JPH06192829A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH06192829A
JPH06192829A JP12142992A JP12142992A JPH06192829A JP H06192829 A JPH06192829 A JP H06192829A JP 12142992 A JP12142992 A JP 12142992A JP 12142992 A JP12142992 A JP 12142992A JP H06192829 A JPH06192829 A JP H06192829A
Authority
JP
Japan
Prior art keywords
chamber
sputtering
film forming
thin film
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12142992A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
島田  寛
Hiroyuki Fujita
浩之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12142992A priority Critical patent/JPH06192829A/en
Publication of JPH06192829A publication Critical patent/JPH06192829A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To suppress the generation of impurities and to easily and inexpensively produce high-purity thin films by using the sputtered particles generated in a sputtering chamber having a cooling wall and emitting these particles to a film forming chamber connected by a hole via this hole. CONSTITUTION:Gaseous Ar 10 is converted to plasma in the sputtering chamber 3 evacuated to a vacuum and opposite targets 1 are sputtered to generate the sputtered particles. On the other hand, the film forming chamber 7 is dispoosed adjacent to the sputtering chamber 3 and both chambers are connected by the hole 2. The sputtered particles mentioned above are emitted from the sputtering chamber 3 through the hole 2 to the film forming chamber 7 and are deposited on a substrate arranged there to form the thin films. A cooling means 4 consisting of the wall 6, etc., having the low-temp. surface connected to a liquid nitrogen reservoir 5 is disposed in the sputtering chamber 3 of the thin film forming device. As a result, the desorption of the impurities sticking to the wall is prevented and the effect of getter sputtering is enhanced. The formation of the thin films having the high purity and high quality is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度の薄膜を形成す
る薄膜作製装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus for forming a high purity thin film.

【0002】[0002]

【従来の技術】希ガスおよび酸素、窒素等の混合ガスの
グロー放電のスパッタ現象を利用する薄膜作製法は工業
的にも広く使われ、また、基礎的な研究にも利用される
ようになってきた。スパッタリングによって、陰極表面
(ターゲット)から蒸発した粒子は、高い運動エネルギ
ーによって、蒸着法では得られない結晶成長が期待でき
る。また、蒸着法では原料の蒸気圧に差があるので、多
元素薄膜では望ましい組成を得るために高度の制御装置
を必要とするが、スパッタ法では比較的容易である。
2. Description of the Related Art A thin film forming method utilizing a sputtering phenomenon of a glow discharge of a rare gas and a mixed gas of oxygen, nitrogen and the like has been widely used industrially and is also used for basic research. Came. Particles evaporated from the cathode surface (target) by sputtering can be expected to grow crystals that cannot be obtained by the vapor deposition method due to high kinetic energy. Further, in the vapor deposition method, since the vapor pressures of the raw materials are different, a multi-element thin film requires a sophisticated control device to obtain a desired composition, but the sputtering method is relatively easy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな利点がある反面、蒸着法に較べてスパッタリングの
機構が完全に解明されていない点や、放電を利用するた
め、プラズマが発生する高エネルギーのイオン、電子が
真空槽の壁に衝突し、また、プラズマが発生するジュー
ル熱(普通数100W〜数KW)が、真空槽の壁その他
の器材に吸着しているH2 O、O2 、N2 およびCを叩
きだし、真空を汚染する。このため、現状では、薄膜中
には数%程度の不純物が混入するのが普通であり、スパ
ッタ法の大きな問題点となっている。
However, in spite of these advantages, the mechanism of sputtering has not been completely elucidated as compared with the vapor deposition method, and since discharge is used, high energy generated by plasma is generated. Ions and electrons collide with the wall of the vacuum chamber, and the Joule heat (usually several 100 W to several KW) generated by plasma is adsorbed on the walls of the vacuum chamber and other equipment such as H2 O, O2, N2 and C. Start tapping and pollute the vacuum. Therefore, in the present circumstances, it is usual that impurities of about several percent are mixed in the thin film, which is a big problem of the sputtering method.

