JPH06191844A - Electric conductive transparent oxide - Google Patents

Electric conductive transparent oxide

Info

Publication number
JPH06191844A
JPH06191844A JP4346953A JP34695392A JPH06191844A JP H06191844 A JPH06191844 A JP H06191844A JP 4346953 A JP4346953 A JP 4346953A JP 34695392 A JP34695392 A JP 34695392A JP H06191844 A JPH06191844 A JP H06191844A
Authority
JP
Japan
Prior art keywords
oxide
conductive transparent
transparent conductive
electric conductive
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4346953A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanji
宏彰 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP4346953A priority Critical patent/JPH06191844A/en
Publication of JPH06191844A publication Critical patent/JPH06191844A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain an electric conductive transparent oxide having excellent electric conductivity and transmitting UV. CONSTITUTION:This electric conductive transparent oxide is a solid soln. having a spinel type crystal structure and contg. an oxide contg. magnesium oxide and aluminum oxide and oxide of at least one selected among Zn, Cd, In, Tl, Sn, Pb, Sb and Bi.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外域での透明性と電気
伝導性とを有する透明導電性酸化物に関し、特にKrF
エキシマ・レーザー光(波長248nm)を用いるリソ
グラフィーにおいて、そのマスク等への応用が可能な透
明導電性酸化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive oxide having transparency in the ultraviolet region and electrical conductivity, and particularly KrF.
The present invention relates to a transparent conductive oxide that can be applied to a mask or the like in lithography using excimer laser light (wavelength 248 nm).

【0002】[0002]

【従来の技術】可視光線領域で透明でかつ電気伝導性を
有するいわゆる透明導電性材料は、液晶ディスプレイ、
ELディスプレイなどの各種ディスプレイや太陽電池の
透明電極として、また冷凍ショーケースの防曇ヒータ
ー、建物及び自動車の窓ガラスの熱線反射膜、さらには
透明物の帯電防止や電磁波遮蔽用のコーティング等とし
て利用されている。
2. Description of the Related Art So-called transparent conductive materials which are transparent in the visible light region and have electrical conductivity are liquid crystal displays,
Used as various displays such as EL displays and transparent electrodes for solar cells, anti-fog heaters for freezer showcases, heat ray reflection films for window glass of buildings and automobiles, and as a coating for antistatic and electromagnetic shielding of transparent materials. Has been done.

【0003】この種の透明導電性材料としては、金属酸
化物半導体が一般に用いられ、酸化スズ(SnO2 )、
スズをドープした酸化インジウム(ITO)、CdSn
2 4 、ZnCd2 4 など種々提案されているが、こ
の中でも特にITOが広範に使われている。ITOはそ
の光学的吸収端が370nm付近にあり、可視領域の最
も短波長側の領域を除くほぼ全域にわたって透明性があ
るのみならず、金属に匹敵するキャリア濃度と、酸化物
としては比較的大きいキャリア移動度を有し、高い電気
伝導度を有する。
A metal oxide semiconductor is generally used as a transparent conductive material of this type, and tin oxide (SnO 2 ),
Indium oxide (ITO) doped with tin, CdSn
Various proposals have been made for 2 O 4 , ZnCd 2 O 4, and among these, ITO is widely used. ITO has an optical absorption edge near 370 nm, and is not only transparent over almost the entire region except the region on the shortest wavelength side of the visible region, but also has a carrier concentration comparable to that of metal and is relatively large as an oxide. It has carrier mobility and high electrical conductivity.

