WO2022190930A1 - Transparent oxide film - Google Patents
Transparent oxide film Download PDFInfo
- Publication number
- WO2022190930A1 WO2022190930A1 PCT/JP2022/008239 JP2022008239W WO2022190930A1 WO 2022190930 A1 WO2022190930 A1 WO 2022190930A1 JP 2022008239 W JP2022008239 W JP 2022008239W WO 2022190930 A1 WO2022190930 A1 WO 2022190930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide film
- transparent oxide
- target
- magnesium
- aluminum
- Prior art date
Links
- 239000011777 magnesium Substances 0.000 claims abstract description 51
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 50
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 49
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000011701 zinc Substances 0.000 claims abstract description 39
- 239000011135 tin Substances 0.000 claims abstract description 37
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 36
- 229910052718 tin Inorganic materials 0.000 claims abstract description 35
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229920006254 polymer film Polymers 0.000 claims abstract description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 9
- 230000031700 light absorption Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910007717 ZnSnO Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- QRSFFHRCBYCWBS-UHFFFAOYSA-N [O].[O] Chemical compound [O].[O] QRSFFHRCBYCWBS-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
Definitions
- the present invention relates to transparent oxide films.
- a transparent barrier film having a permeation barrier layer made of a compound of zinc, tin, and oxygen is known (see, for example, Patent Document 1 below). Also known is a barrier film comprising an inorganic film formed of a composite oxide of zinc, tin, and silicon (see, for example, Patent Document 2 below).
- Transparent barrier films are required to have excellent transparency, that is, to have low light absorption.
- the transparent barrier film composed of a compound of zinc, tin, and oxygen described in Patent Document 1 the energy bandgap of the compound of zinc, tin, and oxygen is close to the energy of the short wavelength component of visible light, and the visible light is short. Since the absorption of light increases in the wavelength region, the transmittance on the short wavelength side may decrease.
- Barrier films are required to have a lower level of water vapor transmission rate.
- the barrier film described in Patent Document 2 may have a high water vapor transmission rate due to the high silicon content of 20% by weight or more.
- the present invention provides a transparent oxide film with low light absorption and low water vapor transmission rate.
- a transparent polymer film and a transparent oxide film are provided in order toward at least one side in the thickness direction, and the transparent oxide film comprises zinc, tin, magnesium and/or aluminum. , and oxygen, and the percentage of the total amount of the zinc, the tin, the magnesium, and the aluminum with respect to the total amount of the elements other than the oxygen contained in the transparent oxide film exceeds 90 atomic %, and the The transparent oxide film comprises a transparent oxide film, wherein the percentage of the total amount of magnesium and aluminum with respect to the total amount of zinc, tin, magnesium and aluminum is greater than 10 atomic % and less than or equal to 50 atomic %.
- the present invention (2) includes the transparent oxide film according to (1), wherein the transparent oxide film has a density of 5.0 g/cm 3 or more.
- the transparent oxide film of the present invention has low light absorption and low water vapor transmission rate.
- FIG. 1 shows a cross-sectional view of one embodiment of the transparent oxide film of the present invention.
- This transparent oxide film 1 extends in the plane direction.
- the plane direction is orthogonal to the thickness direction of the transparent oxide film 1 .
- the transparent oxide film 1 includes a transparent polymer film 2 and a transparent oxide film 3 in order toward one side in the thickness direction.
- the transparent oxide film 1 comprises only the transparent polymer film 2 and the transparent oxide film 3 .
- the transparent polymer film 2 extends in the plane direction.
- the transparent polymer film 2 forms the other surface of the transparent oxide film 1 in the thickness direction.
- the material of the transparent polymer film 2 is polymer.
- Polymers include, for example, acrylic resins, polyester resins, and polyolefin resins.
- Acrylic resins include, for example, polymethyl methacrylate, polyethyl methacrylate, and polybutyl acrylate.
- polyester resins include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and isophthalate copolymers.
- Polyolefin resins include, for example, cycloolefin polymer resins, polyethylene resins, and polypropylene resins.
- the thickness of the transparent polymer film 2 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 400 ⁇ m or less, preferably 200 ⁇ m or less.
- the absorption of light on the short wavelength side is caused by the bandgap. Since the bandgap is close to the short wavelength component of visible light, absorption in the short wavelength region may occur. On the other hand, when the bandgap is wide, the absorption edge on the short wavelength side shifts to the short wavelength side, so visible light absorption can be reduced, that is, transparency is improved. For this reason, attention is focused on the absorption rate of the transparent polymer film 2 for light with a wavelength of 380 nm in the short wavelength region of visible light. The absorption rate of the transparent polymer film 2 for light with a wavelength of 380 nm is, for example, 4% or less. For the absorbance of the transparent polymer film 2, for example, a catalog value is adopted. For example, an easy adhesion layer (not shown) may be formed on the other surface of the transparent polymer film 2 in the thickness direction.
- the transparent oxide film 3 extends in the plane direction.
- the transparent oxide film 3 forms one surface of the transparent oxide film 1 in the thickness direction.
- the transparent oxide film 3 is arranged on one surface of the transparent polymer film 2 in the thickness direction. Specifically, the transparent oxide film 3 is in contact with the entire surface of the transparent polymer film 2 in the thickness direction.
- the transparent oxide film 3 contains zinc, tin, magnesium and/or aluminum, and oxygen.
- the transparent oxide film 3 is made of an oxide composition containing zinc, tin, magnesium and/or aluminum, and oxygen. More specifically, transparent oxide film 3 is made of a composite oxide of zinc, tin, magnesium and/or aluminum.
- the transparent oxide film 3 contains magnesium and/or aluminum
- the transparent oxide film 3 contains magnesium and/or aluminum means the first embodiment in which the transparent oxide film 3 contains magnesium and aluminum, and the transparent oxide film 3 contains magnesium but does not contain aluminum.
- the second mode does not contain aluminum, and the third mode does not contain magnesium although the transparent oxide film 3 contains aluminum.
- Magnesium and aluminum oxides are high energy bandgap insulators.
- an oxide film containing at least one of magnesium and aluminum in a compound of zinc, tin, and oxygen whose energy bandgap is close to the energy of the short-wavelength component of visible light By forming an oxide film containing at least one of magnesium and aluminum in a compound of zinc, tin, and oxygen whose energy bandgap is close to the energy of the short-wavelength component of visible light, the energy bandgap is widened and the energy of the short-wavelength component of visible light is increased. Light absorption in the wavelength range can be reduced.
- the ratio of the total amount of magnesium and aluminum to the total amount of zinc, tin, magnesium and aluminum exceeds 10 atomic %. Further, the ratio of the total amount of magnesium and aluminum described above is preferably 11 atomic % or more, more preferably 15 atomic % or more, and still more preferably 20 atomic % or more. If the ratio of the total amount of magnesium and aluminum described above is below the above lower limit, the absorptivity of light at a wavelength of 380 nm increases. Therefore, since the bandgap of the transparent oxide film 3 is about the same as that of visible light, the transparency of the entire visible light is lacking. The ratios described above are common to all of the first to third aspects.
- the ratio of the total amount of magnesium and aluminum to the total amount of zinc, tin, magnesium and aluminum is 50 atomic % or less.
- the ratio of the total amount of magnesium and aluminum described above is preferably 45 atomic % or less, more preferably 40 atomic % or less, still more preferably 35 atomic % or less, and particularly preferably 25 atomic % or less. . If the ratio of the total amount of magnesium and aluminum described above exceeds the upper limit described above, the water vapor transmission rate increases.
- the ratios described above are common to all of the first to third aspects.
- the ratio of magnesium to the total amount of zinc, tin, and magnesium is, for example, 10 atomic % or more, or, for example, 20 atomic % or more. and, for example, 40 atomic % or less, preferably 35 atomic % or less, more preferably 30 atomic % or less. If the proportion of magnesium is equal to or higher than the above-described lower limit, the absorbance of light at a wavelength of 380 nm can be lowered. That is, since the bandgap of the transparent oxide film 3 is increased, absorption of visible light can be reduced. If the proportion of magnesium is equal to or less than the above upper limit, the water vapor transmission rate can be lowered.
- the ratio of aluminum to the total amount of zinc, tin, and aluminum is, from the viewpoint of reducing the absorption rate for light with a wavelength of 380 nm, for example: It is 20 atomic % or more, preferably 30 atomic % or more, and is, for example, 50 atomic % or less, preferably 45 atomic % or less.
- the aluminum content is 10 atomic % or more, preferably 12 atomic % or more, and 40 atomic % or less, preferably 20 atomic % or less.
- Oxygen is an essential element in the transparent oxide film 3 .
- Oxygen constitutes a complex oxide of zinc, tin, magnesium and/or aluminum.
- the transparent oxide film 3 may contain other elements besides zinc, tin, magnesium and/or aluminum.
- Other elements are, for example, impurity elements that are unavoidably mixed in the manufacturing process.
- Other elements are not limited.
- Other elements include, for example, calcium and silicon.
- the total amount of zinc, tin, magnesium, and aluminum with respect to the total amount of other elements, zinc, tin, magnesium, and aluminum that is, the total amount of elements contained in the transparent oxide film 3 other than the gas used for film formation.
- the ratio, specifically the ratio of the total amount of zinc, tin, magnesium and aluminum to the total amount of elements other than oxygen exceeds 90 atomic %.
- the ratio of the total amount of zinc, tin, magnesium and aluminum is preferably 93 atomic % or more, more preferably 96 atomic % or more, still more preferably 98 atomic % or more. If the other element is calcium and the above ratio is below the above lower limit, the hygroscopicity increases. If the other element is silicon and the above ratio is below the above lower limit, the water vapor transmission rate will increase.
