方法であって、
前記回転軸受けに直接取り付けたセンサで、その回転軸受けのAE波と振動波を測定してそのAE波と振動波を示すセンサ信号を出力し、
前記センサ信号から所定の周波数範囲の高周波成分を取り出し、
前記AE波の発生周波数帯に含まれる1または複数の周波数である所定の基準周波数でのヘテロダイン変換で前記高周波成分を周波数変調してAE低周波信号に変換し、
前記AE低周波信号を所定の時間間隔でサンプリングして記録し、
前記センサ信号から所定の周波数範囲の低周波成分を取り出して振動低周波信号とし、
前記振動低周波信号を所定の時間間隔でサンプリングして記録し、
前記記録したAE低周波信号の読み出しおよび解析に加えて、前記記録した振動低周波信号の読み出しおよび解析により、前記回転軸受けの状態を判定してその判定結果を出力することを特徴とする回転軸受けの診断方法。
A method for diagnosing the condition of a rotating bearing,
A sensor directly attached to the rotary bearing measures the AE waves and vibration waves of the rotary bearing and outputs a sensor signal indicating the AE waves and vibration waves,
extracting high frequency components in a predetermined frequency range from the sensor signal;
Frequency modulating the high frequency component by heterodyne conversion at a predetermined reference frequency that is one or more frequencies included in the generation frequency band of the AE wave and converting it into an AE low frequency signal;
sampling and recording the AE low frequency signal at predetermined time intervals;
extracting a low frequency component in a predetermined frequency range from the sensor signal as a vibration low frequency signal;
sampling and recording the vibration low frequency signal at predetermined time intervals;
A rotary bearing characterized in that, in addition to reading and analyzing the recorded AE low frequency signal, the state of the rotary bearing is determined by reading and analyzing the recorded vibration low frequency signal and the determination result is output. diagnostic method.
前記所定の基準周波数は100kHz、150kHz、200kHzおよび300kHzの少なくとも一つを含むことを特徴とする、請求項1記載の回転軸受けの診断方法。 The method for diagnosing a rotating bearing according to claim 1, wherein the predetermined reference frequency includes at least one of 100 kHz, 150 kHz, 200 kHz, and 300 kHz. 前記所定の基準周波数は前記センサの感度に応じて設定することを特徴とする、請求項1記載の回転軸受けの診断方法。 2. The method for diagnosing a rotating bearing according to claim 1, wherein the predetermined reference frequency is set according to the sensitivity of the sensor . 前記AE低周波信号の解析は、振幅変化、FFTおよび、エンベロープ処理による周波数解析の何れか1種類以上を用いて行うことを特徴とする、請求項1から3までの何れか1項記載の回転軸受けの診断方法。 The rotation according to any one of claims 1 to 3, characterized in that the analysis of the AE low frequency signal is performed using one or more of amplitude change, FFT, and frequency analysis using envelope processing. How to diagnose bearings. 前記振動低周波信号の解析は、振幅変化、FFTおよび、エンベロープ処理による周波数解析の何れか1種類以上を用いて行うことを特徴とする、請求項1から4までの何れか1項記載の回転軸受けの診断方法。 The rotation according to any one of claims 1 to 4, characterized in that the analysis of the vibration low frequency signal is performed using one or more of amplitude change, FFT, and frequency analysis using envelope processing. How to diagnose bearings. 回転軸受けの状態を診断する装置であって、
前記回転軸受けに直接取り付けられ、その回転軸受けのAE波と振動波を測定してそのAE波と振動波を示すセンサ信号を出力するセンサと、
前記センサ信号から所定の周波数範囲の高周波成分を取り出すハイパスフィルタと、
前記AE波の発生周波数帯に含まれる1または複数の周波数である所定の基準周波数でのヘテロダイン変換で前記高周波成分を周波数変調してAE低周波信号に変換するAE変換部と、
前記AE低周波信号を所定の時間間隔でサンプリングして記録するAE記録部と、
前記センサ信号から所定の周波数範囲の低周波成分を取り出して振動低周波信号とするローパスフィルタと、
前記振動低周波信号を所定の時間間隔でサンプリングして記録する振動記録部と、
前記AE記録部に記録したAE低周波信号の読み出しおよび解析に加えて、前記振動記録部に記録した振動低周波信号の読み出しおよび解析により前記回転軸受けの状態判定を行い、その判定結果を出力する診断部と、
を具えることを特徴とする回転軸受けの診断装置。
A device for diagnosing the condition of a rotating bearing,
a sensor that is directly attached to the rotary bearing, measures AE waves and vibration waves of the rotary bearing, and outputs a sensor signal indicative of the AE waves and vibration waves;
a high-pass filter that extracts high frequency components in a predetermined frequency range from the sensor signal;
an AE converter that frequency modulates the high frequency component by heterodyne conversion at a predetermined reference frequency that is one or more frequencies included in the generation frequency band of the AE wave and converts it into an AE low frequency signal;
an AE recording unit that samples and records the AE low frequency signal at predetermined time intervals;
a low-pass filter that extracts low-frequency components in a predetermined frequency range from the sensor signal to generate a vibration low-frequency signal;
a vibration recording unit that samples and records the vibration low frequency signal at predetermined time intervals;
In addition to reading and analyzing the AE low frequency signal recorded in the AE recording unit, the state of the rotation bearing is determined by reading and analyzing the vibration low frequency signal recorded in the vibration recording unit, and the determination result is output. Diagnostic department and
A diagnostic device for a rotating bearing, comprising:
前記所定の基準周波数は100kHz、150kHz、200kHzおよび300kHzの少なくとも一つを含むことを特徴とする、請求項6記載の回転軸受けの診断装置。 7. The rotating bearing diagnostic device according to claim 6, wherein the predetermined reference frequency includes at least one of 100 kHz, 150 kHz, 200 kHz, and 300 kHz. 前記所定の基準周波数は前記センサの感度に応じて設定することを特徴とする、請求項6記載の回転軸受けの診断装置。 7. The rotating bearing diagnostic device according to claim 6, wherein the predetermined reference frequency is set according to the sensitivity of the sensor. 前記AE低周波信号の解析は、振幅変化、FFTおよび、エンベロープ処理による周波数解析の何れか1種類以上を用いて行うことを特徴とする、請求項6から8までの何れか1項記載の回転軸受けの診断装置。 The rotation according to any one of claims 6 to 8, characterized in that the analysis of the AE low frequency signal is performed using one or more of amplitude change, FFT, and frequency analysis using envelope processing. Bearing diagnostic equipment. 前記振動低周波信号の解析は、振幅変化、FFTおよび、エンベロープ処理による周波数解析の何れか1種類以上を用いて行うことを特徴とする、請求項6から9までの何れか1項記載の回転軸受けの診断装置。 The rotation according to any one of claims 6 to 9, characterized in that the vibration low frequency signal is analyzed using one or more of amplitude change, FFT, and frequency analysis using envelope processing. Bearing diagnostic equipment.
JP2020006143A 2020-01-17 2020-01-17 Diagnostic method and device for rotating bearings Active JP7367535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006143A JP7367535B2 (en) 2020-01-17 2020-01-17 Diagnostic method and device for rotating bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006143A JP7367535B2 (en) 2020-01-17 2020-01-17 Diagnostic method and device for rotating bearings