【0004】[0004]

【発明が解決しようとする課題】リソグラフィー技術の
発展により、従来の透明導電性材料よりもさらに短い波
長域での透明性と電気伝導性とを兼ね備えた材料が要求
されるようになりつつある。次〜次々世代のメモリ素子
である64〜256MBのDRAMでは、線幅0.25
〜0.2μmの露光技術が必要になり、位相シフトマス
クや、現在のi線(365nm)よりもさらに短波長の
KrFエキシマ・レーザーの248nmの光を使う露光
技術が提案されている。位相シフトマスクでは位相反転
用のパターンを電子ビームで直接描画する際に、ガラス
基板がチャージアップを起こす問題が予想され、マスク
基板に電気伝導性の層を形成しておくことが必要にな
る。また露光方法によらず、ダスト吸着につながるマス
クの帯電を防止することは共通する課題であり、マスク
への電気伝導層の形成がやはり必要である。このような
電気伝導層は実際の露光段階で、露光用の光に対し透明
でなければならない。しかし、365nm、あるいはさ
らに短波長の248nmの光に対して透明で、しかも電
気伝導性を有する物質はこれまで存在しなかった。37
0nmよりも短波長の光に対して透明性を有する物質と
しては、Al2 3 やMgOなど多くの酸化物が知られ
ているが、これらはいずれも良質の電気絶縁性材料であ
り、上記の要望に応えられる材料ではない。このような
事情から、紫外域での透明性と電気伝導性とを兼ね備え
た新しい材料が望まれている。
With the development of lithography technology, a material having both transparency and electric conductivity in a wavelength range shorter than that of a conventional transparent conductive material has been demanded. In a DRAM of 64 to 256 MB which is the memory element of the next to the next generation, the line width is 0.25.
An exposure technique of .about.0.2 .mu.m is required, and a phase shift mask and an exposure technique using a 248 nm light of a KrF excimer laser having a shorter wavelength than the current i-line (365 nm) have been proposed. In the case of a phase shift mask, when a pattern for phase inversion is directly drawn by an electron beam, it is expected that the glass substrate will be charged up, and it is necessary to form an electrically conductive layer on the mask substrate. In addition, regardless of the exposure method, preventing charging of the mask that leads to dust adsorption is a common problem, and it is still necessary to form an electrically conductive layer on the mask. Such an electrically conductive layer must be transparent to the exposing light during the actual exposure stage. However, there has been no substance that is transparent to light having a wavelength of 365 nm or 248 nm, which is a shorter wavelength, and has electrical conductivity. 37
Many oxides such as Al 2 O 3 and MgO are known as substances having transparency to light with a wavelength shorter than 0 nm, and all of them are good-quality electrically insulating materials. It is not a material that can meet the demands of. Under such circumstances, new materials having both transparency in the ultraviolet region and electrical conductivity are desired.

【0005】[0005]

【課題を解決するための手段】本発明者は、このような
課題を解決するべく検討した結果、スピネル構造のMg
Al2 4 のMgをZn、Cd、In、Tl、Sn、P
b、SbおよびBiから選ばれる金属元素で部分置換す
ることにより、紫外域で透明かつ電気伝導性を有する酸
化物が得られることを見い出し、本発明に至った。
As a result of studies to solve such a problem, the present inventor has found that Mg having a spinel structure is used.
Al 2 O 4 Mg is Zn, Cd, In, Tl, Sn, P
It has been found that an oxide having a transparent and electrically conductive property in the ultraviolet region can be obtained by partially substituting with a metal element selected from b, Sb and Bi.

【0006】すなわち、本発明は、酸化マグネシウムと
酸化アルミニウムとを含む酸化物と、Zn,Cd,I
n,Tl,Sn,Pb,SbおよびBiから選ばれる少
なくとも1種の酸化物とを含む、スピネル型結晶構造を
有する固溶体であることを特徴とする透明導電性酸化物
であり、より好ましくは一般式Mx Mg1-x Al2
4 -(1-m/2)x (但し、MはZn、Cd、In、Tl、S
n、Pb、SbおよびBiから選ばれる少なくとも一種
の元素、Xは0.01≦X≦0.2なる値、またmはM
の酸化数である)で表される、スピネル型結晶構造を有
する固溶体であることを特徴とする透明導電性酸化物で
ある。
That is, according to the present invention, an oxide containing magnesium oxide and aluminum oxide, Zn, Cd, I
A transparent conductive oxide characterized by being a solid solution having a spinel type crystal structure, containing at least one oxide selected from n, Tl, Sn, Pb, Sb and Bi, and more preferably general. Formula M x Mg 1-x Al 2 O
4- (1-m / 2) x (where M is Zn, Cd, In, Tl, S
at least one element selected from n, Pb, Sb and Bi, X is 0.01 ≦ X ≦ 0.2, and m is M
The transparent conductive oxide is a solid solution having a spinel type crystal structure.