- the density of the transparent oxide film 3 is, for example, 2.0 g/cm 3 or more, preferably 5.0 g/cm 3 or more, and for example, 10.0 g/cm 3 or less.
- the density of the transparent oxide film 3 is equal to or higher than the lower limit described above, the film quality of the transparent polymer film 2 is dense, and the gas barrier property is excellent (especially, the water vapor barrier property is excellent).
- the thickness of the transparent oxide film 3 is not limited.
- the thickness of the transparent oxide film 3 is, for example, 1 nm or more, preferably 30 nm or more, and is, for example, 1000 nm or less, preferably 300 nm or less.
- the thickness of the transparent oxide film 1 is 11 ⁇ m or more, preferably 52 ⁇ m or more, and is, for example, 410 ⁇ m or less, preferably 205 ⁇ m or less.
- the water vapor transmission rate of the transparent oxide film 1 is, for example, 10 ⁇ 10 ⁇ 3 (g/m 2 /day) or less, preferably 9 ⁇ 10 ⁇ 3 (g/m 2 /day) or less, more preferably 8 ⁇ 10 ⁇ 3 (g/m 2 /day) or less, more preferably 6 ⁇ 10 ⁇ 3 (g/m 2 /day) or less, particularly preferably 5 ⁇ 10 ⁇ 3 (g/m 2 /day) or less ) below. If the water vapor transmission rate of the transparent oxide film 1 is equal to or less than the upper limit described above, the transparent oxide film 1 has excellent barrier properties (especially excellent water vapor barrier properties). The lower limit of the water vapor transmission rate of the transparent oxide film 1 is not limited. A method for measuring water vapor transmission rate is described in a later example.
- the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is, for example, 8% or less, preferably 6%. 5% or less, more preferably 5% or less. If the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is equal to or less than the above upper limit, the absorption edge of the visible light short wavelength side of the transparent oxide film 1 is shifted to the short wavelength side from the visible light region. Therefore, it has excellent transparency.
- the lower limit of the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is not limited. A method for measuring the absorbance is described in a later example.
- a method for manufacturing the transparent oxide film 1 is not limited. For example, first, the transparent polymer film 2 is prepared. Subsequently, a transparent oxide film 3 is formed on one surface of the transparent polymer film 2 in the thickness direction. A method for forming the transparent oxide film 3 is not limited. A method for forming the transparent oxide film 3 includes, for example, a dry process. Dry processes include, for example, sputtering and vacuum deposition. The method for forming the transparent oxide film 3 is preferably a dry process from the viewpoint of forming a thin transparent oxide film 3, and more preferably a sputtering method from the viewpoint of forming a transparent oxide film 3 with a high density. is mentioned.
- multiple or single targets containing zinc, tin, magnesium and/or aluminum are used as cathodes.
- a first target made of a compound of zinc and tin, a second target made of zinc, and a third target made of magnesium and/or aluminum are placed in a deposition chamber at intervals.
- Some of the targets mentioned above may be metal oxides.
- an alloy target made of a compound containing zinc, tin, magnesium and/or aluminum may be used, or a metal oxide target further containing oxygen may be used.
- a transparent polymer film 2 is arranged on a film forming plate serving as an anode.
- the film deposition plate is rotatable, for example.
- Each target is arranged to face the film formation plate with a gap therebetween.
- a drum roll as a film forming roll may be arranged instead of the film forming plate.
- Examples of the sputtering gas include argon and a mixed gas of oxygen and argon.
- the proportion of each gas species in the mixed gas is not limited.
- the atomic proportions of zinc, tin, magnesium, and aluminum are adjusted.
- sputtering is performed using an alloy target in which the atomic ratio of zinc, tin, magnesium and/or aluminum is adjusted in advance, or a metal oxide target further containing oxygen.
- this transparent oxide film 1 is not particularly limited. Examples include image display devices and solar cells. An example of the image display device is an organic EL display. Examples of solar cells include flexible solar cells.
- the transparent oxide film 1 is used, for example, as a transparent water vapor barrier film.
- the ratio of the total amount of zinc, tin, magnesium, and aluminum to the total amount of elements other than oxygen contained in the transparent oxide film 3 exceeds 90 atomic %.
- the percentage of the total amount of magnesium and aluminum with respect to the total amount of magnesium and aluminum is more than 10 atomic % and 50 atomic % or less. Therefore, the transparent oxide film 1 has low light absorption and low water vapor transmission rate.
- the transparent oxide film 3 has a density of 5.0 g/cm 3 or more, it has excellent gas barrier properties. Above all, this transparent oxide film 3 is excellent in water vapor barrier properties.
- the transparent oxide film 3 is arranged on at least one side of the transparent polymer film 2 . Therefore, as indicated by the phantom lines in FIG. 1, the transparent oxide film 3 may be arranged on one side and the other side of the transparent polymer film 2 in the thickness direction.
- the transparent oxide film 1 of this modification includes a transparent oxide film 3, a transparent polymer film 2, and a transparent oxide film 3 in order toward one side in the thickness direction.
- Example 1 A polyethylene terephthalate film was prepared as transparent polymer film 2 .
- a transparent oxide film 3 was formed on one surface of the transparent polymer film 2 in the thickness direction by sputtering.
- ZnO was used as the second target.
- MgO was used as the third target.
- a first target, a second target, and a third target were placed in a film forming chamber of a sputtering apparatus.
- a transparent polymer film 2 was set on the film forming plate. After the inside of the deposition chamber was evacuated, Ar gas and O 2 gas were introduced. After that, 86 W of power was applied to the first target from the DC power supply, 92 W of power was applied to the second target from the RF power supply, and 200 W of power was applied to the third target from the RF power supply.
- the transparent oxide film 3 was formed on one surface of the transparent polymer film 2 in the thickness direction with a thickness of 100 nm.
- Example 2 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 37W, the power applied to the second target was changed to 50W, and the power applied to the third target was changed to 200W.
- Example 3 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 20 W, the power applied to the second target was changed to 35 W, and the power applied to the third target was changed to 200 W.
- Example 4 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the third target was changed from MgO to Al, the target was mounted, the power applied to the first target was changed to 81 W, the power applied to the second target was changed to 74 W, and the power applied to the third target was changed. is 200W.
- Example 5 A transparent oxide film 3 was formed in the same manner as in Example 4. However, the power applied to the first target was changed to 27 W, the power applied to the second target was changed to 34 W, and the power applied to the third target was changed to 200 W.
- Example 1 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 78 W, the power applied to the second target was changed to 72 W, and no power was applied to the third target.
- Example 2 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the third target was changed from MgO to SiO2 , the power applied to the first target was changed to 40 W, the power applied to the second target was changed to 42 W, and the power applied to the third target was changed to 200 W. did.
- Example 3 A transparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 12W, the power applied to the second target was changed to 28W, and the power applied to the third target was changed to 200W.
- Example 4 A transparent oxide film 3 was formed in the same manner as in Example 6. However, the second target was changed from ZnO to MgZnO (MgO 12% by mass), the power applied to the first target was changed to 60 W, the power applied to the second target was changed to 40 W, and the power was applied to the third target. not applied.
- the second target was changed from ZnO to MgZnO (MgO 12% by mass)
- the power applied to the first target was changed to 60 W
- the power applied to the second target was changed to 40 W
- Example 5 A transparent oxide film 3 was formed in the same manner as in Example 6. However, the target attached to the second target was changed from MgZnO to ZnO, the power applied to the first target was changed to 68 W, the power applied to the second target was changed to 69 W, and the power applied to the third target was changed. was set to 150W.
- Example 6 A transparent oxide film 3 was formed in the same manner as in Example 6. However, the power applied to the first target was changed to 18W, the power applied to the second target was changed to 28W, and the power applied to the third target was changed to 200W.
- Elemental Composition of Transparent Oxide Film 3 The elemental composition of the transparent oxide film 3 was analyzed using a fluorescent X-ray analyzer (ZSX PrimusIII+, manufactured by Rigaku). The intrinsic X-ray intensity generated by irradiating the transparent oxide film 3 with X-rays was measured, and the atomic % of each element was calculated from the calculated mass ratio per unit area.
- the thickness and density of the transparent oxide film 3 were each measured using the X-ray reflectance method (XRR method).
- the transparent oxide film 3 in the transparent oxide film 1 is irradiated with X-rays from an oblique direction, and the incident angle dependence of the total reflection X-ray intensity on one side in the thickness direction of the transparent oxide film 3 with respect to the incident X-ray intensity. was obtained to obtain an X-ray intensity profile of the reflected wave.
- the thickness and density were then determined by simulation fitting of the X-ray intensity profile. Detailed conditions are shown below.
- Transparent oxide films are used, for example, in image display devices and solar cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
A transparent oxide film (1) is provided with a transparent polymer film (2) and a transparent oxide film (3) in the indicated sequence toward at least one side in the thickness direction. The transparent oxide film (3) contains zinc, tin, magnesium and/or aluminum, and oxygen. The percentage for the total amount of the zinc, tin, magnesium, and aluminum with respect to the total amount of non-oxygen elements present in the transparent oxide film (3) exceeds 90 atom%. The percentage for the total amount of the magnesium and aluminum with respect to the total amount of the zinc, tin, magnesium, and aluminum exceeds 10 atom% and is not more than 50 atom%.
Description
本発明は、透明酸化物フィルムに関する。
The present invention relates to transparent oxide films.
亜鉛とスズと酸素との化合物からなる透過バリア層を備える透明バリアフィルムが知られている(例えば、下記特許文献1参照。)。また、亜鉛とスズとケイ素との複酸化物により形成される無機膜を備えるバリアフィルムが知られている(例えば、下記特許文献2参照。)。
A transparent barrier film having a permeation barrier layer made of a compound of zinc, tin, and oxygen is known (see, for example, Patent Document 1 below). Also known is a barrier film comprising an inorganic film formed of a composite oxide of zinc, tin, and silicon (see, for example, Patent Document 2 below).
