JPH06185528A - Bearing device for rotary shaft - Google Patents

Bearing device for rotary shaft

Info

Publication number
JPH06185528A
JPH06185528A JP35461992A JP35461992A JPH06185528A JP H06185528 A JPH06185528 A JP H06185528A JP 35461992 A JP35461992 A JP 35461992A JP 35461992 A JP35461992 A JP 35461992A JP H06185528 A JPH06185528 A JP H06185528A
Authority
JP
Japan
Prior art keywords
oil
bearing
lubricating oil
metal plate
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35461992A
Other languages
Japanese (ja)
Inventor
Masahiko Kitajima
正彦 北島
Hiroyuki Shintani
裕之 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp, Ube Industries Ltd filed Critical Nidec Copal Corp
Priority to JP35461992A priority Critical patent/JPH06185528A/en
Publication of JPH06185528A publication Critical patent/JPH06185528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To improve reliability equivalent to a ball bearing by fitting an assist sintered metal plate, without containing lubricating oil, to a part where an exposed surface of a sintered oil-retaining bearing, so that a loss of lubricating oil is prevented to effectively hold it and to maintain a function of the lubricating oil till its own life expires. CONSTITUTION:An opening surface of a sintered oil-retaining bearing 18 is coated with a non-oil-retaining sintered metal plate 26, and a fine hole diameter of the non-oil-retaining sintered metal plate 26, closely attached to the bearing 18, is set larger than that of the bearing 18. Consequently, by a difference of capillary force in a boundary surface, a retaining amount of lubricating oil can be maintained at a fixed value by retaining lubricating oil in the bearing 18. Even in the case that lubricating oil, whose viscosity is decreased due to temperature rise by rotating a shaft 12, seeps from a surface of the oil-retaining bearing 18, the lubricating oil is moved, absorbed by capillary force by the non-oil-retaining sintered metal plate 26, restricted by capillary force by a fine hole of this metal plate and prevented from flowing out and vaporizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転シャフトの軸受装置
に係り、特に含油軸受部材を利用した軸受装置の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating shaft bearing device, and more particularly to improvement of a bearing device utilizing an oil-impregnated bearing member.

【0002】[0002]

【従来の技術】一般に、ファンモータの用途の大部分は
電子部品発熱の冷却であり、ファンの寿命はそれが取り
付けられる機器の寿命と同等であることが要求されるた
め、軸受は高い信頼性が必要とされる。特に、長寿命を
要求される場合、現状ではボールベアリングを用いた軸
受構造のファンが使用されることが多いが、精密部品で
あるため高価であり、衝撃に弱く、また軸受内に封入さ
れたグリースの劣化とともに、次第に騒音レベルが増加
するという欠点がある。
2. Description of the Related Art Generally, most applications of fan motors are cooling of heat generated from electronic parts, and the life of the fan is required to be equal to the life of the equipment to which it is attached, so that the bearing has high reliability. Is required. Especially, when long life is required, at present, a fan with a bearing structure using a ball bearing is often used, but it is expensive because it is a precision part, it is weak against impact, and it is enclosed in the bearing. There is a drawback that the noise level gradually increases as the grease deteriorates.

【0003】これに対し、軸受部材として焼結含油軸受
が知られており、これは軸受部材を金属粉末を焼結し、
その空隙に潤滑油を浸透保持させたものである。このよ
うな焼結含油軸受は安価であり、比較的負荷の小さな回
転体に対して広く使用されており、特に小型ファンモー
タでは軸受に対する負荷が小さいため、この種の軸受が
多く使用されている。
On the other hand, a sintered oil-impregnated bearing is known as a bearing member, which is manufactured by sintering a metal powder into the bearing member.
Lubricant oil is permeated and held in the voids. Such a sintered oil-impregnated bearing is inexpensive and widely used for a rotating body having a relatively small load. Especially, in a small fan motor, since the load on the bearing is small, this type of bearing is often used. .