【0007】本発明の透明導電性酸化物のベースとなる
物質は、アルミニウム・マグネシウム・スピネル、Mg
Al2 4 である。MgAl2 4 は吸収端波長約16
0nmに相当する約7.8eVのバンドギャップを有
し、室温付近では価電子帯から伝導帯へのキャリア励起
が皆無に近く、伝導帯が空の状態であるため、そのまま
では電気伝導性は全く期待できない。しかしその電子構
造の理論計算結果から、伝導帯での移動度は比較的高い
ことが予想され(日本セラミックス協会1992年年会
議演予稿集283頁)、本来の透明性を損なわずにキャ
リアを注入することができれば、紫外域での透明性と電
気伝導性とを備えた物質が実現可能なはずである。
The base material of the transparent conductive oxide of the present invention is aluminum-magnesium-spinel, Mg.
Al 2 O 4 . MgAl 2 O 4 has an absorption edge wavelength of about 16
It has a band gap of about 7.8 eV corresponding to 0 nm, and there is almost no carrier excitation from the valence band to the conduction band at around room temperature, and the conduction band is empty, so that it has no electrical conductivity. I can't expect. However, from the theoretical calculation results of its electronic structure, it is expected that the mobility in the conduction band is relatively high (Proceedings of the 1992 conference of the Ceramic Society of Japan, p. 283), and carriers are injected without impairing the original transparency. If it is possible, a material having transparency in the ultraviolet region and electrical conductivity should be feasible.

【0008】酸化物においてキャリアを注入する一般的
な方法としては、酸化還元により組成を化学量論比から
ずらせる、価数の異なるイオンをドープする、等の方法
が一般的であるが、MgAl2 4 を構成する陽イオン
であるMg2+、Al3+共に酸化状態はそれぞれ2価と3
価で極めて安定しているため、これを酸化還元すること
は容易ではない。したがって、不純物ドープの方法によ
る電気伝導性付与の方法を取ることになるが、本発明で
はドーピングは、次の理由によりAlではなくMgを置
換するように行う必要がある。
As a general method for injecting carriers in an oxide, a method in which the composition is shifted from the stoichiometric ratio by oxidation-reduction, doping with ions having different valences, or the like is generally used. The oxidation states of Mg 2+ and Al 3+ , which are the cations of 2 O 4 , are divalent and 3 respectively.
It is not easy to redox it because it is very stable in value. Therefore, although the method of imparting electric conductivity by the method of impurity doping is adopted, in the present invention, the doping must be performed so as to replace Mg instead of Al for the following reason.