透明バリアフィルムには、優れた透明性、つまり、光の吸収性が低いことが求められる。しかし、特許文献1に記載の亜鉛とスズと酸素との化合物からなる透明バリアフィルムは、亜鉛とスズと酸素との化合物のエネルギーバンドギャップが可視光線の短波長成分のエネルギーに近く、可視光短波長域に光の吸収が増加するため、短波長側の透過率が低くなってしまうおそれがある。
Transparent barrier films are required to have excellent transparency, that is, to have low light absorption. However, in the transparent barrier film composed of a compound of zinc, tin, and oxygen described in Patent Document 1, the energy bandgap of the compound of zinc, tin, and oxygen is close to the energy of the short wavelength component of visible light, and the visible light is short. Since the absorption of light increases in the wavelength region, the transmittance on the short wavelength side may decrease.
バリアフィルムには、より低いレベルの水蒸気透過率が求められる。しかし、特許文献2に記載のバリアフィルムは、ケイ素を20重量%以上と多く含むことで水蒸気透過率が高くなってしまうおそれがある。
Barrier films are required to have a lower level of water vapor transmission rate. However, the barrier film described in Patent Document 2 may have a high water vapor transmission rate due to the high silicon content of 20% by weight or more.
本発明は、光の吸収性が低く、かつ、水蒸気透過率が低い透明酸化物フィルムを提供する。
The present invention provides a transparent oxide film with low light absorption and low water vapor transmission rate.
本発明(1)は、透明高分子フィルムと、透明酸化物膜とを厚み方向の少なくとも一方側に向かって順に備え、前記透明酸化物膜が、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、酸素とを含有し、前記透明酸化物膜に含有される前記酸素以外の元素の総量に対する、前記亜鉛と前記スズと前記マグネシウムと前記アルミニウムとの総量の百分率が、90原子%を超え、前記亜鉛と前記スズと前記マグネシウムと前記アルミニウムとの総量に対する、前記マグネシウムと前記アルミニウムとの総量の百分率は、10原子%を超え、50原子%以下である、透明酸化物フィルムを含む。
In the present invention (1), a transparent polymer film and a transparent oxide film are provided in order toward at least one side in the thickness direction, and the transparent oxide film comprises zinc, tin, magnesium and/or aluminum. , and oxygen, and the percentage of the total amount of the zinc, the tin, the magnesium, and the aluminum with respect to the total amount of the elements other than the oxygen contained in the transparent oxide film exceeds 90 atomic %, and the The transparent oxide film comprises a transparent oxide film, wherein the percentage of the total amount of magnesium and aluminum with respect to the total amount of zinc, tin, magnesium and aluminum is greater than 10 atomic % and less than or equal to 50 atomic %.
本発明(2)は、前記透明酸化物膜が、5.0g/cm3以上の密度を有する、(1)に記載の透明酸化物フィルムを含む。
The present invention (2) includes the transparent oxide film according to (1), wherein the transparent oxide film has a density of 5.0 g/cm 3 or more.
本発明の透明酸化物フィルムは、光の吸収性が低く、かつ、水蒸気透過率が低い。
The transparent oxide film of the present invention has low light absorption and low water vapor transmission rate.
[透明酸化物フィルムの一実施形態]
本発明の透明酸化物フィルムの一実施形態を、図1を参照して説明する。 [One embodiment of transparent oxide film]
One embodiment of the transparent oxide film of the present invention will be described with reference to FIG.
本発明の透明酸化物フィルムの一実施形態を、図1を参照して説明する。 [One embodiment of transparent oxide film]
One embodiment of the transparent oxide film of the present invention will be described with reference to FIG.
この透明酸化物フィルム1は、面方向に延びる。面方向は、透明酸化物フィルム1の厚み方向に直交する。透明酸化物フィルム1は、透明高分子フィルム2と、透明酸化物膜3とを厚み方向の一方側に向かって順に備える。本実施形態では、透明酸化物フィルム1は、透明高分子フィルム2と、透明酸化物膜3とのみを備える。
This transparent oxide film 1 extends in the plane direction. The plane direction is orthogonal to the thickness direction of the transparent oxide film 1 . The transparent oxide film 1 includes a transparent polymer film 2 and a transparent oxide film 3 in order toward one side in the thickness direction. In this embodiment, the transparent oxide film 1 comprises only the transparent polymer film 2 and the transparent oxide film 3 .
[透明高分子フィルム2]
透明高分子フィルム2は、面方向に延びる。透明高分子フィルム2は、透明酸化物フィルム1における厚み方向の他方面を形成する。透明高分子フィルム2の材料は、高分子である。高分子としては、例えば、アクリル樹脂、ポリエステル樹脂、および、ポリオレフィン樹脂が挙げられる。アクリル樹脂としては、例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、および、ポリアクリル酸ブチルが挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、および、イソフタレート共重合体が挙げられる。ポリオレフィン樹脂としては、例えば、シクロオレフィンポリマー樹脂、ポリエチレン樹脂、および、ポリプロピレン樹脂が挙げられる。好ましくは、透明性の観点から、ポリエステル樹脂、および、ポリオレフィン樹脂が挙げられ、より好ましくは、ポリエチレンテレフタレート、および、シクロオレフィンポリマー樹脂が挙げられる。透明高分子フィルム2の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、400μm以下、好ましくは、200μm以下である。 [Transparent polymer film 2]
Thetransparent polymer film 2 extends in the plane direction. The transparent polymer film 2 forms the other surface of the transparent oxide film 1 in the thickness direction. The material of the transparent polymer film 2 is polymer. Polymers include, for example, acrylic resins, polyester resins, and polyolefin resins. Acrylic resins include, for example, polymethyl methacrylate, polyethyl methacrylate, and polybutyl acrylate. Examples of polyester resins include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and isophthalate copolymers. Polyolefin resins include, for example, cycloolefin polymer resins, polyethylene resins, and polypropylene resins. From the viewpoint of transparency, polyester resins and polyolefin resins are preferred, and polyethylene terephthalate and cycloolefin polymer resins are more preferred. The thickness of the transparent polymer film 2 is, for example, 10 μm or more, preferably 50 μm or more, and for example, 400 μm or less, preferably 200 μm or less.
透明高分子フィルム2は、面方向に延びる。透明高分子フィルム2は、透明酸化物フィルム1における厚み方向の他方面を形成する。透明高分子フィルム2の材料は、高分子である。高分子としては、例えば、アクリル樹脂、ポリエステル樹脂、および、ポリオレフィン樹脂が挙げられる。アクリル樹脂としては、例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、および、ポリアクリル酸ブチルが挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、および、イソフタレート共重合体が挙げられる。ポリオレフィン樹脂としては、例えば、シクロオレフィンポリマー樹脂、ポリエチレン樹脂、および、ポリプロピレン樹脂が挙げられる。好ましくは、透明性の観点から、ポリエステル樹脂、および、ポリオレフィン樹脂が挙げられ、より好ましくは、ポリエチレンテレフタレート、および、シクロオレフィンポリマー樹脂が挙げられる。透明高分子フィルム2の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、400μm以下、好ましくは、200μm以下である。 [Transparent polymer film 2]
The
短波長側における光の吸収は、バンドギャップに起因する。バンドギャップが可視光線の短波長成分に近いことにより、短波長域での吸収が生じるおそれがある。一方、バンドギャップが広いことにより、短波長側吸収端が短波長側にシフトするために可視光吸収を低減できる、すなわち、透明性が向上する。このことから、可視光短波長領域の波長380nmの光に対する透明高分子フィルム2の吸収率に着目する。波長380nmの光に対する透明高分子フィルム2の吸収率は、例えば、4%以下である。透明高分子フィルム2の吸収率は、例えば、カタログ値が採用される。なお、透明高分子フィルム2の厚み方向の他方面に、例えば、図示しない易接着層が形成されていてもよい。
The absorption of light on the short wavelength side is caused by the bandgap. Since the bandgap is close to the short wavelength component of visible light, absorption in the short wavelength region may occur. On the other hand, when the bandgap is wide, the absorption edge on the short wavelength side shifts to the short wavelength side, so visible light absorption can be reduced, that is, transparency is improved. For this reason, attention is focused on the absorption rate of the transparent polymer film 2 for light with a wavelength of 380 nm in the short wavelength region of visible light. The absorption rate of the transparent polymer film 2 for light with a wavelength of 380 nm is, for example, 4% or less. For the absorbance of the transparent polymer film 2, for example, a catalog value is adopted. For example, an easy adhesion layer (not shown) may be formed on the other surface of the transparent polymer film 2 in the thickness direction.
[透明酸化物膜3]
透明酸化物膜3は、面方向に延びる。透明酸化物膜3は、透明酸化物フィルム1の厚み方向の一方面を形成する。透明酸化物膜3は、透明高分子フィルム2の厚み方向の一方面に配置されている。具体的には、透明酸化物膜3は、透明高分子フィルム2の厚み方向の一方面の全部に接触している。 [Transparent oxide film 3]
Thetransparent oxide film 3 extends in the plane direction. The transparent oxide film 3 forms one surface of the transparent oxide film 1 in the thickness direction. The transparent oxide film 3 is arranged on one surface of the transparent polymer film 2 in the thickness direction. Specifically, the transparent oxide film 3 is in contact with the entire surface of the transparent polymer film 2 in the thickness direction.