【0004】従来の焼結含油軸受を利用したファンシャ
フトの軸受装置の例を図2に示す。図示のように、小型
ファンモータ1はインペラー2を収容するケーシング3
を具備し、収容されたインペラー2の中央部に装着され
た回転シャフト4をケーシング3の中央基板面に向けて
突出させている。ケーシング3にはシャフト4の回転支
持用のボス部5が形成され、これにはシャフト取付け部
材としての焼結含油軸受6を取り付けるための取付穴7
と、これに連続して軸受6を貫通したシャフト先端に取
付けられる抜け止めリング8の収容空間9が形成されて
いる。焼結含油軸受6における潤滑油は、シャフト4の
回転に伴うポンプ作用および熱膨張によって摩擦面に滲
み出して潤滑作用をなし、同時に潤滑膜に生ずる油圧に
よって焼結金属内の細孔に戻るという挙動を示す。この
ような焼結含油軸受を用いると、焼結金属内の細孔に潤
滑油が一定の割合で保持されている限り、騒音レベルは
変化せず、摩耗も無視できるので、軸受性能の変化は小
さく、非常に安定している。
FIG. 2 shows an example of a bearing device for a fan shaft using a conventional sintered oil-impregnated bearing. As shown, the small fan motor 1 has a casing 3 that houses the impeller 2.
The rotary shaft 4 mounted on the central portion of the housed impeller 2 is projected toward the central substrate surface of the casing 3. A boss portion 5 for supporting the rotation of the shaft 4 is formed in the casing 3, and a mounting hole 7 for mounting a sintered oil-impregnated bearing 6 as a shaft mounting member is formed in the boss portion 5.
A storage space 9 for the retaining ring 8 attached to the tip of the shaft that penetrates the bearing 6 is formed continuously with this. Lubricating oil in the sintered oil-impregnated bearing 6 exudes to the friction surface by the pumping action and thermal expansion accompanying the rotation of the shaft 4 to perform a lubricating action, and at the same time returns to the pores in the sintered metal by the hydraulic pressure generated in the lubricating film. Shows the behavior. When such a sintered oil-impregnated bearing is used, the noise level does not change and wear can be ignored as long as the lubricating oil is held in the pores in the sintered metal at a constant rate, so there is no change in bearing performance. Small and very stable.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の焼結
含油軸受を用いた装置で連続運転を行うと、回転シャフ
トとの摩擦により軸受が高温となり、焼結金属に含有さ
れる潤滑油が高温になって粘度が低下し、軸受からの流
出が生じ易くなり、また特に軸受開放面からの蒸発によ
る損失が発生し、損失が無視できなくなるという問題が
あった。すなわち、軸受内の潤滑油が不足してくると、
摺動面に形成されていた油膜が不完全となり、潤滑性能
が低下して振動、異音の発生、摩耗が発生し、軸受の寿
命に至ってしまうのである。
However, when continuous operation is carried out in a device using a conventional sintered oil-impregnated bearing, the bearing becomes hot due to friction with the rotating shaft, and the lubricating oil contained in the sintered metal becomes hot. Therefore, there is a problem that the viscosity is lowered, the outflow from the bearing is likely to occur, and the loss particularly from evaporation from the bearing open surface occurs, and the loss cannot be ignored. That is, if the lubricating oil in the bearing becomes insufficient,
The oil film formed on the sliding surface becomes incomplete, the lubrication performance deteriorates, and vibration, abnormal noise, and wear occur, leading to the life of the bearing.

【0006】すなわち、焼結含油軸受に含まれる潤滑油
は細孔内に含浸され、潤滑油は細孔の毛細管力によって
保持されている。したがって、シャフトが回転しない状
態では潤滑油は表面に殆ど存在せず、軸受の細孔内と摺
動部に存在する。摺動部ではシャフトと軸受内径とのク
リアランスが通常数ミクロンと小さいため、毛細管力の
差によって軸受から潤滑油が移動して摺動面に僅かな潤
滑油が存在している。
That is, the lubricating oil contained in the sintered oil-impregnated bearing is impregnated into the pores, and the lubricating oil is retained by the capillary force of the pores. Therefore, in the state where the shaft does not rotate, the lubricating oil hardly exists on the surface but exists in the pores of the bearing and in the sliding portion. Since the clearance between the shaft and the bearing inner diameter is usually as small as a few microns in the sliding portion, the lubricating oil moves from the bearing due to the difference in capillary force, and a slight amount of lubricating oil exists on the sliding surface.