【0009】MgAl2 4 はスピネル構造として知ら
れる結晶構造を取る物質である。その構造については、
たとえば「図解ファインセラミックスの結晶化学」
(F.S.ガラッソー著、加藤誠軌、植松敬三訳、アグ
ネ技術センター刊(1984))などに詳しく説明され
ているが、以下に述べる構造をしている。スピネル構造
をとる物質の化学式は一般にAB2 4 で表される
(A、Bは2種類の陽イオンを表す)。スピネルの単位
格子は立方晶型で、1単位格子中に32個の酸素イオン
が含まれ、この酸素イオンは<111>方向に最密充填
している。酸素イオンが立方最密充填することにより、
1単位格子中には64個の四面体配位サイトと32個の
八面体配位サイトができるが、このうち四面体配位サイ
トの1/8と八面体配位サイトの1/2を陽イオンが占
め、ひとつの単位格子には8つのAB2 4 が含まれ
る。スピネル構造はさらに2種類に分けられ、Aイオン
が四面体配位サイト、Bイオンが八面体配位サイトを占
める場合を正スピネル、Bイオンの半分が四面体配位サ
イト、残り半分のBイオンとAイオンが八面体配位サイ
トを占める場合を逆スピネル、と呼ぶ。MgAl2 4
は正スピネルであり、Mg2+イオンは四面体配位サイ
ト、Al3+は八面体配位サイトに位置する。そして先に
引用した理論計算では、伝導帯の底、すなわち伝導帯で
最もエネルギーが低い部分は、おもにAlのs軌道で形
成されるとされている。従って、もしAl3+を他の元素
で置換してキャリアである電子を伝導帯に供給した場合
には、伝導電子の経路に不純物イオンが存在することに
より、伝導電子の散乱、トラップなどにより、移動度が
低下してしまう。これに対し、Mg2+を置換する場合に
は、結晶格子中でMg2+がAl3+とは異なるサイト、す
なわち八面体配位サイトではなく四面体配位サイトに位
置するため、これを他のイオンに置換しても伝導帯の構
造を大きく乱すことはなく、移動度の低下も少ないこと
が期待される。このような理由から、MgAl2 4
Mgを置換する形で、不純物のドーピングを行い、電気
伝導性を付与しなければ、実用的と考えられる100
Ω・cm以上の電気伝導度が実現できないのである。
MgAl 2 O 4 is a substance having a crystal structure known as a spinel structure. For its structure,
For example, “Illustrated Fine Ceramics Crystal Chemistry”
(FS Galassau, translated by Seiji Kato, translated by Keizo Uematsu, published by Agne Technical Center (1984)) and the like, but has the following structure. The chemical formula of a substance having a spinel structure is generally represented by AB 2 O 4 (A and B represent two kinds of cations). The unit cell of spinel is a cubic type, and 32 oxygen ions are contained in one unit cell, and the oxygen ions are closest packed in the <111> direction. By the cubic closest packing of oxygen ions,
There are 64 tetrahedral coordination sites and 32 octahedral coordination sites in one unit lattice. Of these, 1/8 of the tetrahedral coordination sites and 1/2 of the octahedral coordination sites are positive. It is occupied by ions, and one unit cell contains eight AB 2 O 4 . The spinel structure is further divided into two types. A ion occupies the tetrahedral coordination site, and B ion occupies the octahedral coordination site. A positive spinel, half of the B ion is the tetrahedral coordination site, and the other half is the B ion. And the case where A ions occupy the octahedral coordination site is called reverse spinel. MgAl 2 O 4
Is a positive spinel, Mg 2+ ions are located at the tetrahedral coordination site, and Al 3+ is located at the octahedral coordination site. In the theoretical calculation cited above, it is said that the bottom of the conduction band, that is, the lowest energy part of the conduction band is mainly formed by the s orbital of Al. Therefore, if Al 3+ is replaced with another element and electrons serving as carriers are supplied to the conduction band, the presence of impurity ions in the conduction electron path causes scattering of conduction electrons, trapping, etc. Mobility will decrease. In contrast, in the case of replacing the Mg 2+ is, different sites and Mg 2+ is Al 3+ in the crystal lattice, i.e. to positions in tetrahedral coordination sites rather than octahedral coordination sites, this Substitution with other ions does not significantly disturb the structure of the conduction band, and it is expected that the mobility will not be significantly reduced. For this reason, it is considered to be practical if the doping of impurities in a manner of substituting Mg of MgAl 2 O 4 is not performed to impart electric conductivity, 10 0 /
The electrical conductivity of Ω · cm or more cannot be realized.