【0004】この対策として、通常の高真空装置でな
く、超高真空装置によって、吸着物を極力減らし、清浄
な放電を維持し、純度の高い薄膜を作製する試みが盛ん
になりつつある。しかし、超高真空装置は極めて高価な
機器と高度な技術を要し、その維持管理にも時間と労力
を要する。また、超高真空を得るためには、真空槽内の
表面積が小さい単純な構造であることが必要である。
As a countermeasure against this, an attempt is being made to produce a highly pure thin film by using an ultra-high vacuum device instead of a normal high-vacuum device to reduce adsorbed substances as much as possible and maintain clean discharge. However, the ultra-high vacuum device requires extremely expensive equipment and advanced technology, and its maintenance requires time and labor. Further, in order to obtain an ultrahigh vacuum, it is necessary that the vacuum chamber has a simple structure with a small surface area.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、本発明の薄膜作製装
置は、清浄なスパッタリングを通常の高真空技術で実現
できるものである。
The present invention has been made to solve the above-mentioned problems, and the thin film forming apparatus of the present invention can realize clean sputtering by a normal high vacuum technique. .

【0006】即ち、本発明は、冷却可能な壁を有するス
パッタ室と、薄膜形成を行う膜形成室とを隣接して設
け、スパッタ室においてスパッタリングにより発生した
スパッタ粒子がスパッタ室から膜形成室へ射出される孔
を設け、この孔によりスパッタ室と膜形成室を連結した
ことを特徴とする薄膜作製装置を提供するものである。
That is, according to the present invention, a sputter chamber having a coolable wall and a film forming chamber for forming a thin film are provided adjacent to each other, and sputtered particles generated by sputtering in the sputter chamber are transferred from the sputter chamber to the film forming chamber. The present invention provides a thin film production apparatus characterized in that an injection hole is provided and the sputtering chamber and the film formation chamber are connected by this hole.

【0007】スパッタリングによって、ターゲットから
蒸発する粒子は、原子、分子、また、イオン化した状態
にあり、化学的に活性度が高い。このため、これらのス
パッタ粒子は、上記の不純物と衝突すると、これと結合
し、スパッタ室の壁に堆積する。これはゲッタースパッ
タリングと呼ばれ、真空の清浄化には以前より使われて
いる。しかし、プラズマが高エネルギーであるため、壁
からの不純物の発生が激しいので、通常のゲッタースパ
ッタリングは普及していない。
The particles evaporated from the target by sputtering are in the form of atoms, molecules, or ions, and are chemically highly active. Therefore, when these sputtered particles collide with the above-mentioned impurities, they combine with them and are deposited on the walls of the sputtering chamber. This is called getter sputtering and has long been used for vacuum cleaning. However, since the plasma has high energy, impurities are strongly generated from the wall, and thus normal getter sputtering is not popular.

【0008】高真空において清浄なスパッタリングを得
るためには、以下の改善が考えられる。 1)スパッタ室の壁を冷却し、不純物の発生を抑制す
る。 2)スパッタ室で蒸発した粒子の一部を、スパッタ室に
隣接する別の真空槽(膜形成室)に適当な大きさの孔を
通して射出し、より高い真空度と、プラズマの無い状態
で膜形成を行う。
In order to obtain clean sputtering in a high vacuum, the following improvements can be considered. 1) Cool the walls of the sputtering chamber to suppress the generation of impurities. 2) A part of the particles evaporated in the sputtering chamber is injected into another vacuum chamber (film formation chamber) adjacent to the sputtering chamber through a hole of an appropriate size, and the film is formed at a higher degree of vacuum and in the absence of plasma. Form.

【0009】1)は、壁からの不純物の発生量をさらに
減らすために、スパッタ室を冷却する。壁に吸着してい
る不純物の脱離の速度Vdは、壁の温度に対して、Vd
∝exp(−D/T)の関係にある(D:壁と吸着物の
種類による係数、T:温度)。プラズマに近い壁の温度
は通常約100℃、水冷で40〜50℃程度と考えられ
るが、これを0℃に冷却できると仮定すると、上記の関
係から脱離量は、1/3〜1/4になる。さらに、液体
窒素等によって−200℃まで冷却すると、約107 分
の1になり、壁からの脱離量はなくなる。従って、脱離
量を減らし、ゲッタースパッタリングの効果を高めるた
めには、少なくとも0℃以下に冷却するのが好ましい。
In 1), the sputtering chamber is cooled in order to further reduce the amount of impurities generated from the wall. The rate Vd of desorption of impurities adsorbed on the wall is Vd with respect to the temperature of the wall.
There is a relationship of ∝ exp (-D / T) (D: coefficient depending on the kind of adsorbate and wall, T: temperature). The temperature of the wall close to the plasma is usually about 100 ° C., and water cooling is thought to be about 40 to 50 ° C. However, assuming that this can be cooled to 0 ° C., the desorption amount is 1/3 to 1 / 4. Further, when it is cooled to -200 ° C by liquid nitrogen or the like, it becomes about 1/107, and the amount of desorption from the wall disappears. Therefore, in order to reduce the amount of desorption and enhance the effect of getter sputtering, it is preferable to cool to at least 0 ° C. or lower.