【0007】シャフトが回転を開始すると、摺動面には
油膜が形成されるが、余分な潤滑油は軸受内に押込ま
れ、また温度上昇によって潤滑油が膨張するので、軸受
の表面に潤滑油が浮き出してくる。表面に浮き出した潤
滑油は拘束力が弱く不安定なため、振動等の僅かな外力
によって軸受外に流れ出易く、潤滑油の損失を生じやす
い。特に高温域では潤滑油の粘度が低下するので、表面
に浮き出た潤滑油は更に流れ出易くなる。このようにし
て一旦軸受外に流れ出た潤滑油は外部に拡散し、軸受内
に復帰しない。
When the shaft starts to rotate, an oil film is formed on the sliding surface, but excess lubricating oil is pushed into the bearing, and the lubricating oil expands due to the temperature rise. Comes out. Since the lubricating oil that has floated on the surface has a weak binding force and is unstable, it is easy for the lubricating oil to flow out of the bearing due to a slight external force such as vibration, resulting in a loss of the lubricating oil. In particular, since the viscosity of the lubricating oil decreases in a high temperature range, the lubricating oil that has floated on the surface becomes even more likely to flow out. In this way, the lubricating oil once flowing out of the bearing diffuses to the outside and does not return to the inside of the bearing.

【0008】また、小さいとはいえ、潤滑油は一定の蒸
気圧をもっており、特に高温になると蒸気圧が上昇する
ので、蒸発による潤滑油の損失も無視できなくなる。フ
ァンモータの場合、軸受に近接してロータ(インペラ)
が回転しているので、軸受表面付近にもかなりの気流が
存在し、潤滑油の蒸発を促進している。したがって、潤
滑油の流出だけを防止できても蒸発によって潤滑油損失
が進むので、特に高温域での長寿命を達成するのは困難
である。
Further, although small, the lubricating oil has a constant vapor pressure, and since the vapor pressure rises especially at high temperatures, the loss of the lubricating oil due to evaporation cannot be ignored. In the case of a fan motor, the rotor (impeller) should be placed close to the bearing.
Since, is rotating, there is a considerable air flow near the bearing surface, which promotes evaporation of the lubricating oil. Therefore, even if only the outflow of the lubricating oil can be prevented, the loss of the lubricating oil proceeds due to evaporation, so that it is difficult to achieve a long life especially in a high temperature range.

【0009】表面に浮き出た潤滑油を保持するために樹
脂性のワッシャを軸受表面に取り付けると一定の保持効
果は得られるが、完全に密着させるとオイルの保持量が
制限を受け、隙間を作ると保持力が低下するので潤滑油
の流出、蒸発損失の防止に対して安定した効果を得るの
は困難である。
If a resin washer is attached to the surface of the bearing in order to retain the lubricating oil floating on the surface, a certain holding effect can be obtained, but if it is completely adhered, the amount of oil held is limited and a gap is created. Therefore, it is difficult to obtain a stable effect for preventing the outflow of the lubricating oil and the evaporation loss.

【0010】本発明は、上記従来の問題点に着目し、焼
結含油軸受を用いた軸受装置において、潤滑油の損失を
防止し、潤滑油を効果的に保持させることにより潤滑油
そのものの寿命に至るまでその機能を維持させてボール
ベアリングに匹敵する信頼性と、長寿命化を図ることが
できる回転シャフトの軸受装置を提供することを目的と
する。
The present invention focuses on the above-mentioned conventional problems, and in a bearing device using a sintered oil-impregnated bearing, the loss of the lubricating oil is prevented, and the lubricating oil is effectively retained so that the life of the lubricating oil itself is increased. It is an object of the present invention to provide a bearing device for a rotating shaft, which can maintain its function up to and has reliability comparable to that of a ball bearing and long life.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る回転シャフトの軸受装置は、シャフト
が挿通されて当該シャフトを回転支持する焼結含油軸受
を備えた軸受装置において、前記焼結含油軸受の開放面
部分を無含油焼結金属板を接合して覆った構成とした。
In order to achieve the above object, a bearing device for a rotary shaft according to the present invention is a bearing device having a sintered oil-impregnated bearing for rotatably supporting the shaft. An open surface portion of the sintered oil-impregnated bearing was joined and covered with an oil-free sintered metal plate.