【0010】次にMgを置換する元素Mは、カチオンと
なった時のイオン半径がMg2+に近く、置換によってキ
ャリアが注入され、しかもMgAl2 4 のバンドギャ
ップをあまり大きく縮めないものでなければならない。
これらの要求をすべて満足するのは、Zn、Cd、I
n、Tl、Sn、Pb、Sb、Biしかなく、これらか
ら選ばれる少なくとも1種以上でMgを置換しなければ
ならない。これ以外の元素を用いると、Mg2+とのイオ
ン半径の違いが大きすぎてそもそもMgを置換できな
い、Mgを置換するとバンドギャップが小さくなり、吸
収端が可視光領域に現れ紫外透明性が失われる、等の問
題が起きる。
Next, the element M for substituting Mg has an ionic radius close to that of Mg 2+ when it becomes a cation, carriers are injected by the substitution, and the band gap of MgAl 2 O 4 is not reduced so much. There must be.
It is Zn, Cd, and I that satisfy all of these requirements.
There are only n, Tl, Sn, Pb, Sb and Bi, and at least one selected from these must replace Mg. If other elements are used, the difference in ionic radius from Mg 2+ is too large to replace Mg in the first place.If Mg is replaced, the band gap becomes smaller, the absorption edge appears in the visible light region, and the ultraviolet transparency is lost. There are problems such as being told.

【0011】またこれらの元素のイオンによるMg2+
置換量Xは、Mgに対し0.01以上0.2以下である
のが好ましい。Xが0.01未満ではドープ量が十分で
なく、100 /Ω・cm以上の電気伝導度が実現できに
くい。またXが0.2を越えると、吸収端が240nm
以上の長波長側に移動すると同時に、プラズマ共鳴によ
る吸収の影響が可視域で現れ始めるためか、可視域での
透明性も急激に低下するので、目的とする紫外域での透
明性が実現できにくくなる。特に好ましい置換量Xは
0.02〜0.1である。
The substitution amount X of Mg 2+ by ions of these elements is preferably 0.01 or more and 0.2 or less with respect to Mg. If X is less than 0.01, the doping amount is not sufficient, and it is difficult to achieve an electrical conductivity of 10 0 / Ω · cm or more. When X exceeds 0.2, the absorption edge is 240 nm.
At the same time as moving to the longer wavelength side, the effect of absorption due to plasma resonance begins to appear in the visible range, so the transparency in the visible range also drops sharply, so the desired transparency in the ultraviolet range can be realized. It gets harder. A particularly preferable substitution amount X is 0.02 to 0.1.

【0012】[0012]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0013】実施例1〜8、比較例1〜2 純度99.99%以上の酸化アルミニウム粉末、炭酸マ
グネシウム粉末、およびMgを置換する金属Mの化合物
として表1の各種酸化物粉末(実施例1〜8)を、スピ
ネル固溶体の組成としてM0.05Mg0.95Al2
4-0.05(1-m/2) になるよう配合し、混合粉を空気中10
00℃で24時間仮焼した。得られたそれぞれの仮焼体
についてこれを粗粉砕し、さらにアルコールを溶媒とし
てボールミルで24時間湿式粉砕し、乾燥、解砕して平
均粒径1.5〜2μmの原料粉末を得た。この粉末を約
70MPaの圧力で直径20mm、厚さ約2mmの円板
に金型成型し、これを空気中1400℃で5時間焼結し
た。焼結体を研削加工して、X線回折法により生成相を
同定したところ、すべてMgAl2 4 固溶体となって
いることが確認された。表面研磨して、拡散反射法によ
り紫外〜可視領域での吸収スペクトルを測定し、さらに
van der Pauw法により、室温での電気伝導
度を測定した。結果を表1に示す。比較のため、酸化ア
ルミニウム粉末、炭酸マグネシウム粉末にTiO2 、F
eO(比較例1〜2)を添加混合した系についても同様
の測定を行った。
Examples 1 to 8 and Comparative Examples 1 to 2 Aluminum oxide powder having a purity of 99.99% or more, magnesium carbonate powder, and various oxide powders shown in Table 1 as compounds of metal M substituting Mg (Example 1 ~ 8) as the composition of the spinel solid solution is M 0.05 Mg 0.95 Al 2 O
Blend to 4-0.05 (1-m / 2) and mix powder in air 10
It was calcined at 00 ° C. for 24 hours. Each of the obtained calcined bodies was roughly pulverized, and then wet pulverized in a ball mill for 24 hours using alcohol as a solvent, dried and pulverized to obtain a raw material powder having an average particle size of 1.5 to 2 μm. This powder was die-molded at a pressure of about 70 MPa into a disk having a diameter of 20 mm and a thickness of about 2 mm, and this was sintered in air at 1400 ° C. for 5 hours. When the sintered body was ground and the generated phase was identified by the X-ray diffraction method, it was confirmed that all were MgAl 2 O 4 solid solution. The surface was polished, the absorption spectrum in the ultraviolet to visible region was measured by the diffuse reflection method, and the electrical conductivity at room temperature was measured by the van der Pauw method. The results are shown in Table 1. For comparison, aluminum oxide powder, magnesium carbonate powder, TiO 2 , F
The same measurement was performed for a system in which eO (Comparative Examples 1 and 2) was added and mixed.