【0010】2)は、このようにして得られた清浄なス
パッタ粒子を、より清浄な真空槽内で基板上に膜として
堆積させるための工夫である。1)、2)はそれぞれ独
立に清浄化に寄与する。
2) is a device for depositing the clean sputtered particles thus obtained on the substrate as a film in a cleaner vacuum chamber. 1) and 2) independently contribute to cleaning.

【0011】さらに、より清浄なスパッタリングを得る
ために、次のような改善も行うのが好ましい。 3)陰極(ターゲット)面に水平に磁場を印加するマグ
ネトロンターゲットや、二個の陰極(ターゲット)を使
用する対向式ターゲットを利用して、スパッタリングを
高速化し、ゲッター作用を数倍〜数10倍に高める。 4)スパッタ室を小型にすることにより、真空槽内の表
面積を小さくし、不純物発生の割合を低下させる。
Further, in order to obtain cleaner sputtering, it is preferable to make the following improvements. 3) Use a magnetron target that applies a magnetic field horizontally to the cathode (target) surface, or an opposed target that uses two cathodes (targets) to speed up the sputtering and increase the getter action several times to several tens of times. Raise to. 4) By reducing the size of the sputtering chamber, the surface area in the vacuum chamber is reduced and the rate of impurity generation is reduced.

【0012】3)は、スパッタリングを高速化すること
によって、不純物に衝突する回数を高めて、より清浄な
プラズマを得る。4)は、壁からの不純物の発生量を減
らすために、真空槽そのものを小型にする。
In 3), the sputtering is sped up to increase the number of collisions with impurities and obtain a cleaner plasma. In 4), the vacuum chamber itself is made small in order to reduce the amount of impurities generated from the wall.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の装置の一例の概略的断面
図である。1は、3)のスパッタリング高速化のため
の、対向式ターゲットである。上下の平板ターゲットの
間に放電が生じ、ターゲット表面に高速のスパッタリン
グが起こる。ただし、2)の目的のために、下側のター
ゲットの中央に孔が設けられている点が通常の対向式タ
ーゲットと異なっている。(本発明においては、通常の
対向式ターゲットを用いてもよい。)
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a schematic sectional view of an example of the device of the present invention. Reference numeral 1 is a facing target for increasing the sputtering speed in 3). Electric discharge occurs between the upper and lower flat plate targets, and high-speed sputtering occurs on the target surface. However, for the purpose of 2), a hole is provided in the center of the lower target, which is different from the normal facing target. (In the present invention, an ordinary opposed target may be used.)

【0014】3は、4)の目的で、小型に作られたスパ
ッタ室である。4は、1)の冷却を液体窒素で行うため
の冷却手段で、スパッタ室内に液体窒素溜め5と、低温
度表面を持つ壁6から成る。7は、孔2より射出される
スパッタ粒子による膜形成を行う膜形成室で、排気量の
大きい真空ポンプ9によって、10-8Torr台まで排
気され、その清浄度は質量分析計8によって常に管理さ
れる。11は膜が形成される基板である。
Reference numeral 3 denotes a sputtering chamber which is made small for the purpose of 4). Reference numeral 4 is a cooling means for cooling liquid nitrogen in 1) with a liquid nitrogen reservoir 5 in the sputtering chamber and a wall 6 having a low temperature surface. Reference numeral 7 denotes a film forming chamber for forming a film by the sputtered particles ejected from the hole 2. The vacuum pump 9 having a large exhaust amount exhausts up to 10 −8 Torr level, and its cleanliness is always controlled by the mass spectrometer 8. It Reference numeral 11 is a substrate on which a film is formed.

