JP2020139608A - Hydrodynamic pressure bearing device and motor including the same - Google Patents

Hydrodynamic pressure bearing device and motor including the same Download PDF

Info

Publication number
JP2020139608A
JP2020139608A JP2019037442A JP2019037442A JP2020139608A JP 2020139608 A JP2020139608 A JP 2020139608A JP 2019037442 A JP2019037442 A JP 2019037442A JP 2019037442 A JP2019037442 A JP 2019037442A JP 2020139608 A JP2020139608 A JP 2020139608A
Authority
JP
Japan
Prior art keywords
bearing
bearing sleeve
peripheral surface
housing
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019037442A
Other languages
Japanese (ja)
Inventor
元霜 宋
Yuanshuang SONG
元霜 宋
正志 山郷
Masashi Yamasato
正志 山郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019037442A priority Critical patent/JP2020139608A/en
Publication of JP2020139608A publication Critical patent/JP2020139608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

To provide a hydrodynamic pressure bearing device that can secure an adhesive strength to a housing without changing density of a sintered metal, and to provide a motor including the same.SOLUTION: A hydrodynamic pressure bearing device includes a bearing sleeve made of a porous sintered material into which volatile liquid can be impregnated. The bearing sleeve is fixed to an inner peripheral surface of a housing while being impregnated with the liquid via an adhesive agent formed in a radial clearance between an outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing.SELECTED DRAWING: Figure 1

Description

本発明は、流体動圧軸受装置およびこれを備えたモータに関する。 The present invention relates to a fluid dynamic bearing device and a motor including the same.

流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、種々の電気機器に搭載される各種モータ、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。 The fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy, and low noise. Therefore, the hydrodynamic bearing device can be used for various motors mounted on various electric devices, for example, for spindle motors incorporated in disk drive devices such as HDDs, fan motors incorporated in PCs, or laser beam printers. It is suitably used as a bearing device for a built-in polygon scanner motor.

例えば、下記の特許文献1〜3には、ハウジングと、ハウジングの内周に固定された多孔質の焼結材料(焼結金属)からなる軸受スリーブ、軸受スリーブの内周面で形成され、流体(例えば、潤滑油)が介在するラジアル軸受隙間と、ラジアル軸受隙間内の流体に生じる動圧作用で支持すべき軸(軸受スリーブの内周に挿入される軸部材)をラジアル方向に相対回転自在に非接触支持するラジアル軸受部と、を備えた種々の形態の流体動圧軸受装置が開示されている。 For example, in Patent Documents 1 to 3 below, a housing, a bearing sleeve made of a porous sintered material (sintered metal) fixed to the inner circumference of the housing, and a fluid formed on the inner peripheral surface of the bearing sleeve. The radial bearing gap (for example, lubricating oil) and the shaft (shaft member inserted into the inner circumference of the bearing sleeve) to be supported by the dynamic pressure generated in the fluid in the radial bearing gap can be rotated relative to each other in the radial direction. Various forms of hydrodynamic bearing devices are disclosed that include a radial bearing portion that non-contactly supports the bearing.

特開2004−116667号公報Japanese Unexamined Patent Publication No. 2004-116667 特開2010−96202号公報JP-A-2010-96202 特開2010−255777号公報JP-A-2010-255777

ところで、ハードディスクドライブやファンモータの使用環境は厳しさを増しており、振動特性に対する要求が高い。焼結軸受(軸受スリーブ)の外周面とハウジング内周面を接着固定するタイプの流体軸受において、接着強度が低いと振動の発生原因となるため、焼結軸受とハウジングの接着強度は重要なパラメータとなる。焼結金属の表面には無数の気孔があるため、接着時に接着剤が気孔内部に吸い込まれることで、接着強度の低下を引き起こす。更に、気孔に接着剤が吸い込まれることで軸受内部にエアのトラップされた空間が発生し、組立てる時の注油不良、潤滑油の漏れや回転精度の低下を引き起こす。 By the way, the usage environment of hard disk drives and fan motors is becoming more severe, and there is a high demand for vibration characteristics. In a fluid bearing of the type in which the outer peripheral surface of a sintered bearing (bearing sleeve) and the inner peripheral surface of the housing are adhered and fixed, low adhesive strength causes vibration, so the adhesive strength between the sintered bearing and the housing is an important parameter. It becomes. Since there are innumerable pores on the surface of the sintered metal, the adhesive is sucked into the pores during bonding, which causes a decrease in adhesive strength. Further, when the adhesive is sucked into the pores, a space where air is trapped is generated inside the bearing, which causes poor lubrication during assembly, leakage of lubricating oil, and deterioration of rotation accuracy.