透明酸化物膜3は、面方向に延びる。透明酸化物膜3は、透明酸化物フィルム1の厚み方向の一方面を形成する。透明酸化物膜3は、透明高分子フィルム2の厚み方向の一方面に配置されている。具体的には、透明酸化物膜3は、透明高分子フィルム2の厚み方向の一方面の全部に接触している。 [Transparent oxide film 3]
The
[透明酸化物膜3の元素組成]
透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、酸素とを含有する。例えば、透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、酸素とを含有する酸化組成物からなる。より具体的には、透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムとの複合酸化物からなる。 [Elemental Composition of Transparent Oxide Film 3]
Thetransparent oxide film 3 contains zinc, tin, magnesium and/or aluminum, and oxygen. For example, the transparent oxide film 3 is made of an oxide composition containing zinc, tin, magnesium and/or aluminum, and oxygen. More specifically, transparent oxide film 3 is made of a composite oxide of zinc, tin, magnesium and/or aluminum.
透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、酸素とを含有する。例えば、透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、酸素とを含有する酸化組成物からなる。より具体的には、透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムとの複合酸化物からなる。 [Elemental Composition of Transparent Oxide Film 3]
The
[亜鉛およびスズ]
亜鉛と、スズとは、いずれも、必須元素として透明酸化物膜3に含有される。 [zinc and tin]
Both zinc and tin are contained in thetransparent oxide film 3 as essential elements.
亜鉛と、スズとは、いずれも、必須元素として透明酸化物膜3に含有される。 [zinc and tin]
Both zinc and tin are contained in the
[マグネシウムおよび/またはアルミニウム]
マグネシウムおよびアルミニウムのいずれか少なくとも一方は、必須元素として透明酸化物膜3に含有される。「透明酸化物膜3は、マグネシウムおよび/またはアルミニウムを含有する」とは、透明酸化物膜3がマグネシウムおよびアルミニウムを含有する第1態様、透明酸化物膜3がマグネシウムを含有するが、アルミニウムを含有しない第2態様、透明酸化物膜3がアルミニウムを含有するが、マグネシウムを含有しない第3態様のいずれをも含む。マグネシウムおよびアルミニウムの酸化物は、エネルギーバンドギャップの大きい絶縁物である。エネルギーバンドギャップが可視光の短波長成分のエネルギーに近い亜鉛とスズと酸素との化合物に、マグネシウムおよびアルミニウムの少なくとも一方を含む酸化物膜とすることにより、エネルギーバンドギャップが広がり、可視光線の短波長域における光吸収を低減することができる。 [magnesium and/or aluminum]
At least one of magnesium and aluminum is contained in thetransparent oxide film 3 as an essential element. "The transparent oxide film 3 contains magnesium and/or aluminum" means the first embodiment in which the transparent oxide film 3 contains magnesium and aluminum, and the transparent oxide film 3 contains magnesium but does not contain aluminum. The second mode does not contain aluminum, and the third mode does not contain magnesium although the transparent oxide film 3 contains aluminum. Magnesium and aluminum oxides are high energy bandgap insulators. By forming an oxide film containing at least one of magnesium and aluminum in a compound of zinc, tin, and oxygen whose energy bandgap is close to the energy of the short-wavelength component of visible light, the energy bandgap is widened and the energy of the short-wavelength component of visible light is increased. Light absorption in the wavelength range can be reduced.
マグネシウムおよびアルミニウムのいずれか少なくとも一方は、必須元素として透明酸化物膜3に含有される。「透明酸化物膜3は、マグネシウムおよび/またはアルミニウムを含有する」とは、透明酸化物膜3がマグネシウムおよびアルミニウムを含有する第1態様、透明酸化物膜3がマグネシウムを含有するが、アルミニウムを含有しない第2態様、透明酸化物膜3がアルミニウムを含有するが、マグネシウムを含有しない第3態様のいずれをも含む。マグネシウムおよびアルミニウムの酸化物は、エネルギーバンドギャップの大きい絶縁物である。エネルギーバンドギャップが可視光の短波長成分のエネルギーに近い亜鉛とスズと酸素との化合物に、マグネシウムおよびアルミニウムの少なくとも一方を含む酸化物膜とすることにより、エネルギーバンドギャップが広がり、可視光線の短波長域における光吸収を低減することができる。 [magnesium and/or aluminum]
At least one of magnesium and aluminum is contained in the
亜鉛とスズとマグネシウムとアルミニウムとの総量に対する、マグネシウムとアルミニウムとの総量の割合は、10原子%を超える。また、上記したマグネシウムとアルミニウムとの総量の割合は、好ましくは、11原子%以上、より好ましくは、15原子%以上、さらに好ましくは、20原子%以上である。上記したマグネシウムとアルミニウムとの総量の割合が上記した下限を下回れば、波長380nmにおける光の吸収率が増加する。そのため、透明酸化物膜3のバンドギャップが可視光線と同程度であるために、可視光全体での透明性に欠ける。上記した割合は、第1態様~第3態様のいずれにも共通する。
The ratio of the total amount of magnesium and aluminum to the total amount of zinc, tin, magnesium and aluminum exceeds 10 atomic %. Further, the ratio of the total amount of magnesium and aluminum described above is preferably 11 atomic % or more, more preferably 15 atomic % or more, and still more preferably 20 atomic % or more. If the ratio of the total amount of magnesium and aluminum described above is below the above lower limit, the absorptivity of light at a wavelength of 380 nm increases. Therefore, since the bandgap of the transparent oxide film 3 is about the same as that of visible light, the transparency of the entire visible light is lacking. The ratios described above are common to all of the first to third aspects.
亜鉛とスズとマグネシウムとアルミニウムとの総量に対する、マグネシウムとアルミニウムとの総量の割合は、50原子%以下である。また、上記したマグネシウムとアルミニウムとの総量の割合は、好ましくは、45原子%以下、より好ましくは、40原子%以下、さらに好ましくは、35原子%以下、とりわけ好ましくは、25原子%以下である。上記したマグネシウムとアルミニウムとの総量の割合が上記した上限を上回れば、水蒸気透過率が増大する。上記した割合は、第1態様~第3態様のいずれにも共通する。
The ratio of the total amount of magnesium and aluminum to the total amount of zinc, tin, magnesium and aluminum is 50 atomic % or less. In addition, the ratio of the total amount of magnesium and aluminum described above is preferably 45 atomic % or less, more preferably 40 atomic % or less, still more preferably 35 atomic % or less, and particularly preferably 25 atomic % or less. . If the ratio of the total amount of magnesium and aluminum described above exceeds the upper limit described above, the water vapor transmission rate increases. The ratios described above are common to all of the first to third aspects.
とりわけ、マグネシウムを必須元素として透明酸化物膜3が含有する第2態様において、亜鉛とスズとマグネシウムとの総量に対する、マグネシウムの割合は、例えば、10原子%以上、また、例えば、20原子%以上であり、また、例えば、40原子%以下、好ましくは、35原子%以下、より好ましくは、30原子%以下である。マグネシウムの割合が上記した下限以上であれば、波長380nmにおける光の吸収率を低くできる。すなわち、透明酸化物膜3のバンドギャップが大きくなるため、可視光の吸収が低減できる。マグネシウムの割合が上記した上限以下であれば、水蒸気透過率を低くできる。
In particular, in the second embodiment in which the transparent oxide film 3 contains magnesium as an essential element, the ratio of magnesium to the total amount of zinc, tin, and magnesium is, for example, 10 atomic % or more, or, for example, 20 atomic % or more. and, for example, 40 atomic % or less, preferably 35 atomic % or less, more preferably 30 atomic % or less. If the proportion of magnesium is equal to or higher than the above-described lower limit, the absorbance of light at a wavelength of 380 nm can be lowered. That is, since the bandgap of the transparent oxide film 3 is increased, absorption of visible light can be reduced. If the proportion of magnesium is equal to or less than the above upper limit, the water vapor transmission rate can be lowered.
とりわけ、アルミニウムを必須元素として透明酸化物膜3が含有する第3態様において、亜鉛とスズとアルミニウムとの総量に対する、アルミニウムの割合は、波長380nmの光に対する吸収率を低下させる観点から、例えば、20原子%以上、好ましくは、30原子%以上であり、また、例えば、50原子%以下、好ましくは、45原子%以下である。アルミニウムの上記した割合は、水蒸気透過率を低下させる観点から、10原子%以上、好ましくは、12原子%以上であり、また、40原子%以下、好ましくは、20原子%以下である。
In particular, in the third embodiment in which the transparent oxide film 3 contains aluminum as an essential element, the ratio of aluminum to the total amount of zinc, tin, and aluminum is, from the viewpoint of reducing the absorption rate for light with a wavelength of 380 nm, for example: It is 20 atomic % or more, preferably 30 atomic % or more, and is, for example, 50 atomic % or less, preferably 45 atomic % or less. From the viewpoint of reducing the water vapor transmission rate, the aluminum content is 10 atomic % or more, preferably 12 atomic % or more, and 40 atomic % or less, preferably 20 atomic % or less.
[酸素]
酸素は、透明酸化物膜3における必須元素である。酸素は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムととの複合酸化物を構成する。 [oxygen]
Oxygen is an essential element in thetransparent oxide film 3 . Oxygen constitutes a complex oxide of zinc, tin, magnesium and/or aluminum.