【0015】次のようにして膜形成を行った。まず、ス
パッタ室3に鉄のターゲットを配置し、スパッタ室、膜
形成室をそれぞれ真空ポンプ9によって排気した。到達
真空度は、スパッタ室は2×10-7Torr、膜形成室
は5×10-8Torrであった。次いでArガス10を
導入し、スパッタを開始した。スパッタにより発生した
スパッタ開始時の膜形成室におけるH2 O、N2 、O2
の分圧は、それぞれ4×10-8Torr、9×10-9T
orr、6×10-9Torr前後であった。
The film was formed as follows. First, an iron target was placed in the sputtering chamber 3, and the sputtering chamber and the film forming chamber were evacuated by the vacuum pump 9, respectively. The ultimate vacuum was 2 × 10 −7 Torr in the sputtering chamber and 5 × 10 −8 Torr in the film forming chamber. Next, Ar gas 10 was introduced to start sputtering. H2O, N2, O2 generated by sputtering in the film forming chamber at the start of sputtering
The partial pressures of 4 × 10 -8 Torr and 9 × 10 -9 T, respectively
Orr was around 6 × 10 -9 Torr.

【0016】図2は、作製した鉄の薄膜試料のX線回折
から結晶粒径を測定し、膜形成時の基板温度(Ts )お
よび熱処理温度(Ta )との関係を調べた結果である。
図2〜4中には比較のために、通常のスパッタ装置(高
周波(RF)スパッタ装置)による試料の測定結果(R
Fと記す)も示す。図2から明らかなように、本発明に
よる試料では作製したままでも結晶が大きく、熱処理に
よってさらに急速な結晶成長が起こっていることがわか
る。これは、鉄の中の不純物による結晶成長の抑制が少
ないことを示している。
FIG. 2 shows the results of measuring the crystal grain size of the produced iron thin film sample by X-ray diffraction and examining the relationship between the substrate temperature (Ts) and the heat treatment temperature (Ta) during film formation.
For comparison, FIGS. 2 to 4 show the measurement results (R of the sample by a normal sputtering device (radio frequency (RF) sputtering device)).
(Denoted as F). As is clear from FIG. 2, the sample according to the present invention has a large crystal even as it is manufactured, and it is understood that a further rapid crystal growth occurs due to the heat treatment. This indicates that the crystal growth is less suppressed by impurities in iron.

【0017】図3は、鉄薄膜試料の電気抵抗ρ(mΩ・
cm)を測定した結果である。一般に、薄膜の電気抵抗
は膜内の不純物と、これに起因する結晶粒界の不整、結
晶内の欠陥等があると大きくなり、また、低温でも低下
しない。図3の本発明の試料は、300Kで純鉄の約
1.4倍程度の大きさであり、低温での低下も著しい。
この結果は、純度が高く、高品質の結晶が成長している
ことを示している。これに対して、図中のRF(比較
例)では数倍の電気抵抗を示し、低温でも低下していな
い。
FIG. 3 shows the electric resistance ρ (mΩ ·
cm) is the result of measurement. In general, the electric resistance of a thin film increases when there are impurities in the film, irregularity of crystal grain boundaries due to the impurities, defects in the crystal, and the like, and does not decrease even at low temperatures. The sample of the present invention in FIG. 3 has a size of about 1.4 times that of pure iron at 300K, and the decrease at a low temperature is remarkable.
The results show that crystals with high purity and high quality are growing. On the other hand, RF (comparative example) in the figure shows electric resistance several times higher, and does not decrease even at low temperatures.

【0018】図4は、磁化曲線から求めた抗磁力(Hc
,単位Oe)の熱処理による変化を示す。一般に抗磁
力Hc は、薄膜でない通常の鉄板等では、歪み取り熱処
理後は1(Oe)以下の低い値になるが、薄膜では結晶
粒界の不整、結晶内の欠陥、あるいは僅かな結晶成長に
よって複雑な歪みが入り、数10(Oe)まで増加する
ことが知られている。しかし、図4では、熱処理後は3
(Oe)程度まで低下している。これに対して、通常の
スパッタ装置による膜(RFで示す)は、予測されたよ
うに熱処理によって複雑な変化を示し、その値も大き
い。
FIG. 4 shows the coercive force (Hc
, Unit Oe) shows the change due to heat treatment. In general, the coercive force Hc becomes a low value of 1 (Oe) or less after the heat treatment for removing strain in a normal iron plate or the like which is not a thin film, but in the thin film, the grain boundary is irregular, defects in the crystal or slight crystal growth causes It is known that complicated distortion is introduced and increases up to several tens (Oe). However, in FIG.
It has fallen to about (Oe). On the other hand, the film (indicated by RF) formed by the ordinary sputtering apparatus shows a complicated change due to the heat treatment as expected, and the value is also large.