このため、焼結金属の密度を高くすることで気孔の量を減らし、接着剤の吸い込みを防止するという方法を提案できる。しかしながら、密度を高くし過ぎると焼結金属の強度が高くなるため加工性の低下を引き起こしたり、材料費増によるコストアップが生じる。 Therefore, it is possible to propose a method of reducing the amount of pores by increasing the density of the sintered metal and preventing the suction of the adhesive. However, if the density is too high, the strength of the sintered metal becomes high, which causes a decrease in workability and an increase in cost due to an increase in material cost.

そこで、本発明は、上記課題に鑑みて、焼結金属の密度を変更することなくハウジングとの接着強度を確保することが可能な流体動圧軸受装置およびこれを備えたモータを提供するものである。 Therefore, in view of the above problems, the present invention provides a fluid dynamic bearing device capable of ensuring adhesive strength with a housing without changing the density of the sintered metal, and a motor provided with the hydrodynamic bearing device. is there.

本発明の流体動圧軸受装置は、軸受スリーブと、この軸受スリーブとの間で軸受隙間を形成する軸部材と、前記軸受スリーブを収納するハウジングと、前記軸受隙間に生じる流体の動圧作用で前記軸部材と前記軸受スリーブをラジアル方向に相対回転自在に非接触支持する流体動圧軸受装置において、前記軸受スリーブは、揮発する液体の含浸が可能な多孔質の焼結材料からなり、この液体が含浸された状態で、前記軸受スリーブの外周面と前記ハウジングの内周面との間の径方向隙間に形成された接着剤層を介して前記ハウジングの内周に固定されるものである。 In the fluid dynamic bearing device of the present invention, a bearing sleeve, a shaft member forming a bearing gap between the bearing sleeves, a housing for accommodating the bearing sleeve, and a dynamic pressure action of fluid generated in the bearing gap. In a fluid dynamic bearing device that non-contactly supports the shaft member and the bearing sleeve so as to be relatively rotatable in the radial direction, the bearing sleeve is made of a porous sintered material capable of impregnating a volatile liquid, and the liquid is used. Is impregnated with the bearing sleeve and fixed to the inner circumference of the housing via an adhesive layer formed in a radial gap between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing.

本発明の流体動圧軸受装置によれば、焼結金属の内部に液体を含浸した状態で、焼結金属の外周面もしくはハウジングの内周面に接着剤を塗布することになる。このように、あらかじめ焼結金属内部に液体を含浸しておくと気孔は液体で満たされているため、その液体が蓋となり、接着剤が気孔内部に吸い込まれにくくなる。 According to the fluid dynamic bearing device of the present invention, the adhesive is applied to the outer peripheral surface of the sintered metal or the inner peripheral surface of the housing in a state where the inside of the sintered metal is impregnated with the liquid. In this way, if the inside of the sintered metal is impregnated with a liquid in advance, the pores are filled with the liquid, so that the liquid becomes a lid and the adhesive is less likely to be sucked into the inside of the pores.

前記液体が炭化水素系洗浄液であるのが好ましい。ここで、炭化水素系洗浄液は、炭素と水素のみからなる化合物である。炭化水素系洗浄剤はその化学的構造から,ノルマルパラフィン系,イソパラフィン系,ナフテン系,芳香族系の4種類に分類される。特徴としては,金属への腐食性が少ないこと,蒸留再生によるリサイクルが可能なこと,比較的安価で経済的であること,脱脂力が高いことなどが挙げられる。 It is preferable that the liquid is a hydrocarbon-based cleaning liquid. Here, the hydrocarbon-based cleaning liquid is a compound consisting only of carbon and hydrogen. Hydrocarbon-based cleaning agents are classified into four types according to their chemical structure: normal paraffin-based, isoparaffin-based, naphthenic-based, and aromatic-based. Its features include low corrosiveness to metals, recyclability by distillation regeneration, relatively low cost and economy, and high degreasing power.