Publications (2)

Publication Number Publication Date
JP2021113726A JP2021113726A (en) 2021-08-05
JP7367535B2 true JP7367535B2 (en) 2023-10-24

Family

ID=77076890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006143A Active JP7367535B2 (en) 2020-01-17 2020-01-17 Diagnostic method and device for rotating bearings

Country Status (1)

Country Link
JP (1) JP7367535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280432B (en) * 2021-11-24 2023-10-13 浙江新图维电子科技有限公司 Cable partial discharge monitoring equipment and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150974A (en) 2002-10-31 2004-05-27 Nippon Densan Corp Operation evaluation method and operation evaluation device
JP2020056686A (en) 2018-10-02 2020-04-09 日本精工株式会社 Abnormality diagnostic method and abnormality diagnostic device of rolling bearing, sensor unit, and abnormality diagnostic system of rolling bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648955A (en) * 1986-10-16 1989-01-12 Olympus Optical Co Ultrasonic endoscopic apparatus
JPH03148035A (en) * 1989-11-02 1991-06-24 Nippon Seiko Kk Apparatus for detecting abnormality of bearing
JP3046426B2 (en) * 1991-11-19 2000-05-29 株式会社東芝 Monitoring equipment for plant equipment
JPH07198471A (en) * 1993-12-29 1995-08-01 Anritsu Corp Vibration source position detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150974A (en) 2002-10-31 2004-05-27 Nippon Densan Corp Operation evaluation method and operation evaluation device
JP2020056686A (en) 2018-10-02 2020-04-09 日本精工株式会社 Abnormality diagnostic method and abnormality diagnostic device of rolling bearing, sensor unit, and abnormality diagnostic system of rolling bearing

Also Published As

Publication number Publication date
JP2021113726A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US5511422A (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
Wang et al. A smart sensing unit for vibration measurement and monitoring
US20150059478A1 (en) Method and measuring arrangement for monitoring operational states of a slide bearing
JP6038347B2 (en) Abnormal sound diagnosis device
Zhu et al. Incipient fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient
KR102393095B1 (en) A system for predicting and diagnosing malfunctions in rotating equipment based on artificial intelligence using vibration, sound, and image data
JP7367535B2 (en) Diagnostic method and device for rotating bearings
JP3875981B2 (en) Anomaly diagnosis method and apparatus for rolling bearing
De Almeida et al. New technique for evaluation of global vibration levels in rolling bearings
JP2002181038A (en) Abnormality diagnosis device
KR102034856B1 (en) Motor bearing fault and condition diagnosis method and apparatus
JP2006189333A (en) Device for diagnosing abnormality of bearing
CN203011692U (en) Portable fault diagnosing device for rolling bearing
JPS6363925A (en) Vibration monitor for rotary machine
Azeez et al. Fault detection of rolling element bearings using advanced signal processing technique
RU2728485C1 (en) Method for multifunctional diagnostics of bearing assemblies and device for its implementation in integral version
RU2684709C1 (en) Method of acoustic-emission diagnostics of dynamic industrial equipment
Serridge Ten crucial concepts behind trustworthy fault detection in machine condition monitoring
Rubhini et al. Machine condition monitoring using audio signature analysis
Li et al. Bearing faults diagnosis based on teager energy operator demodulation technique
Wändell Multistage gearboxes: Vibration based quality control
RU2752287C1 (en) System and a method of operational monitoring of malfunctions in bearings of rotary equipment
JP2021071354A (en) Bearing diagnosis system and bearing diagnosis method
JPH1078350A (en) Monitoring method and system for examining facilities of air blower in tunnel
JPS61288126A (en) Abnormal detector for rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230417

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150