【0019】さらに、図1で冷却手段4を用いて冷却せ
ずに膜形成室7内で薄膜作製を行った場合、および、冷
却手段4を用いて冷却してスパッタ室3内に基板を設置
し薄膜作製を行った場合には、どちらも通常のスパッタ
装置による試料に較べて顕著な結晶成長が見られたが、
上記の実験のように冷却手段4により冷却するととも
に、膜形成室7内で薄膜作製した場合が最も良質の薄膜
が得られた。すなわち、前述の1)、2)は個々に効果
があるが、組み合わせた場合にはさらに顕著な効果があ
ることがわかった。
Further, in FIG. 1, when a thin film is formed in the film forming chamber 7 without using the cooling means 4 and when the substrate is placed in the sputtering chamber 3 by cooling using the cooling means 4. When a thin film was formed, both showed remarkable crystal growth as compared with the sample by the ordinary sputtering device.
The best quality thin film was obtained when the thin film was formed in the film forming chamber 7 while being cooled by the cooling means 4 as in the above experiment. That is, it was found that the above 1) and 2) have individual effects, but when they are combined, more remarkable effects are obtained.

【0020】[0020]

【発明の効果】以上説明したように本発明は、スパッタ
室の壁を冷却することにより不純物の発生を抑制し、ま
た、スパッタ室で蒸発した粒子の一部を、スパッタ室に
隣接する別の真空槽(膜形成室)に適当な大きさの孔を
通して射出し、より高い真空度と、プラズマの無い状態
で膜形成を行うことにより、純度が高く、高品質の結晶
を成長させることができ、結晶粒界の不整や結晶内の欠
陥等による歪みを低減する効果があり、装置を維持管理
する時間と労力も低減できる。従って、安価に薄膜特性
を向上させることが可能となり、本発明は工業的に価値
が大きいものである。
As described above, according to the present invention, the generation of impurities is suppressed by cooling the wall of the sputter chamber, and a part of the particles evaporated in the sputter chamber is separated from another part adjacent to the sputter chamber. High-purity and high-quality crystals can be grown by injecting into a vacuum chamber (film formation chamber) through holes of appropriate size and forming a film in a higher vacuum and in the absence of plasma. In addition, there is an effect of reducing distortion due to irregularities of crystal grain boundaries, defects in crystals, and the like, and time and labor for maintaining and managing the device can also be reduced. Therefore, the thin film characteristics can be improved at low cost, and the present invention has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の概念的断面図1 is a conceptual cross-sectional view of the device of the present invention.

【図2】本発明によって形成された鉄薄膜に関する結晶
粒径熱処理温度依存性を示すグラフ
FIG. 2 is a graph showing crystal grain size heat treatment temperature dependence of an iron thin film formed according to the present invention.

【図3】本発明によって形成された鉄薄膜における電気
抵抗の温度依存性を示すグラフ
FIG. 3 is a graph showing temperature dependence of electric resistance in an iron thin film formed by the present invention.

【図4】本発明によって形成された鉄薄膜における抗磁
力の熱処理温度依存性を示すグラフ
FIG. 4 is a graph showing the heat treatment temperature dependence of the coercive force of the iron thin film formed by the present invention.

【符号の説明】[Explanation of symbols]