【0012】この場合において、無含油焼結金属板は焼
結含油軸受の細孔より大きな細孔を有する構造とするこ
とが望ましい。また、無含油焼結金属板は焼結含油軸受
のシャフト貫通面に接合してサンドイッチ状に取り付
け、これにシャフトを貫通させるように構成すればよ
い。
In this case, it is desirable that the oil-free sintered metal plate has a structure having pores larger than those of the sintered oil-impregnated bearing. Further, the oil-free sintered metal plate may be joined to the shaft penetrating surface of the sintered oil-impregnated bearing and attached in a sandwich shape, and the shaft may be penetrated therethrough.

【0013】[0013]

【作用】上記構成によれば、焼結含油軸受の表面が露出
している部分に潤滑油を含まない補助の焼結金属板を取
り付けることによって、回転中、軸受から浮き出た潤滑
油を吸収し、その毛細管力によって余分の潤滑油を補助
の焼結金属板内に保持させることができる。これによっ
て潤滑油が焼結含油軸受の表面部分から外部に流出する
ことを防止できる。
According to the above structure, the auxiliary sintered metal plate containing no lubricating oil is attached to the exposed surface of the sintered oil-impregnated bearing, so that the lubricating oil floating from the bearing is absorbed during rotation. The extra lubricating oil can be retained in the auxiliary sintered metal plate by its capillary force. This can prevent the lubricating oil from flowing out from the surface portion of the sintered oil-impregnated bearing.

【0014】また、焼結含油軸受に使用している焼結金
属の細孔径より径の大きな細孔を有する補助焼結金属板
構造とすることによって、接合面では細孔径の差による
毛細管力の違いによって潤滑油は含油軸受側に吸収され
ることになる。更に、補助焼結金属板にシャフト貫通部
を形成することにより、シャフト表面部分を流れる潤滑
油は焼結金属板の毛細管力により吸収され、同時にシャ
フトとの隙間を通って流出しようとする潤滑油も補助の
焼結金属板に吸収させることができるのである。
Further, by using an auxiliary sintered metal plate structure having pores having a diameter larger than that of the sintered metal used for the sintered oil-impregnated bearing, the capillary force due to the difference in pore diameter at the joint surface is Depending on the difference, the lubricating oil will be absorbed by the oil-impregnated bearing side. Further, by forming the shaft penetrating portion on the auxiliary sintered metal plate, the lubricating oil flowing on the shaft surface portion is absorbed by the capillary force of the sintered metal plate, and at the same time, the lubricating oil that tries to flow out through the gap with the shaft. Can also be absorbed by an auxiliary sintered metal plate.

【0015】[0015]

【実施例】以下に、本発明に係る回転シャフトの軸受装
置の具体的実施例を図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a bearing device for a rotary shaft according to the present invention will be described in detail below with reference to the drawings.