焼結金属を製作する際、洗浄・乾燥を行うものであり、この洗浄の洗浄液に炭化水素系洗浄液を用いることができ、焼結金属内に予め含浸させておく液体にこの炭化水素系洗浄液を用いるようにすれば、焼結金属の洗浄後の乾燥工程を簡略化できる。すなわち、輸送時などに問題が起きないレベルで表層部の洗浄液のみ乾燥させると、通常よりも乾燥温度を低く、乾燥時間を短くできる。 When the sintered metal is manufactured, it is cleaned and dried, and a hydrocarbon-based cleaning solution can be used as the cleaning solution for this cleaning, and this hydrocarbon-based cleaning solution is added to the liquid to be impregnated in advance in the sintered metal. If used, the drying step after cleaning the sintered metal can be simplified. That is, if only the cleaning liquid on the surface layer is dried at a level that does not cause a problem during transportation, the drying temperature can be lowered and the drying time can be shortened.

軸受の組立完了後に軸受内部(焼結金属内部も含む)に潤滑油を含油するが、含油する前に上記のあらかじめ含浸した液体を抜くことが出来れば、適切に潤滑油を含油することができる。 Lubricating oil is impregnated inside the bearing (including the inside of the sintered metal) after the assembly of the bearing is completed. ..

本発明のモータは、前記流体動圧軸受装置と、ロータマグネットと、ステーコイルとを有するものである。 The motor of the present invention has the fluid dynamic bearing device, a rotor magnet, and a stay coil.

本発明では、接着剤が焼結金属(軸受スリーブ)の気孔内部に吸い込まれていかないため、軸受スリーブの外周面とハウジング内周面の隙間は接着剤で満たされ、全面に渡って均一に接着固定され、十分な接着強度を確保することができる。また、エアをトラップするような隙間も発生しないため、軸受内部にエアが混入することによる潤滑油の漏れや回転精度の低下といった心配も無くなる。 In the present invention, since the adhesive is not sucked into the pores of the sintered metal (bearing sleeve), the gap between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing is filled with the adhesive and adheres uniformly over the entire surface. It is fixed and sufficient adhesive strength can be secured. In addition, since there is no gap that traps air, there is no need to worry about leakage of lubricating oil or deterioration of rotation accuracy due to air mixing inside the bearing.

本発明に係るモータ(スピンドルモータ)の縦断面図である。It is a vertical sectional view of the motor (spindle motor) which concerns on this invention. 本発明に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic bearing apparatus which concerns on this invention. 軸受スリーブの縦断面図である。It is a vertical sectional view of a bearing sleeve. 軸受スリーブの下面図である。It is a bottom view of the bearing sleeve. 軸受スリーブの要部拡大断面図である。It is an enlarged sectional view of the main part of a bearing sleeve.

以下本発明の実施の形態を図1〜図4に基づいて説明する。図1は、本実施形態に係る流体動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6に取付けられ、ロータマグネット5はディスクハブ3に取付けられる。流体動圧軸受装置1のハウジング7の外周面は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定枚数保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に作用する電磁力でロータ5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 1 according to the present embodiment. This spindle motor is used for a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably and non-contactly supports the shaft member 2, a disc hub 3 mounted on the shaft member 2, and, for example, a radius. It includes a stator coil 4 and a rotor magnet 5 that are opposed to each other via a directional gap. The stator coil 4 is attached to the casing 6, and the rotor magnet 5 is attached to the disk hub 3. The outer peripheral surface of the housing 7 of the fluid dynamic bearing device 1 is mounted on the inner circumference of the casing 6. A predetermined number of disks D such as magnetic disks are held in the disk hub 3. When the stator coil 4 is energized, the rotor 5 is rotated by an electromagnetic force acting between the stator coil 4 and the rotor magnet 5, whereby the disc hub 3 and the shaft member 2 are integrally rotated.