酸素は、透明酸化物膜3における必須元素である。酸素は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムととの複合酸化物を構成する。 [oxygen]
Oxygen is an essential element in the
[他の元素]
透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと以外に、他の元素を含有してもよい。他の元素は、例えば、製造工程上、不可避的に混入される不純物元素である。他の元素は、限定されない。他の元素としては、例えば、カルシウム、および、ケイ素が挙げられる。他の元素と亜鉛とスズとマグネシウムとアルミニウムとの総量、すなわち、透明酸化物膜3に含有される成膜時に使用するガス以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合、具体的には、酸素以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、90原子%を超える。上記した亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、好ましくは、93原子%以上、より好ましくは、96原子%以上、さらに好ましくは、98原子%以上である。他の元素がカルシウムであって、上記した割合が上記した下限を下回れば、吸湿性が増大してしまう。他の元素がケイ素であって、上記した割合が上記した下限を下回れば、水蒸気透過率が増大してしまう。 [Other elements]
Thetransparent oxide film 3 may contain other elements besides zinc, tin, magnesium and/or aluminum. Other elements are, for example, impurity elements that are unavoidably mixed in the manufacturing process. Other elements are not limited. Other elements include, for example, calcium and silicon. The total amount of zinc, tin, magnesium, and aluminum with respect to the total amount of other elements, zinc, tin, magnesium, and aluminum, that is, the total amount of elements contained in the transparent oxide film 3 other than the gas used for film formation. The ratio, specifically the ratio of the total amount of zinc, tin, magnesium and aluminum to the total amount of elements other than oxygen exceeds 90 atomic %. The ratio of the total amount of zinc, tin, magnesium and aluminum is preferably 93 atomic % or more, more preferably 96 atomic % or more, still more preferably 98 atomic % or more. If the other element is calcium and the above ratio is below the above lower limit, the hygroscopicity increases. If the other element is silicon and the above ratio is below the above lower limit, the water vapor transmission rate will increase.
透明酸化物膜3は、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと以外に、他の元素を含有してもよい。他の元素は、例えば、製造工程上、不可避的に混入される不純物元素である。他の元素は、限定されない。他の元素としては、例えば、カルシウム、および、ケイ素が挙げられる。他の元素と亜鉛とスズとマグネシウムとアルミニウムとの総量、すなわち、透明酸化物膜3に含有される成膜時に使用するガス以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合、具体的には、酸素以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、90原子%を超える。上記した亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、好ましくは、93原子%以上、より好ましくは、96原子%以上、さらに好ましくは、98原子%以上である。他の元素がカルシウムであって、上記した割合が上記した下限を下回れば、吸湿性が増大してしまう。他の元素がケイ素であって、上記した割合が上記した下限を下回れば、水蒸気透過率が増大してしまう。 [Other elements]
The
透明酸化物膜3の密度は、例えば、2.0g/cm3以上、好ましくは、5.0g/cm3以上であり、また、例えば、10.0g/cm3以下である。透明酸化物膜3の密度が上記した下限以上であれば、透明高分子フィルム2の膜質が緻密となり、ガスバリア性に優れる(とりわけ、水蒸気バリア性に優れる)。
The density of the transparent oxide film 3 is, for example, 2.0 g/cm 3 or more, preferably 5.0 g/cm 3 or more, and for example, 10.0 g/cm 3 or less. When the density of the transparent oxide film 3 is equal to or higher than the lower limit described above, the film quality of the transparent polymer film 2 is dense, and the gas barrier property is excellent (especially, the water vapor barrier property is excellent).
透明酸化物膜3の厚みは、限定されない。透明酸化物膜3の厚みは、例えば、1nm以上、好ましくは、30nm以上であり、また、例えば、1000nm以下、好ましくは、300nm以下である。
The thickness of the transparent oxide film 3 is not limited. The thickness of the transparent oxide film 3 is, for example, 1 nm or more, preferably 30 nm or more, and is, for example, 1000 nm or less, preferably 300 nm or less.
透明酸化物フィルム1の厚みは、11μm以上、好ましくは、52μm以上であり、また、例えば、410μm以下、好ましくは、205μm以下である。
The thickness of the transparent oxide film 1 is 11 µm or more, preferably 52 µm or more, and is, for example, 410 µm or less, preferably 205 µm or less.
[透明酸化物フィルム1の物性]
透明酸化物フィルム1の水蒸気透過率は、例えば、10×10-3(g/m2/day)以下、好ましくは、9×10-3(g/m2/day)以下、より好ましくは、8×10-3(g/m2/day)以下、さらに好ましくは、6×10-3(g/m2/day)以下、とりわけ好ましくは、5×10-3(g/m2/day)以下である。透明酸化物フィルム1の水蒸気透過率が上記した上限以下であれば、透明酸化物フィルム1は、バリア性に優れる(とりわけ、水蒸気バリア性に優れる)。透明酸化物フィルム1の水蒸気透過率の下限は、限定されない。水蒸気透過率の測定方法は、後の実施例で記載する。 [Physical properties of transparent oxide film 1]
The water vapor transmission rate of thetransparent oxide film 1 is, for example, 10×10 −3 (g/m 2 /day) or less, preferably 9×10 −3 (g/m 2 /day) or less, more preferably 8×10 −3 (g/m 2 /day) or less, more preferably 6×10 −3 (g/m 2 /day) or less, particularly preferably 5×10 −3 (g/m 2 /day) or less ) below. If the water vapor transmission rate of the transparent oxide film 1 is equal to or less than the upper limit described above, the transparent oxide film 1 has excellent barrier properties (especially excellent water vapor barrier properties). The lower limit of the water vapor transmission rate of the transparent oxide film 1 is not limited. A method for measuring water vapor transmission rate is described in a later example.
透明酸化物フィルム1の水蒸気透過率は、例えば、10×10-3(g/m2/day)以下、好ましくは、9×10-3(g/m2/day)以下、より好ましくは、8×10-3(g/m2/day)以下、さらに好ましくは、6×10-3(g/m2/day)以下、とりわけ好ましくは、5×10-3(g/m2/day)以下である。透明酸化物フィルム1の水蒸気透過率が上記した上限以下であれば、透明酸化物フィルム1は、バリア性に優れる(とりわけ、水蒸気バリア性に優れる)。透明酸化物フィルム1の水蒸気透過率の下限は、限定されない。水蒸気透過率の測定方法は、後の実施例で記載する。 [Physical properties of transparent oxide film 1]
The water vapor transmission rate of the
透明酸化物フィルム1のバンドギャップと可視光短波長域における吸収端のシフトを示す観点より、透明酸化物フィルム1の波長380nmの光に対する吸収率は、例えば、8%以下、好ましくは、6%以下、より好ましくは、5%以下である。透明酸化物フィルム1の波長380nmの光に対する吸収率が上記した上限以下であれば、透明酸化物フィルム1は、可視光短波長側の吸収端が可視光域より短波長側にシフトしているために、透明性に優れる。透明酸化物フィルム1の波長380nmの光に対する吸収率の下限は、限定されない。吸収率の測定方法は、後の実施例で記載する。
From the viewpoint of showing the bandgap of the transparent oxide film 1 and the shift of the absorption edge in the short wavelength region of visible light, the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is, for example, 8% or less, preferably 6%. 5% or less, more preferably 5% or less. If the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is equal to or less than the above upper limit, the absorption edge of the visible light short wavelength side of the transparent oxide film 1 is shifted to the short wavelength side from the visible light region. Therefore, it has excellent transparency. The lower limit of the absorptance of the transparent oxide film 1 for light with a wavelength of 380 nm is not limited. A method for measuring the absorbance is described in a later example.
[透明酸化物フィルム1の製造方法]
透明酸化物フィルム1の製造方法は、限定されない。例えば、まず、透明高分子フィルム2を準備する。続いて、透明酸化物膜3を透明高分子フィルム2の厚み方向の一方面に形成する。透明酸化物膜3の形成方法は、限定されない。透明酸化物膜3の形成方法としては、例えば、ドライプロセスが挙げられる。ドライプロセスとしては、例えば、スパッタリング、および、真空蒸着が挙げられる。透明酸化物膜3の形成方法として、好ましくは、薄い透明酸化物膜3を形成する観点から、ドライプロセスが挙げられ、より好ましくは、密度の高い透明酸化物膜3を形成する観点から、スパッタリングが挙げられる。 [Method for producing transparent oxide film 1]
A method for manufacturing thetransparent oxide film 1 is not limited. For example, first, the transparent polymer film 2 is prepared. Subsequently, a transparent oxide film 3 is formed on one surface of the transparent polymer film 2 in the thickness direction. A method for forming the transparent oxide film 3 is not limited. A method for forming the transparent oxide film 3 includes, for example, a dry process. Dry processes include, for example, sputtering and vacuum deposition. The method for forming the transparent oxide film 3 is preferably a dry process from the viewpoint of forming a thin transparent oxide film 3, and more preferably a sputtering method from the viewpoint of forming a transparent oxide film 3 with a high density. is mentioned.
透明酸化物フィルム1の製造方法は、限定されない。例えば、まず、透明高分子フィルム2を準備する。続いて、透明酸化物膜3を透明高分子フィルム2の厚み方向の一方面に形成する。透明酸化物膜3の形成方法は、限定されない。透明酸化物膜3の形成方法としては、例えば、ドライプロセスが挙げられる。ドライプロセスとしては、例えば、スパッタリング、および、真空蒸着が挙げられる。透明酸化物膜3の形成方法として、好ましくは、薄い透明酸化物膜3を形成する観点から、ドライプロセスが挙げられ、より好ましくは、密度の高い透明酸化物膜3を形成する観点から、スパッタリングが挙げられる。 [Method for producing transparent oxide film 1]
A method for manufacturing the
スパッタリングでは、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムとを含有する複数または単数のターゲットをカソードとして用いる。例えば、亜鉛およびスズの化合物からなる第1ターゲットと、亜鉛からなる第2ターゲットと、マグネシウムおよび/またはアルミニウムからなる第3ターゲットとを、互いに間隔を隔てて成膜室に配置する。上記したターゲットの一部は、金属酸化物であってもよい。または、例えば、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムとを含有する化合物からなる合金ターゲットであってもよく、また、さらに酸素を含む金属酸化物ターゲットを用いることができる。別途、アノードとなる成膜板に透明高分子フィルム2を配置する。成膜板は、例えば、回転可能である。各ターゲットは、成膜板と間隔を隔てて対向配置される。または、例えば、成膜板に代えて、成膜ロールとしてのドラムロールを配置してもよい。ドラムロールを成膜室に配置すれば、透明高分子フィルム2をロール・トゥ・ロール方式で搬送しながら、透明酸化物膜3を連続して成膜できる。
In sputtering, multiple or single targets containing zinc, tin, magnesium and/or aluminum are used as cathodes. For example, a first target made of a compound of zinc and tin, a second target made of zinc, and a third target made of magnesium and/or aluminum are placed in a deposition chamber at intervals. Some of the targets mentioned above may be metal oxides. Alternatively, for example, an alloy target made of a compound containing zinc, tin, magnesium and/or aluminum may be used, or a metal oxide target further containing oxygen may be used. Separately, a transparent polymer film 2 is arranged on a film forming plate serving as an anode. The film deposition plate is rotatable, for example. Each target is arranged to face the film formation plate with a gap therebetween. Alternatively, for example, a drum roll as a film forming roll may be arranged instead of the film forming plate. By arranging a drum roll in the film forming chamber, the transparent oxide film 3 can be continuously formed while the transparent polymer film 2 is transported by a roll-to-roll method.