1:対向ターゲット 2:孔 3:スパッタ室 4:冷却手段 5:液体窒素溜め 6:低温度表面を持つ壁 7:膜形成室 8:質量分析計 9:真空ポンプ 10:Arガス 11:基板 1: Opposite target 2: Hole 3: Sputtering chamber 4: Cooling means 5: Liquid nitrogen reservoir 6: Wall with low temperature surface 7: Film forming chamber 8: Mass spectrometer 9: Vacuum pump 10: Ar gas 11: Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷却可能な壁を有するスパッタ室と、薄膜
形成を行う膜形成室とを隣接して設け、スパッタ室にお
いてスパッタリングにより発生したスパッタ粒子がスパ
ッタ室から膜形成室へ射出される孔を設け、この孔によ
りスパッタ室と膜形成室を連結したことを特徴とする薄
膜作製装置。
1. A hole in which a sputter chamber having a coolable wall and a film forming chamber for forming a thin film are provided adjacent to each other, and sputter particles generated by sputtering in the sputter chamber are ejected from the sputter chamber to the film forming chamber. The thin film forming apparatus is characterized in that the sputtering chamber and the film forming chamber are connected by this hole.
【請求項2】スパッタ室と、薄膜形成を行う膜形成室と
を隣接して設け、スパッタ室においてスパッタリングに
より発生したスパッタ粒子がスパッタ室から膜形成室へ
射出される孔を設け、この孔によりスパッタ室と膜形成
室を連結したことを特徴とする薄膜作製装置。
2. A sputtering chamber and a film forming chamber for forming a thin film are provided adjacent to each other, and a hole is provided through which sputtered particles generated by sputtering in the sputtering chamber are ejected from the sputtering chamber to the film forming chamber. A thin film forming apparatus characterized by connecting a sputtering chamber and a film forming chamber.
【請求項3】冷却可能な壁を有するスパッタ室を有する
薄膜作製装置。
3. A thin film forming apparatus having a sputtering chamber having a coolable wall.
JP12142992A 1992-04-15 1992-04-15 Thin film forming device Withdrawn JPH06192829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12142992A JPH06192829A (en) 1992-04-15 1992-04-15 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12142992A JPH06192829A (en) 1992-04-15 1992-04-15 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH06192829A true JPH06192829A (en) 1994-07-12

Family

ID=14810928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12142992A Withdrawn JPH06192829A (en) 1992-04-15 1992-04-15 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH06192829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839129A (en) * 1986-04-14 1989-06-13 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing biaxially stretched polyparaphenylene sulfide film
WO2003027352A1 (en) * 2001-09-27 2003-04-03 E.I. Du Pont De Nemours And Company Dual-source, single-chamber method and apparatus for sputter deposition
US6562200B2 (en) 2000-08-29 2003-05-13 Canon Kabushiki Kaisha Thin-film formation system and thin-film formation process
WO2022180914A1 (en) * 2021-02-26 2022-09-01 国立大学法人 東京大学 Vacuum device and method for producing vacuum processed body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839129A (en) * 1986-04-14 1989-06-13 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing biaxially stretched polyparaphenylene sulfide film
US6562200B2 (en) 2000-08-29 2003-05-13 Canon Kabushiki Kaisha Thin-film formation system and thin-film formation process
WO2003027352A1 (en) * 2001-09-27 2003-04-03 E.I. Du Pont De Nemours And Company Dual-source, single-chamber method and apparatus for sputter deposition
WO2022180914A1 (en) * 2021-02-26 2022-09-01 国立大学法人 東京大学 Vacuum device and method for producing vacuum processed body

Similar Documents

Publication Publication Date Title
Cheng et al. Microstructure evolution of AlN films deposited under various pressures by RF reactive sputtering
CN112831768B (en) Preparation method and application of hafnium nitride film with high crystallization quality
TWI810071B (en) Manufacturing method of metal compound film
CN111270214B (en) Method for preparing C-axis preferred orientation aluminum nitride polycrystalline film through magnetron sputtering and aluminum nitride polycrystalline film
JP3836184B2 (en) Method for manufacturing magnesium oxide film
JPH06192829A (en) Thin film forming device
CN110896024B (en) Silicon carbide epitaxial gallium oxide film method and silicon carbide epitaxial gallium oxide film structure
Iriarte Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering
JP4910124B2 (en) Semiconductor thin film manufacturing apparatus and method
JP2010226136A (en) Method of manufacturing semiconductor thin film
JPH05116940A (en) Process for forming thin film of metal oxide on substrate
Kato et al. Crystal growth of MgO thin films deposited on ZnO underlayers by magnetron sputtering
CN110965023A (en) Titanium nitride film deposition method
JPH03122266A (en) Production of thin nitride film
JPH09256139A (en) Production of zinc oxide film
CN116377407B (en) Low-stress NbN superconducting film and preparation method and application thereof
JPH10183335A (en) Manufacture of magnesium oxide film and its manufacturing device
JPS6043482A (en) Sputtering device
CN114032504B (en) Heavy metal/ferromagnetic/heavy metal heterojunction capable of realizing field-free switching and preparation method thereof
JPH03253559A (en) Apparatus for producing oxide thin film
Shang et al. Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
JPH04354116A (en) Cubic boron nitride substrate and manufacture thereof
JPH07172983A (en) Method for forming crystalline thin film and apparatus therefor
JPH0517871A (en) Formation of compound thin film
JPH01177362A (en) Laa2cu3o7-x single crystal thin film having three-layered perovskite structure and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706