図2に示すように、流体動圧軸受装置1は、軸部材2と、ハウジング7と、ハウジング7の内周に保持された軸受スリーブ8と、ハウジング7の軸方向一端の開口部に設けられたシール部9と、ハウジング7の軸方向他端を閉塞する蓋部10とを有する。なお、以下の説明では、便宜上、軸方向でハウジング7の閉塞側を下側、ハウジング7の開口側を上側と言うが、これは流体動圧軸受装置1の使用態様を限定する趣旨ではない。 As shown in FIG. 2, the hydrodynamic bearing device 1 is provided in the shaft member 2, the housing 7, the bearing sleeve 8 held on the inner circumference of the housing 7, and the opening at one end in the axial direction of the housing 7. It has a sealing portion 9 and a lid portion 10 that closes the other end of the housing 7 in the axial direction. In the following description, for convenience, the closed side of the housing 7 is referred to as the lower side and the opening side of the housing 7 is referred to as the upper side in the axial direction, but this does not mean that the usage mode of the fluid dynamic bearing device 1 is limited.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備える。軸部材2は、ステンレス鋼等の金属材料で形成され、本実施形態では、軸部2aおよびフランジ部2bを含む軸部材2全体が一体に形成される。軸部2aとフランジ部2bを別体に形成することもできる。 The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 is made of a metal material such as stainless steel, and in the present embodiment, the entire shaft member 2 including the shaft portion 2a and the flange portion 2b is integrally formed. The shaft portion 2a and the flange portion 2b can be formed separately.

軸部2aの外周面には、軸方向に離隔する2箇所に形成された円筒面2a1と、2箇所の円筒面2a1の間に設けられ、円筒面2a1よりも小径な環状凹部2a2とが設けられる。円筒面2a1は、軸受スリーブ8の内周面8aの軸受面8a1と半径方向で対向する軸受対向面として機能する。 On the outer peripheral surface of the shaft portion 2a, an annular recess 2a2 provided between two cylindrical surfaces 2a1 formed at two locations separated in the axial direction and an annular recess 2a2 having a diameter smaller than that of the cylindrical surface 2a1 is provided. Be done. The cylindrical surface 2a1 functions as a bearing facing surface that faces the bearing surface 8a1 of the inner peripheral surface 8a of the bearing sleeve 8 in the radial direction.

ハウジング7は軸受スリーブ8を保持する部材であり、例えば真ちゅう等で円筒状に形成される。ハウジング7の内周面7aには、軸受スリーブ8の外周面8dが接着によって固定される。接着としては、軸受スリーブ8の外周面8dとハウジング7の内周面7aとを隙間嵌めの状態で接着した、いわゆる隙間接着が採用される。隙間接着は、ハウジング7の内周に軸受スリーブ8をすきまばめ(JIS B 0401−1参照)することで互いに対向するハウジング7の内周面7aと軸受スリーブ8の外周面8dとの間に径方向隙間15(図5参照)を形成し、この径方向隙間15に介在させた接着剤17を硬化させることで両者を固定する方法であり、軸受スリーブ8の外周面8dとハウジング7の内周面7aを隙間嵌めで嵌合させた状態で、両面間の隙間に接着剤17を注入し、毛細管力で隙間の奥に引き込むことにより行われる。この他、軸受スリーブ8の外周面8dとハウジング7の内周面7aのどちらか一方に接着剤を塗布した上で、両者を隙間嵌めで嵌合させてもよい。接着剤17としては、空気との遮断により硬化する嫌気性の接着剤、エポキシ系等のような加熱硬化型の接着剤、紫外線の照射で硬化する紫外線硬化型の接着剤等が知られている。本実施形態では、公知の接着剤を任意に使用することができる。 The housing 7 is a member that holds the bearing sleeve 8, and is formed in a cylindrical shape such as brass. The outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by adhesion. As the bonding, so-called gap bonding is adopted in which the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7a of the housing 7 are bonded in a gap-fitted state. Gap adhesion is performed by crevice fitting the bearing sleeve 8 on the inner circumference of the housing 7 (see JIS B 0401-1) between the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 facing each other. This is a method of forming a radial gap 15 (see FIG. 5) and curing the adhesive 17 interposed in the radial gap 15 to fix both of them. The outer peripheral surface 8d of the bearing sleeve 8 and the inside of the housing 7 are fixed. This is performed by injecting the adhesive 17 into the gap between both sides with the peripheral surface 7a fitted in the gap and pulling it into the gap by the capillary force. In addition, an adhesive may be applied to either the outer peripheral surface 8d of the bearing sleeve 8 or the inner peripheral surface 7a of the housing 7, and then the two may be fitted by gap fitting. As the adhesive 17, anaerobic adhesives that cure by blocking from air, heat-curable adhesives such as epoxy-based adhesives, and ultraviolet-curable adhesives that cure by irradiation with ultraviolet rays are known. .. In this embodiment, a known adhesive can be used arbitrarily.