【0014】[0014]

【表1】 表1より実施例1〜8の透明導電性酸化物は吸収端が2
20〜235nmであり、紫外域で透明であることおよ
び電気伝導度が1.8〜3.8×101 /Ω・cmであ
り、電気伝導性に優れていることが明らかとなった。こ
れに対して比較例1〜2のものは吸収端が360〜37
0nmであり、紫外域での透明性が達成できなかった。
[Table 1] From Table 1, the transparent conductive oxides of Examples 1 to 8 have an absorption edge of 2
It was 20 to 235 nm, it was transparent in the ultraviolet region, and the electric conductivity was 1.8 to 3.8 × 10 1 / Ω · cm, which revealed that the electric conductivity was excellent. On the other hand, in Comparative Examples 1 and 2, the absorption edge was 360 to 37.
It was 0 nm, and transparency in the ultraviolet region could not be achieved.

【0015】実施例9〜11 実施例3と同じ酸化アルミニウム粉末、炭酸マグネシウ
ム粉末、酸化インジウム粉末を用い、その配合比を変え
て表2に示す組成のスピネル固溶体となるよう、実施例
1〜8と同様にしてて焼結体を作製、評価した。結果を
表2に示す。
Examples 9 to 11 The same aluminum oxide powder, magnesium carbonate powder, and indium oxide powder as in Example 3 were used, and Examples 1 to 8 were used so that the spinel solid solution having the composition shown in Table 2 was obtained by changing the compounding ratio. A sintered body was prepared and evaluated in the same manner as in. The results are shown in Table 2.

【0016】[0016]

【表2】 表2より、実施例9〜11の透明導電性酸化物も紫外域
で透明で、電気伝導性に優れていた。
[Table 2] From Table 2, the transparent conductive oxides of Examples 9 to 11 were also transparent in the ultraviolet region and had excellent electrical conductivity.

【0017】[0017]

【発明の効果】本発明の透明導電性酸化物は、紫外光に
対して透明であるとともに、優れた電気伝導性を有す
る。
The transparent conductive oxide of the present invention is transparent to ultraviolet light and has excellent electric conductivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C01G 29/00 30/00 H01B 5/14 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C01G 29/00 30/00 H01B 5/14 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化マグネシウムと酸化アルミニウムと
を含む酸化物と、Zn,Cd,In,Tl,Sn,P
b,SbおよびBiから選ばれる少なくとも1種の酸化
物とを含む、スピネル型結晶構造を有する固溶体である
ことを特徴とする透明導電性酸化物。
1. An oxide containing magnesium oxide and aluminum oxide, and Zn, Cd, In, Tl, Sn, P.
A transparent conductive oxide, which is a solid solution having a spinel type crystal structure, containing at least one kind of oxide selected from b, Sb and Bi.
【請求項2】 一般式Mx Mg1-x Al2
4 -(1-m/2)x (但し、MはZn、Cd、In、Tl、S
n、Pb、SbおよびBiから選ばれる少なくとも1種
の元素、Xは0.01≦X≦0.2なる値、またmはM
の酸化数である)で表されることを特徴とする請求項1
に記載の透明導電性酸化物。
2. The general formula M x Mg 1-x Al 2 O
4- (1-m / 2) x (where M is Zn, Cd, In, Tl, S
at least one element selected from n, Pb, Sb and Bi, X is 0.01 ≦ X ≦ 0.2, and m is M
Is the oxidation number of).
The transparent conductive oxide according to.
JP4346953A 1992-12-25 1992-12-25 Electric conductive transparent oxide Withdrawn JPH06191844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346953A JPH06191844A (en) 1992-12-25 1992-12-25 Electric conductive transparent oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346953A JPH06191844A (en) 1992-12-25 1992-12-25 Electric conductive transparent oxide