スパッタリングガスとしては、例えば、アルゴン、および、酸素とアルゴンとの混合ガスが挙げられる。混合ガスにおける各ガス種の割合は、限定されない。
Examples of the sputtering gas include argon and a mixed gas of oxygen and argon. The proportion of each gas species in the mixed gas is not limited.
第1ターゲットと、第2ターゲットと、第3ターゲットとに印加する電力を調整して、亜鉛とスズとマグネシウムとアルミニウムとの原子割合を調整する。または、予め、亜鉛とスズとマグネシウムおよび/またはアルミニウムとの原子割合を調整した合金ターゲット、または、さらに酸素を含む金属酸化物ターゲットを用いてスパッタリングする。
By adjusting the electric power applied to the first target, the second target, and the third target, the atomic proportions of zinc, tin, magnesium, and aluminum are adjusted. Alternatively, sputtering is performed using an alloy target in which the atomic ratio of zinc, tin, magnesium and/or aluminum is adjusted in advance, or a metal oxide target further containing oxygen.
この透明酸化物フィルム1の用途は、特に限定されない。例えば、画像表示装置、および、太陽電池が挙げられる。画像表示装置としては、例えば、有機ELディスプレイが挙げられる。太陽電池としては、例えば、フレキシブル太陽電池などが挙げられる。透明酸化物フィルム1は、例えば、透明水蒸気バリアフィルムとして用いられる。
The application of this transparent oxide film 1 is not particularly limited. Examples include image display devices and solar cells. An example of the image display device is an organic EL display. Examples of solar cells include flexible solar cells. The transparent oxide film 1 is used, for example, as a transparent water vapor barrier film.
[一実施形態の作用効果]
この透明酸化物フィルム1では、透明酸化物膜3に含有される酸素以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、90原子%を超え、亜鉛とスズとマグネシウムとアルミニウムとの総量に対する、マグネシウムとアルミニウムとの総量の百分率は、10原子%を超え、50原子%以下である。そのため、透明酸化物フィルム1は、光の吸収性が低く、かつ、水蒸気透過率が低い。 [Effects of one embodiment]
In thistransparent oxide film 1, the ratio of the total amount of zinc, tin, magnesium, and aluminum to the total amount of elements other than oxygen contained in the transparent oxide film 3 exceeds 90 atomic %. The percentage of the total amount of magnesium and aluminum with respect to the total amount of magnesium and aluminum is more than 10 atomic % and 50 atomic % or less. Therefore, the transparent oxide film 1 has low light absorption and low water vapor transmission rate.
この透明酸化物フィルム1では、透明酸化物膜3に含有される酸素以外の元素の総量に対する、亜鉛とスズとマグネシウムとアルミニウムとの総量の割合は、90原子%を超え、亜鉛とスズとマグネシウムとアルミニウムとの総量に対する、マグネシウムとアルミニウムとの総量の百分率は、10原子%を超え、50原子%以下である。そのため、透明酸化物フィルム1は、光の吸収性が低く、かつ、水蒸気透過率が低い。 [Effects of one embodiment]
In this
また、透明酸化物膜3が、5.0g/cm3以上の密度を有すれば、ガスバリア性に優れる。とりわけ、この透明酸化物膜3は、水蒸気バリア性に優れる。
Moreover, if the transparent oxide film 3 has a density of 5.0 g/cm 3 or more, it has excellent gas barrier properties. Above all, this transparent oxide film 3 is excellent in water vapor barrier properties.
[変形例]
変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。 [Modification]
In the modified example, the same reference numerals are given to the same members and steps as in the embodiment, and detailed description thereof will be omitted. In addition, the modified example can have the same effects as the one embodiment, unless otherwise specified. Furthermore, one embodiment and its modifications can be combined as appropriate.
変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。 [Modification]
In the modified example, the same reference numerals are given to the same members and steps as in the embodiment, and detailed description thereof will be omitted. In addition, the modified example can have the same effects as the one embodiment, unless otherwise specified. Furthermore, one embodiment and its modifications can be combined as appropriate.
本発明において、透明酸化物膜3は、透明高分子フィルム2の少なくとも一方側に配置される。そのため、図1の仮想線に示すように、透明酸化物膜3が、透明高分子フィルム2の厚み方向の一方面と他方面とに配置されていてもよい。この変形例の透明酸化物フィルム1は、透明酸化物膜3と、透明高分子フィルム2と、透明酸化物膜3とを厚み方向の一方側に向かって順に備える。
In the present invention, the transparent oxide film 3 is arranged on at least one side of the transparent polymer film 2 . Therefore, as indicated by the phantom lines in FIG. 1, the transparent oxide film 3 may be arranged on one side and the other side of the transparent polymer film 2 in the thickness direction. The transparent oxide film 1 of this modification includes a transparent oxide film 3, a transparent polymer film 2, and a transparent oxide film 3 in order toward one side in the thickness direction.
以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。
Specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are described in the above "Mode for Carrying Out the Invention", the corresponding mixing ratio (content ratio ), physical properties, parameters, etc. can. In the description below, "parts" and "%" are based on mass unless otherwise specified.
[実施例1]
ポリエチレンテレフタレートフィルムを透明高分子フィルム2として準備した。 [Example 1]
A polyethylene terephthalate film was prepared astransparent polymer film 2 .
ポリエチレンテレフタレートフィルムを透明高分子フィルム2として準備した。 [Example 1]
A polyethylene terephthalate film was prepared as
次いで、透明高分子フィルム2の厚み方向の一方面に、透明酸化物膜3をスパッタリングにより形成した。
Next, a transparent oxide film 3 was formed on one surface of the transparent polymer film 2 in the thickness direction by sputtering.
具体的には、第1ターゲットとしてZnSnOx(組成比Zn/Sn=50/50原子%)を用いた。第2ターゲットとしてZnOを用いた。第3ターゲットとしてMgOを用いた。第1ターゲットと第2ターゲットと第3ターゲットとを、スパッタリング装置の成膜室に配置した。成膜板に透明高分子フィルム2をセットした。成膜室内を真空排気した後、ArガスおよびO2ガスを導入した。その後、第1ターゲットにDC電源から86Wの電力を印加し、第2ターゲットにRF電源から92Wの電力を印加し、第3ターゲットにRF電源から200Wの電力を印加した。これにより、透明高分子フィルム2の厚み方向の一方面に、透明酸化物膜3を100nm狙いの厚みで形成した。
Specifically, ZnSnO x (composition ratio Zn/Sn=50/50 atomic %) was used as the first target. ZnO was used as the second target. MgO was used as the third target. A first target, a second target, and a third target were placed in a film forming chamber of a sputtering apparatus. A transparent polymer film 2 was set on the film forming plate. After the inside of the deposition chamber was evacuated, Ar gas and O 2 gas were introduced. After that, 86 W of power was applied to the first target from the DC power supply, 92 W of power was applied to the second target from the RF power supply, and 200 W of power was applied to the third target from the RF power supply. As a result, the transparent oxide film 3 was formed on one surface of the transparent polymer film 2 in the thickness direction with a thickness of 100 nm.
[実施例2]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を37Wに変更し、第2ターゲットに印加する電力を50Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 2]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 37W, the power applied to the second target was changed to 50W, and the power applied to the third target was changed to 200W.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を37Wに変更し、第2ターゲットに印加する電力を50Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 2]
A
[実施例3]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を20Wに変更し、第2ターゲットに印加する電力を35Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 3]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 20 W, the power applied to the second target was changed to 35 W, and the power applied to the third target was changed to 200 W.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を20Wに変更し、第2ターゲットに印加する電力を35Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 3]
A
[実施例4]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第3ターゲットをMgOからAlに変更しターゲットを装着し、第1ターゲットに印加する電力を81Wに変更し、第2ターゲットに印加する電力を74Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 4]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the third target was changed from MgO to Al, the target was mounted, the power applied to the first target was changed to 81 W, the power applied to the second target was changed to 74 W, and the power applied to the third target was changed. is 200W.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第3ターゲットをMgOからAlに変更しターゲットを装着し、第1ターゲットに印加する電力を81Wに変更し、第2ターゲットに印加する電力を74Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 4]
A
[実施例5]
実施例4と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を27Wに変更し、第2ターゲットに印加する電力を34Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 5]
Atransparent oxide film 3 was formed in the same manner as in Example 4. However, the power applied to the first target was changed to 27 W, the power applied to the second target was changed to 34 W, and the power applied to the third target was changed to 200 W.