【0016】図1は実施例に係る回転シャフトの軸受装
置部分の拡大断面図であり、小型ファンモータ10に適
用した例である。小型ファンモータ10のファン回転シ
ャフト12の軸受部分を構成するために、ファンケーシ
ング14にはシャフト12の回転支持用のボス部16が
形成され、これにはシャフト回転支持部材としての焼結
含油軸受18を固定するための取付穴20と、これに連
続して軸受18から貫通したシャフト先端に取付けられ
る抜け止めリング21の収容空間22が形成されてい
る。ボス部16に取り付けられる焼結含油軸受18はシ
ャフト挿通孔18Cが中心部に形成され、外周面部分が
取付穴20に締り嵌めによって取り付けられるようにな
っている。このため、図1における焼結含油軸受18の
インペラ24への対面部である上端面18Aと、リング
収容空間22への対面している下端面18Bは開放面と
なっている。
FIG. 1 is an enlarged sectional view of a bearing device portion of a rotary shaft according to an embodiment, which is an example applied to a small fan motor 10. In order to configure a bearing portion of the fan rotation shaft 12 of the small fan motor 10, a boss portion 16 for supporting rotation of the shaft 12 is formed in the fan casing 14, and a sintered oil-impregnated bearing serving as a shaft rotation support member is formed on the boss portion 16. A mounting hole 20 for fixing 18 is formed, and a receiving space 22 for a retaining ring 21 attached to the tip of the shaft penetrating from the bearing 18 is formed continuously from the mounting hole 20. The sintered oil-impregnated bearing 18 attached to the boss portion 16 has a shaft insertion hole 18C formed at the center thereof, and the outer peripheral surface portion thereof is attached to the attachment hole 20 by an interference fit. Therefore, the upper end surface 18A of the sintered oil-impregnated bearing 18 facing the impeller 24 and the lower end surface 18B facing the ring housing space 22 in FIG. 1 are open surfaces.

【0017】このような構成において、実施例では、焼
結含油軸受18の開放端面部分に対し、当該軸受18に
使用している焼結金属の細孔径より径の大きな細孔が形
成されるように金属粉末を焼結した焼結金属板であっ
て、潤滑油を含浸させていない無含油焼結金属板26を
密着接合させたものである。すなわち、焼結含油軸受1
8のインペラ24に対面している上端面18Aと、リン
グ収容空間22に対面している下端面18Bのそれぞれ
の表面に薄い無含油焼結金属板26を積層させるように
密着接合して取り付けてサンドイッチ状に形成してい
る。無含油焼結金属板26の取り付け面はシャフト貫通
面となっているので、当該無含油焼結金属板26の各々
にもシャフト挿通孔22A、22Bを形成する。シャフ
ト挿通孔22A、22Bとシャフト12との間には必要
最小限のわずかの隙間が持たされている。
In such a structure, in the embodiment, pores having a diameter larger than that of the sintered metal used in the bearing 18 are formed in the open end surface portion of the sintered oil-impregnated bearing 18. It is a sintered metal plate obtained by sintering metal powder, and is an oil-free sintered metal plate 26 that is not impregnated with lubricating oil and is closely bonded. That is, the sintered oil-impregnated bearing 1
8 of the upper end surface 18A facing the impeller 24 and the lower end surface 18B facing the ring housing space 22 are attached by thinly adhering the oilless sintered metal plates 26 so as to be laminated. It is shaped like a sandwich. Since the mounting surface of the oilless sintered metal plate 26 is the shaft penetrating surface, the shaft insertion holes 22A and 22B are also formed in each of the oilless sintered metal plate 26. Between the shaft insertion holes 22A and 22B and the shaft 12, a minimum necessary minimum gap is provided.