隙間接着により、軸受スリーブ8の外周面8dとハウジング7の内周面7aの間に、硬化した接着剤17からなる接着剤層18(図5参照)が形成される。接着剤層18は、軸受スリーブ8の外周面8dとハウジング7の内周面7aの間の隙間の全域にわたって形成する他、当該隙間の一部領域(軸方向の一部領域、あるいは円周方向の一部領域等)に限って形成してもよい。 Due to the gap adhesion, an adhesive layer 18 (see FIG. 5) made of the cured adhesive 17 is formed between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7a of the housing 7. The adhesive layer 18 is formed over the entire area of the gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7a of the housing 7, and is also formed in a part of the gap (a part of the axial direction or the circumferential direction). It may be formed only in a part of the region, etc.).

軸受スリーブ8は、多孔質の焼結体で円筒状に形成された焼結軸受である。この焼結体としては、例えば、20質量%以上の銅を含む焼結金属が使用される。銅を20質量%以上含む限り、他の含有元素は任意であり、銅のみを主成分とする銅系焼結金属の他、銅と鉄を主成分とする銅鉄系焼結金属、あるいは、銅とステンレス鋼を主成分とするステンレス系焼結金属等を使用することもできる。 The bearing sleeve 8 is a sintered bearing formed in a cylindrical shape by a porous sintered body. As the sintered body, for example, a sintered metal containing 20% by mass or more of copper is used. As long as it contains 20% by mass or more of copper, other contained elements are arbitrary, and in addition to a copper-based sintered metal containing only copper as a main component, a copper-iron-based sintered metal containing copper and iron as main components, or It is also possible to use a stainless-based sintered metal or the like whose main components are copper and stainless steel.

軸受スリーブ8の内周面8aには、図3に示すように、軸方向に離隔した2箇所にラジアル軸受面8a1が形成される。各ラジアル軸受面8a1には、動圧発生部としてヘリングボーン形状に配列された動圧発生溝G1,G2が設けられる。図中クロスハッチングで示す領域は、内径側に盛り上がった丘部を示している(図4においても同様)。上側の動圧発生溝G1は軸方向で非対称な形状を成し、下側の動圧発生溝G2は軸方向で対称な形状を成している。軸方向非対称形状の上側の動圧発生溝G1により、ラジアル軸受隙間の潤滑流体が軸方向下向きに押し込まれ、ハウジング7の内部で潤滑流体が強制的に循環される(後述する)。ラジアル軸受面8a1の軸方向間領域には、円筒面8a2が設けられる。円筒面8a2は、動圧発生溝G1、G2の溝底面と同一円筒面上に連続して設けられる。 As shown in FIG. 3, radial bearing surfaces 8a1 are formed on the inner peripheral surface 8a of the bearing sleeve 8 at two positions separated in the axial direction. Dynamic pressure generating grooves G1 and G2 arranged in a herringbone shape are provided on each radial bearing surface 8a1 as dynamic pressure generating portions. The area indicated by cross-hatching in the figure indicates a hill portion that rises toward the inner diameter side (the same applies to FIG. 4). The upper dynamic pressure generating groove G1 has an axially asymmetrical shape, and the lower dynamic pressure generating groove G2 has an axially symmetrical shape. The axially asymmetrical shape of the upper dynamic pressure generating groove G1 pushes the lubricating fluid in the radial bearing gap downward in the axial direction, and the lubricating fluid is forcibly circulated inside the housing 7 (described later). A cylindrical surface 8a2 is provided in the axial region of the radial bearing surface 8a1. The cylindrical surface 8a2 is continuously provided on the same cylindrical surface as the bottom surfaces of the dynamic pressure generating grooves G1 and G2.