Publications (1)

Publication Number Publication Date
JPH06191844A true JPH06191844A (en) 1994-07-12

Family

ID=18386938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346953A Withdrawn JPH06191844A (en) 1992-12-25 1992-12-25 Electric conductive transparent oxide

Country Status (1)

Country Link
JP (1) JPH06191844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817586A (en) * 1996-04-12 1998-10-06 Asahi Glass Company Ltd. Colored ceramic composition
JP2013163607A (en) * 2012-02-09 2013-08-22 Sumitomo Electric Ind Ltd Conductive oxide and method for producing the same
KR20140036176A (en) * 2011-06-15 2014-03-25 스미토모덴키고교가부시키가이샤 Electrically conductive oxide and method for producing same, and oxide semiconductor film
WO2022190930A1 (en) * 2021-03-10 2022-09-15 日東電工株式会社 Transparent oxide film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817586A (en) * 1996-04-12 1998-10-06 Asahi Glass Company Ltd. Colored ceramic composition
KR20140036176A (en) * 2011-06-15 2014-03-25 스미토모덴키고교가부시키가이샤 Electrically conductive oxide and method for producing same, and oxide semiconductor film
JPWO2012173108A1 (en) * 2011-06-15 2015-02-23 住友電気工業株式会社 Conductive oxide, method for producing the same, and oxide semiconductor film
JP2013163607A (en) * 2012-02-09 2013-08-22 Sumitomo Electric Ind Ltd Conductive oxide and method for producing the same
WO2022190930A1 (en) * 2021-03-10 2022-09-15 日東電工株式会社 Transparent oxide film

Similar Documents

Publication Publication Date Title
Hosono et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples
Kawazoe et al. Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation
US5622653A (en) Electro-conductive oxides and electrodes using the same
EP1801815A1 (en) Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
US20180188419A1 (en) Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
JP3644647B2 (en) Conductive oxide and electrode using the same
JP2005219982A (en) Translucent conductive material
JPH06191844A (en) Electric conductive transparent oxide
Kiss Photochromics
KR20160000391A (en) Light shielding material, light shielding structure and fabricating method thereof
EP0104936B1 (en) Lithium oxide-based amorphous ionic conductor
JPH07335046A (en) Manufacture of conductive transparent substrate
JP3506390B2 (en) Transparent oxide and transparent conductive oxide using the same
JP2528763B2 (en) Transparent electrically conductive oxide
JP2008115024A (en) Conductive oxide powder and method of manufacturing conductive oxide powder
Srivastava et al. Chemical Pressure Effects on the Stokes Shift of Bi3+ Luminescence in Orthorhombic Perovskites
JP3379745B2 (en) Transparent conductive oxide material
JPH06191845A (en) Electrically conductive oxide
KR101196927B1 (en) Method for producing plasma display panel
JP3763544B2 (en) Conductive oxide and electrode using the same
Ning et al. Lanthanum and strontium modified bismuth ferrite based perovskites with ultra-narrow band gaps
CN102473569A (en) Plasma display panel
JP3379743B2 (en) Transparent conductive oxide material
Kikuchi et al. Transparent conducting oxide, InSbO4 with random rutile structure
AU2011253581B2 (en) Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307