【0018】また、無含油焼結金属板26内部の空隙を
形成する細孔の相当直径は焼結含油軸受18のそれより
大きく形成するが、これは境界面での潤滑油に対する毛
細管力に差異が生じ、境界面に浮き出た潤滑油が焼結含
油軸受18側に吸引されるように直径差を与えるもので
ある。一般に焼結金属の細孔径は工業的には使用する金
属粒子径の18%程度となることが多く、したがって無
含油焼結金属板26側の細孔径が大きくなるようにする
ためには、焼結用金属粉末の粒径が焼結含油軸受18の
粒径より大きいものを使用することによって容易に製造
することができる。更に、無含油焼結金属板26は、焼
結含油軸受18からの蒸発潤滑油あるいは挿通孔に沿っ
て流出する潤滑油を吸収できる最小限の空隙容積を持て
ばよいので、その板厚は薄くてよい。もちろん、空隙容
積は無含油焼結金属板26内に吸収された潤滑油が自己
外表面から蒸発しないような厚さに設定する必要がある
のはいうまでもない。
Also, the equivalent diameter of the pores forming the voids inside the oil-free sintered metal plate 26 is made larger than that of the sintered oil-impregnated bearing 18, which differs in the capillary force against the lubricating oil at the boundary surface. Occurs, and a difference in diameter is given so that the lubricating oil that has floated to the boundary surface is sucked toward the sintered oil-impregnated bearing 18 side. In general, the pore size of the sintered metal is often about 18% of the metal particle size used industrially, and therefore, in order to increase the pore size on the oil-free sintered metal plate 26 side, firing It can be easily manufactured by using a binder metal powder having a particle size larger than that of the sintered oil-impregnated bearing 18. Furthermore, since the oil-free sintered metal plate 26 has a minimum void volume capable of absorbing the evaporated lubricating oil from the sintered oil-impregnated bearing 18 or the lubricating oil flowing out along the insertion hole, the plate thickness is thin. You may Of course, it is needless to say that the void volume needs to be set to a thickness such that the lubricating oil absorbed in the oil-free sintered metal plate 26 does not evaporate from its own outer surface.

【0019】なお、上記実施例においては、無含油焼結
金属板26は焼結含油軸受18の両端面18A、18B
に取り付けているが、片側の端面が密閉状態であれば他
方の開放側のみに取り付けるようにすればよい。
In the above embodiment, the oil-free sintered metal plate 26 is the end surfaces 18A, 18B of the sintered oil-impregnated bearing 18.
However, if one end surface is in a sealed state, it may be attached only to the other open side.

【0020】このような構成に係る回転シャフトの軸受
装置によれば、焼結含油軸受18の開放表面を無含油焼
結金属板26によって覆い、軸受18に密着する無含油
焼結金属板26の細孔径を軸受18のそれよりも大きく
設定しているため、境界面では毛細管力の差によって、
潤滑油は軸受18側に保持されて、潤滑油の保持量を一
定に保つことができる。そして、シャフト12の回転に
よって昇温して粘性が低下した潤滑油が含油軸受18の
表面から滲み出た場合でも、図1(2)に示すように、
無含油焼結金属板26による毛細管力により移動、吸収
され、その細孔による毛細管力によって拘束されて外部
に流出したり、蒸発することが防止される。シャフト1
2の回転が停止して温度が低下すると、無含油焼結金属
板26に移動した潤滑油は、軸受18側の毛細管力が大
きく設定されているため、軸受18側に再移動し、もと
の状態に復帰し、その潤滑油保持量が一定に保たれるの
である。
According to the bearing device for a rotary shaft having such a structure, the open surface of the sintered oil-impregnated bearing 18 is covered with the oil-free sintered metal plate 26, and the oil-free sintered metal plate 26 adhered to the bearing 18 is adhered. Since the pore diameter is set to be larger than that of the bearing 18, the difference in capillary force at the boundary surface causes
The lubricating oil is held on the bearing 18 side, and the amount of lubricating oil held can be kept constant. Then, even when the lubricating oil whose temperature has risen due to the rotation of the shaft 12 and whose viscosity has decreased exudes from the surface of the oil-impregnated bearing 18, as shown in FIG.
The oil-free sintered metal plate 26 is moved and absorbed by the capillary force, and is restrained by the capillary force due to the pores thereof to be prevented from flowing out or evaporating. Shaft 1
When the rotation of No. 2 is stopped and the temperature drops, the lubricating oil that has moved to the oil-free sintered metal plate 26 re-migrates to the bearing 18 side because the capillary force on the bearing 18 side is set to a large value. Then, the lubricating oil holding amount is kept constant.

【0021】更に、無含油焼結金属板26の細孔容積を
軸受18から浮き出てくる潤滑油の量に対して充分大き
く設定できるため、無含油焼結金属板26に移動した潤
滑油はその外表面まで達することがなく、軸受18の表
面の潤滑油の蒸発は細孔空隙内を通して起こることにな
り、軸受回りにインペラ24の回転によって気流が発生
しても、蒸発速度を大幅に抑制することができる。
Furthermore, since the pore volume of the oil-free sintered metal plate 26 can be set to be sufficiently large with respect to the amount of the lubricating oil floating from the bearing 18, the lubricating oil transferred to the oil-free sintered metal plate 26 is Evaporation of the lubricating oil on the surface of the bearing 18 occurs through the pores of the bearing 18 without reaching the outer surface, and even if the airflow is generated by the rotation of the impeller 24 around the bearing, the evaporation rate is significantly suppressed. be able to.