実施例4と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を27Wに変更し、第2ターゲットに印加する電力を34Wに変更し、第3ターゲットに印加する電力は200Wとした。 [Example 5]
A
[実施例6]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットをZnSnOx(組成比Zn/Sn=55/45原子%)に変更し、第2ターゲットをMgZnO(MgO12質量%)に変更し、第3ターゲットをAlに変更し、第1ターゲットのDC電源に印加する電力を54Wに変更し、第2ターゲットのRF電源に印加する電力を58Wの電力を変更し、第3ターゲットのRF電源に印加する電力を150Wに変更した。 [Example 6]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the first target was changed to ZnSnO x (composition ratio Zn/Sn=55/45 atomic %), the second target was changed to MgZnO (MgO 12 mass %), the third target was changed to Al, and the first The power applied to the DC power supply of the target was changed to 54W, the power applied to the RF power supply of the second target was changed from 58W, and the power applied to the RF power supply of the third target was changed to 150W.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットをZnSnOx(組成比Zn/Sn=55/45原子%)に変更し、第2ターゲットをMgZnO(MgO12質量%)に変更し、第3ターゲットをAlに変更し、第1ターゲットのDC電源に印加する電力を54Wに変更し、第2ターゲットのRF電源に印加する電力を58Wの電力を変更し、第3ターゲットのRF電源に印加する電力を150Wに変更した。 [Example 6]
A
[実施例7]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1カソードにZnSnMgOx(組成比Zn/Sn/Mg=41.3/33.8/25.0原子%)の複合酸化物ターゲットに変更し、第1ターゲットのDC電源に印加する電力を200Wに変更した。第2ターゲットおよび第3ターゲットには電力を印加しなかった。 [Example 7]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the first cathode is changed to a composite oxide target of ZnSnMgO x (composition ratio Zn/Sn/Mg = 41.3/33.8/25.0 atomic %), and the power applied to the DC power supply of the first target was changed to 200W. No power was applied to the second and third targets.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1カソードにZnSnMgOx(組成比Zn/Sn/Mg=41.3/33.8/25.0原子%)の複合酸化物ターゲットに変更し、第1ターゲットのDC電源に印加する電力を200Wに変更した。第2ターゲットおよび第3ターゲットには電力を印加しなかった。 [Example 7]
A
[比較例1]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を78Wに変更し、第2ターゲットに印加する電力を72Wに変更し、第3ターゲットに電力を印加しなかった。 [Comparative Example 1]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 78 W, the power applied to the second target was changed to 72 W, and no power was applied to the third target.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を78Wに変更し、第2ターゲットに印加する電力を72Wに変更し、第3ターゲットに電力を印加しなかった。 [Comparative Example 1]
A
[比較例2]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第3ターゲットをMgOからSiO2に変更し、第1ターゲットに印加する電力を40Wに変更し、第2ターゲットに印加する電力を42Wに変更し、第3ターゲットに印加する電力を200Wとした。 [Comparative Example 2]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the third target was changed from MgO to SiO2 , the power applied to the first target was changed to 40 W, the power applied to the second target was changed to 42 W, and the power applied to the third target was changed to 200 W. did.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第3ターゲットをMgOからSiO2に変更し、第1ターゲットに印加する電力を40Wに変更し、第2ターゲットに印加する電力を42Wに変更し、第3ターゲットに印加する電力を200Wとした。 [Comparative Example 2]
A
[比較例3]
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を12Wに変更し、第2ターゲットに印加する電力を28Wに変更し、第3ターゲットに印加する電力を200Wとした。 [Comparative Example 3]
Atransparent oxide film 3 was formed in the same manner as in Example 1. However, the power applied to the first target was changed to 12W, the power applied to the second target was changed to 28W, and the power applied to the third target was changed to 200W.
実施例1と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を12Wに変更し、第2ターゲットに印加する電力を28Wに変更し、第3ターゲットに印加する電力を200Wとした。 [Comparative Example 3]
A
[比較例4]
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第2ターゲットをZnOからMgZnO(MgO12質量%)に変更し、第1ターゲットに印加する電力を60Wに変更し、第2ターゲットに印加する電力を40Wに変更し、第3ターゲットに電力を印加しなかった。 [Comparative Example 4]
Atransparent oxide film 3 was formed in the same manner as in Example 6. However, the second target was changed from ZnO to MgZnO (MgO 12% by mass), the power applied to the first target was changed to 60 W, the power applied to the second target was changed to 40 W, and the power was applied to the third target. not applied.
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第2ターゲットをZnOからMgZnO(MgO12質量%)に変更し、第1ターゲットに印加する電力を60Wに変更し、第2ターゲットに印加する電力を40Wに変更し、第3ターゲットに電力を印加しなかった。 [Comparative Example 4]
A
[比較例5]
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第2ターゲットに装着するターゲットをMgZnOからZnOに変更し、第1ターゲットに印加する電力を68Wに変更し、第2ターゲットに印加する電力を69Wに変更し、第3ターゲットに印加する電力を150Wとした。 [Comparative Example 5]
Atransparent oxide film 3 was formed in the same manner as in Example 6. However, the target attached to the second target was changed from MgZnO to ZnO, the power applied to the first target was changed to 68 W, the power applied to the second target was changed to 69 W, and the power applied to the third target was changed. was set to 150W.
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第2ターゲットに装着するターゲットをMgZnOからZnOに変更し、第1ターゲットに印加する電力を68Wに変更し、第2ターゲットに印加する電力を69Wに変更し、第3ターゲットに印加する電力を150Wとした。 [Comparative Example 5]
A
[比較例6]
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を18Wに変更し、第2ターゲットに印加する電力を28Wに変更し、第3ターゲットに印加する電力を200Wに変更した。 [Comparative Example 6]
Atransparent oxide film 3 was formed in the same manner as in Example 6. However, the power applied to the first target was changed to 18W, the power applied to the second target was changed to 28W, and the power applied to the third target was changed to 200W.
実施例6と同様の方法で、透明酸化物膜3を形成した。但し、第1ターゲットに印加する電力を18Wに変更し、第2ターゲットに印加する電力を28Wに変更し、第3ターゲットに印加する電力を200Wに変更した。 [Comparative Example 6]
A
[評価]
各実施例および各比較例の透明酸化物フィルム1および透明酸化物膜3について以下の項目を測定した。それらの結果を表1に示す。 [evaluation]
The following items were measured for thetransparent oxide film 1 and the transparent oxide film 3 of each example and each comparative example. Those results are shown in Table 1.
各実施例および各比較例の透明酸化物フィルム1および透明酸化物膜3について以下の項目を測定した。それらの結果を表1に示す。 [evaluation]
The following items were measured for the
(1)透明酸化物膜3の元素組成
透明酸化物膜3の元素組成を、蛍光X線分析装置(ZSX PrimusIII+、Rigaku社製)を用いて分析した。透明酸化物膜3にX線を照射し発生する固有X線強度を測定し、算出された単位面積当たりの質量比より、各元素の原子%を算出した。 (1) Elemental Composition ofTransparent Oxide Film 3 The elemental composition of the transparent oxide film 3 was analyzed using a fluorescent X-ray analyzer (ZSX PrimusIII+, manufactured by Rigaku). The intrinsic X-ray intensity generated by irradiating the transparent oxide film 3 with X-rays was measured, and the atomic % of each element was calculated from the calculated mass ratio per unit area.
透明酸化物膜3の元素組成を、蛍光X線分析装置(ZSX PrimusIII+、Rigaku社製)を用いて分析した。透明酸化物膜3にX線を照射し発生する固有X線強度を測定し、算出された単位面積当たりの質量比より、各元素の原子%を算出した。 (1) Elemental Composition of
(2)透明酸化物フィルム1の水蒸気透過率
透明酸化物フィルム1の水蒸気透過率を、温度40℃、湿度90%RH、測定面積50cm2の条件で、水蒸気透過率測定装置(DELTAPERM、テクノロックス社製)を使用して測定した。 (2) Water vapor transmission rate oftransparent oxide film 1 The water vapor transmission rate of transparent oxide film 1 was measured using a water vapor transmission rate measuring device ( DELTAPERM , Technorox company).
透明酸化物フィルム1の水蒸気透過率を、温度40℃、湿度90%RH、測定面積50cm2の条件で、水蒸気透過率測定装置(DELTAPERM、テクノロックス社製)を使用して測定した。 (2) Water vapor transmission rate of
(3)透明酸化物フィルム1の光の吸収率
透明酸化物フィルム1における波長380nmの光の透過率および入射角5°の反射率を、紫外可視近赤外分光光度計(UH4150、日立ハイテクサイエンス社製)を使用して測定した。波長380nmの光の吸収率は100%より波長380nmの透過率および5°反射率を減ずることにより算出した。 (3) Light Absorption Rate ofTransparent Oxide Film 1 The transmittance of light with a wavelength of 380 nm and the reflectance at an incident angle of 5° in the transparent oxide film 1 were measured with an ultraviolet-visible-near-infrared spectrophotometer (UH4150, Hitachi High-Tech Science). company). The absorbance of light with a wavelength of 380 nm was calculated by subtracting the transmittance with a wavelength of 380 nm and the 5° reflectance from 100%.
透明酸化物フィルム1における波長380nmの光の透過率および入射角5°の反射率を、紫外可視近赤外分光光度計(UH4150、日立ハイテクサイエンス社製)を使用して測定した。波長380nmの光の吸収率は100%より波長380nmの透過率および5°反射率を減ずることにより算出した。 (3) Light Absorption Rate of
(4)透明酸化物膜3の厚みおよび密度
透明酸化物膜3の厚みおよび密度のそれぞれを、X線反射率法(XRR法)を用いて測定した。透明酸化物フィルム1における透明酸化物膜3に、斜方向からX線を照射し、入射X線強度に対する全反射X線強度の透明酸化物膜3の厚み方向の一方面への入射角度依存性を測定することにより、得られた反射波のX線強度プロファイルを得た。その後、X線強度プロファイルのシミュレーションフィッティングして、厚みおよび密度を求めた。
詳細な条件を以下に示す。 (4) Thickness and Density ofTransparent Oxide Film 3 The thickness and density of the transparent oxide film 3 were each measured using the X-ray reflectance method (XRR method). The transparent oxide film 3 in the transparent oxide film 1 is irradiated with X-rays from an oblique direction, and the incident angle dependence of the total reflection X-ray intensity on one side in the thickness direction of the transparent oxide film 3 with respect to the incident X-ray intensity. was obtained to obtain an X-ray intensity profile of the reflected wave. The thickness and density were then determined by simulation fitting of the X-ray intensity profile.