【0022】また、無含油焼結金属板26をシャフト1
2の貫通面に接合して軸受18をサンドイッチ状に挟ん
でいるため、シャフト12と軸受18の間の摺動面を通
じて流出しようとする潤滑油は、無含油焼結金属板26
のシャフト挿通孔22A、22B部分で毛細管力により
移動吸収され、シャフト12に沿って外部に流出しよう
とする潤滑油の流出を抑制できる。
Further, the oil-free sintered metal plate 26 is attached to the shaft 1.
Since the bearing 18 is sandwiched by being joined to the through surface of No. 2, the lubricating oil that is about to flow out through the sliding surface between the shaft 12 and the bearing 18 does not contain the oil-free sintered metal plate 26.
It is possible to suppress the outflow of the lubricating oil, which is moved and absorbed by the capillary force in the shaft insertion holes 22A and 22B, and tends to flow out to the outside along the shaft 12.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
シャフトが挿通されて当該シャフトの回転支持する焼結
含油軸受を備えた軸受装置において、前記焼結含油軸受
の開放面部分を無含油焼結金属板を接合して覆った構成
としているため、焼結含油軸受を用いた軸受装置におい
て、潤滑油の流出や蒸発による損失を防止できるととも
に、潤滑油を効果的に保持させることにより潤滑油その
ものの寿命に至るまでその機能を維持させてボールベア
リングに匹敵する信頼性と、長寿命化を図ることができ
るという優れた効果が得られる。
As described above, according to the present invention,
In a bearing device provided with a sintered oil-impregnated bearing in which the shaft is inserted to rotatably support the shaft, since the open surface portion of the sintered oil-impregnated bearing is covered with an oil-free sintered metal plate that is bonded to the shaft, In bearing devices that use oil-impregnated bearings, the loss of lubricating oil due to outflow and evaporation can be prevented, and by effectively retaining the lubricating oil, its function is maintained for the life of the lubricating oil itself, and it is used as a ball bearing. The excellent effect that the reliability is comparable and the life can be extended can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る回転シャフトの軸受装置の要部断
面図および模式拡大断面図である。
FIG. 1 is a main-part sectional view and a schematic enlarged sectional view of a bearing device for a rotary shaft according to an embodiment.

【図2】従来の小型モータファンの軸受部を含む断面図
である。
FIG. 2 is a cross-sectional view including a bearing portion of a conventional small motor fan.

【符号の説明】[Explanation of symbols]

10 小型ファンモータ 12 回転シャフト 14 ファンケーシング 16 ボス部 18 焼結含油軸受 18C シャフト挿通孔 20 軸受取付孔 24 インペラ 26 無含油焼結金属板 10 Small Fan Motor 12 Rotating Shaft 14 Fan Casing 16 Boss 18 Sintered Oil-impregnated Bearing 18C Shaft Insertion Hole 20 Bearing Mounting Hole 24 Impeller 26 Oil-free Sintered Metal Plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シャフトが挿通されて当該シャフトを回
転支持する焼結含油軸受を備えた軸受装置において、前
記焼結含油軸受の開放面部分を無含油焼結金属板を接合
して覆ったことを特徴とする回転シャフトの軸受装置。
1. A bearing device comprising a sintered oil-impregnated bearing in which a shaft is inserted to rotatably support the shaft, wherein an open surface portion of the sintered oil-impregnated bearing is covered with an oil-free sintered metal plate. A bearing device for a rotating shaft.
JP35461992A 1992-12-16 1992-12-16 Bearing device for rotary shaft Pending JPH06185528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35461992A JPH06185528A (en) 1992-12-16 1992-12-16 Bearing device for rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35461992A JPH06185528A (en) 1992-12-16 1992-12-16 Bearing device for rotary shaft

Publications (1)

Publication Number Publication Date
JPH06185528A true JPH06185528A (en) 1994-07-05

Family

ID=18438785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35461992A Pending JPH06185528A (en) 1992-12-16 1992-12-16 Bearing device for rotary shaft

Country Status (1)

Country Link
JP (1) JPH06185528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011140A1 (en) * 1990-04-06 1991-01-17 Werner Bohne Two stroke IC engine - has piston rod fitted with transverse pin with rollers which run in sinusoidal slot
US5895119A (en) * 1995-11-30 1999-04-20 Hitachi Powered Metals Co., Ltd. Composite porous bearing
US5899572A (en) * 1996-04-10 1999-05-04 Johnson Electric S.A. Bearing assembly for a miniature motor
US6692152B2 (en) 2000-11-17 2004-02-17 Nidec Copal Corporation Supporting structure for motor rotor
DE102006002450A1 (en) * 2005-10-28 2007-05-03 Sunonwealth Electric Machine Industry Co., Ltd. Oil stopping and oil retaining bearing
JP2009085355A (en) * 2007-09-29 2009-04-23 Nippon Densan Corp Oil retaining bearing mechanism and brushless motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011140A1 (en) * 1990-04-06 1991-01-17 Werner Bohne Two stroke IC engine - has piston rod fitted with transverse pin with rollers which run in sinusoidal slot
DE4011140C2 (en) * 1990-04-06 1999-12-02 Werner Bohne Two-stroke internal combustion engine with mixture-free purging, adjustable inlet and outlet device, as well as lift shaft-free power transmission, in a two-cylinder design
US5895119A (en) * 1995-11-30 1999-04-20 Hitachi Powered Metals Co., Ltd. Composite porous bearing
US6119346A (en) * 1995-11-30 2000-09-19 Hitachi Powdered Metals Co., Ltd Composite porous bearing and method of making same
US5899572A (en) * 1996-04-10 1999-05-04 Johnson Electric S.A. Bearing assembly for a miniature motor
US6692152B2 (en) 2000-11-17 2004-02-17 Nidec Copal Corporation Supporting structure for motor rotor
DE102006002450A1 (en) * 2005-10-28 2007-05-03 Sunonwealth Electric Machine Industry Co., Ltd. Oil stopping and oil retaining bearing
JP2009085355A (en) * 2007-09-29 2009-04-23 Nippon Densan Corp Oil retaining bearing mechanism and brushless motor

Similar Documents

Publication Publication Date Title
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
JP4481475B2 (en) Hydrodynamic bearing unit
US5145266A (en) Bearing apparatus
JP2000350408A (en) Motor for driving recovering disk
US8085495B2 (en) Spindle motor and disk-shaped medium recording and producing device
JPH06185528A (en) Bearing device for rotary shaft
US3851933A (en) Hydrodynamic fluid-film bearings
JP2006029565A (en) Fluid bearing device, spindle motor having the same, and hard disk drive device
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP4248625B2 (en) motor
JP2000240581A (en) Drain pump
JP4992642B2 (en) Oil-impregnated bearing mechanism and brushless motor
JP2001173656A (en) Dynamic pressure type bearing unit
JP2588899Y2 (en) Bearing device
JP4098193B2 (en) Slide bearing and rotating anode type X-ray tube
JP3842611B2 (en) Oil-impregnated bearing
JPS626158B2 (en)
US4085982A (en) Seal free liquid bearing
US11519459B2 (en) Fluid dynamic bearing device
JP2917414B2 (en) Axial fan motor
JP2001355631A (en) Dynamic pressure bearing device and spindle motor provided with it
JP2020141532A (en) Fluid dynamic pressure bearing device and motor including the same
JP2000113582A (en) Recording disk driving device
WO2020013049A1 (en) Fluid dynamic pressure bearing device and motor with said bearing device
CN113623263A (en) Oil-retaining bearing structure and thin fan comprising same