Detailed conditions are shown below.
透明酸化物膜3の厚みおよび密度のそれぞれを、X線反射率法(XRR法)を用いて測定した。透明酸化物フィルム1における透明酸化物膜3に、斜方向からX線を照射し、入射X線強度に対する全反射X線強度の透明酸化物膜3の厚み方向の一方面への入射角度依存性を測定することにより、得られた反射波のX線強度プロファイルを得た。その後、X線強度プロファイルのシミュレーションフィッティングして、厚みおよび密度を求めた。
詳細な条件を以下に示す。 (4) Thickness and Density of
Detailed conditions are shown below.
・装置 :Rigaku製 全自動多目的X線回析装置 SmartLab・解析ソフト :Rigaku製 SmartLab StudioII
・サンプルサイズ :30mm×30mm
・入射X線波長 :1.5418Å(CuKα)
・管電圧 :40kV
・管電流 :50mA
・出力 :2kW
・入射スリット :0.05mm
・受光スリット1 :0.25mm
・受光スリット2 :0.375mm
・測定タイプ :2θ/θスキャン
・測定範囲(θ) :0.3~8.0°
・ステップサイズ(θ) :0.01° ・Equipment: SmartLab, a fully automatic multi-purpose X-ray diffractometer manufactured by Rigaku ・Analysis software: SmartLab Studio II, manufactured by Rigaku
・Sample size: 30mm x 30mm
・ Incident X-ray wavelength: 1.5418 Å (CuKα)
・Tube voltage: 40 kV
・Tube current: 50mA
・Output: 2kW
・Incident slit: 0.05mm
・Light receiving slit 1: 0.25 mm
・Light receiving slit 2: 0.375 mm
・Measurement type: 2θ/θ scan ・Measurement range (θ): 0.3 to 8.0°
・Step size (θ): 0.01°
・サンプルサイズ :30mm×30mm
・入射X線波長 :1.5418Å(CuKα)
・管電圧 :40kV
・管電流 :50mA
・出力 :2kW
・入射スリット :0.05mm
・受光スリット1 :0.25mm
・受光スリット2 :0.375mm
・測定タイプ :2θ/θスキャン
・測定範囲(θ) :0.3~8.0°
・ステップサイズ(θ) :0.01° ・Equipment: SmartLab, a fully automatic multi-purpose X-ray diffractometer manufactured by Rigaku ・Analysis software: SmartLab Studio II, manufactured by Rigaku
・Sample size: 30mm x 30mm
・ Incident X-ray wavelength: 1.5418 Å (CuKα)
・Tube voltage: 40 kV
・Tube current: 50mA
・Output: 2kW
・Incident slit: 0.05mm
・Light receiving slit 1: 0.25 mm
・Light receiving slit 2: 0.375 mm
・Measurement type: 2θ/θ scan ・Measurement range (θ): 0.3 to 8.0°
・Step size (θ): 0.01°
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an illustration and should not be construed as limiting. Variations of the invention that are obvious to those skilled in the art are included in the following claims.
透明酸化物フィルムは、例えば、画像表示装置、太陽電池に用いられる。
Transparent oxide films are used, for example, in image display devices and solar cells.
1 透明酸化物フィルム
2 透明高分子フィルム
3 透明酸化物膜 1transparent oxide film 2 transparent polymer film 3 transparent oxide film
2 透明高分子フィルム
3 透明酸化物膜 1
Claims (2)
- 透明高分子フィルムと、透明酸化物膜とを厚み方向の少なくとも一方側に向かって順に備え、
前記透明酸化物膜が、亜鉛と、スズと、マグネシウムおよび/またはアルミニウムと、
酸素とを含有し、
前記透明酸化物膜に含有される前記酸素以外の元素の総量に対する、前記亜鉛と前記スズと前記マグネシウムと前記アルミニウムとの総量の百分率が、90原子%を超え、
前記亜鉛と前記スズと前記マグネシウムと前記アルミニウムとの総量に対する、前記マグネシウムと前記アルミニウムとの総量の百分率は、10原子%を超え、50原子%以下である、透明酸化物フィルム。 A transparent polymer film and a transparent oxide film are sequentially provided toward at least one side in the thickness direction,
wherein the transparent oxide film comprises zinc, tin, magnesium and/or aluminum;
containing oxygen and
The percentage of the total amount of the zinc, the tin, the magnesium, and the aluminum with respect to the total amount of elements other than oxygen contained in the transparent oxide film exceeds 90 atomic %,
The transparent oxide film, wherein the percentage of the total amount of magnesium and aluminum with respect to the total amount of zinc, tin, magnesium and aluminum is more than 10 atomic % and 50 atomic % or less. - 前記透明酸化物膜が、5.0g/cm3以上の密度を有する、請求項1に記載の透明酸化物フィルム。 2. The transparent oxide film of claim 1, wherein the transparent oxide film has a density of 5.0 g/cm< 3 > or greater.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021038718A JP2022138695A (en) | 2021-03-10 | 2021-03-10 | transparent oxide film |
JP2021-038718 | 2021-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190930A1 true WO2022190930A1 (en) | 2022-09-15 |
Family
ID=83226595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008239 WO2022190930A1 (en) | 2021-03-10 | 2022-02-28 | Transparent oxide film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022138695A (en) |
TW (1) | TW202246060A (en) |
WO (1) | WO2022190930A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06191844A (en) * | 1992-12-25 | 1994-07-12 | Hoya Corp | Electric conductive transparent oxide |
JPH08337419A (en) * | 1995-06-13 | 1996-12-24 | Hoya Corp | Infrared-ray reflecting film |
JP2007250430A (en) * | 2006-03-17 | 2007-09-27 | Sumitomo Metal Mining Co Ltd | Transparent conductive thin film and transparent conductive film using same |
WO2020067235A1 (en) * | 2018-09-26 | 2020-04-02 | 出光興産株式会社 | Oxide multilayer body and method for producing same |
-
2021
- 2021-03-10 JP JP2021038718A patent/JP2022138695A/en active Pending
-
2022
- 2022-02-28 WO PCT/JP2022/008239 patent/WO2022190930A1/en active Application Filing
- 2022-03-03 TW TW111107693A patent/TW202246060A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06191844A (en) * | 1992-12-25 | 1994-07-12 | Hoya Corp | Electric conductive transparent oxide |
JPH08337419A (en) * | 1995-06-13 | 1996-12-24 | Hoya Corp | Infrared-ray reflecting film |
JP2007250430A (en) * | 2006-03-17 | 2007-09-27 | Sumitomo Metal Mining Co Ltd | Transparent conductive thin film and transparent conductive film using same |
WO2020067235A1 (en) * | 2018-09-26 | 2020-04-02 | 出光興産株式会社 | Oxide multilayer body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
TW202246060A (en) | 2022-12-01 |
JP2022138695A (en) | 2022-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7575698B2 (en) | TI and W containing transparent oxide electrode film | |
EP1752430B1 (en) | Transparent conductive oxide | |
Wang et al. | Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications | |
WO2021187583A1 (en) | Transparent electroconductive layer and transparent electroconductive film | |
JPH0864849A (en) | Rear surface reflecting layer for photovoltaic element and formation thereof, photovoltaic element and fabrication thereof | |
US20100089623A1 (en) | Conductive laminated body and method for preparing the same | |
López-García et al. | Wide-bandgap CuIn1− xAlxSe2 thin films deposited on transparent conducting oxides | |
WO2022190930A1 (en) | Transparent oxide film | |
JP5533448B2 (en) | Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof | |
Hamada et al. | The effect of substrate roughness on the properties of RF sputtered AZO thin film | |
KR20150083869A (en) | Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor | |
US20070122632A1 (en) | Coating which is applied to substrate, a solar cell, and method for applying the coating to the substrate | |
JP7213962B2 (en) | Light-transmitting conductive layer and light-transmitting conductive film | |
López-García et al. | Formation of semitransparent CuAlSe 2 thin films grown on transparent conducting oxide substrates by selenization | |
WO2022190929A1 (en) | Transparent barrier film | |
Zakrzewska et al. | The electrical and optical properties of Cdln2O4 thin films prepared by dc reactive sputtering | |
Jang et al. | Effects of Electron Irradiation on the Properties of ZnO/Au/ZnO Films Deposited on Poly-Imide Substrates | |
Lee et al. | Nanometer-thick amorphous-SnO 2 layer as an oxygen barrier coated on a transparent AZO electrode | |
Tsai et al. | Photoelectric Characteristics of Trilayer Thin-film Structures Processed at Different Annealing Temperatures for Photosensors. | |
Alyamani et al. | Influence of gamma ray and thermal annealing on zinc oxide and titanium oxide thin films characteristics | |
Soare et al. | Electrodeposition and characterization of CuInSe2/CdS multilayered thin films deposited on flexible substrate | |
WO2023042846A1 (en) | Transparent electroconductive layer, transparent electroconductive film, and article | |
JP7389940B2 (en) | Transparent conductive layers, transparent conductive films and articles | |
Zaika et al. | The influence of aluminum on the morphological, optical properties and electronic structure of ZnO thin films | |
JP2000052476A (en) | Heat ray barrier film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22766889 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22766889 Country of ref document: EP Kind code of ref document: A1 |