なお、上下の動圧発生溝G1,G2の双方を軸方向対称形状としてもよい。また、上下の動圧発生溝G1,G2を軸方向で連続させたり、上下の動圧発生溝G1,G2の一方あるいは双方を省略したりしてもよい。また、軸受スリーブ8の内周面8aを円筒面として、軸部2aの外周面(軸受対向面)に動圧発生部を設けてもよい。また、軸受スリーブ8の軸受面8a1および軸部2aの軸受対向面の双方を円筒面とした、いわゆる真円軸受を使用することもできる。 Both the upper and lower dynamic pressure generating grooves G1 and G2 may have an axially symmetrical shape. Further, the upper and lower dynamic pressure generating grooves G1 and G2 may be made continuous in the axial direction, or one or both of the upper and lower dynamic pressure generating grooves G1 and G2 may be omitted. Further, the inner peripheral surface 8a of the bearing sleeve 8 may be a cylindrical surface, and a dynamic pressure generating portion may be provided on the outer peripheral surface (bearing facing surface) of the shaft portion 2a. It is also possible to use a so-called perfect circular bearing in which both the bearing surface 8a1 of the bearing sleeve 8 and the bearing facing surface of the shaft portion 2a are cylindrical surfaces.

軸受スリーブ8の下側端面8bにはスラスト軸受面が形成される。スラスト軸受面には、動圧発生部として、図4に示すようなポンプインタイプのスパイラル形状の動圧発生溝8b1が形成される。尚、動圧発生溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、軸受スリーブ8の下側端面8bを平坦面として、軸部材2のフランジ部2bの上側端面2b1に動圧発生溝を形成してもよい。 A thrust bearing surface is formed on the lower end surface 8b of the bearing sleeve 8. A pump-in type spiral-shaped dynamic pressure generating groove 8b1 as shown in FIG. 4 is formed on the thrust bearing surface as a dynamic pressure generating portion. As the shape of the dynamic pressure generating groove, a herringbone shape, a radial groove shape, or the like may be adopted. Further, the lower end surface 8b of the bearing sleeve 8 may be used as a flat surface, and a dynamic pressure generating groove may be formed in the upper end surface 2b1 of the flange portion 2b of the shaft member 2.

シール部9は、ハウジング7の上端から内径側に突出している。本実施形態では、シール部9がハウジング7と一体に形成されているが、シール部9をハウジング7に対して別体にすることもできる。シール部9の内周面9aは、下方に向けて漸次縮径したテーパ状を成す。シール部9の内周面9aと軸部2aの外周面との間には、下方に向けて半径方向幅を徐々に狭めたシール空間Sが形成される。この他、シール部9の内周面を円筒面とする一方で、軸部2aの外周面に上方に向けて漸次縮径するテーパ面を設け、これらの間にシール空間Sを形成してもよい。シール部9の下側端面9bには、軸受スリーブ8の上側端面8cが当接している。 The seal portion 9 projects from the upper end of the housing 7 toward the inner diameter side. In the present embodiment, the seal portion 9 is formed integrally with the housing 7, but the seal portion 9 can be separated from the housing 7. The inner peripheral surface 9a of the seal portion 9 has a tapered shape whose diameter is gradually reduced downward. A seal space S whose radial width is gradually narrowed downward is formed between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface of the shaft portion 2a. In addition, while the inner peripheral surface of the seal portion 9 is a cylindrical surface, a tapered surface whose diameter is gradually reduced upward is provided on the outer peripheral surface of the shaft portion 2a, and a seal space S may be formed between them. Good. The upper end surface 8c of the bearing sleeve 8 is in contact with the lower end surface 9b of the seal portion 9.

蓋部10は、黄銅等の金属や樹脂で形成され、ハウジング7の内周面7aの下端部に、圧入、接着等の適宜の手段で固定される。これによりハウジング7の内部の空間がシール空間Sでのみ大気に開放された密閉空間となる。蓋部10は、ハウジング7と一体に形成することもできる。 The lid portion 10 is formed of a metal or resin such as brass, and is fixed to the lower end portion of the inner peripheral surface 7a of the housing 7 by an appropriate means such as press fitting or adhesion. As a result, the space inside the housing 7 becomes a closed space open to the atmosphere only in the seal space S. The lid portion 10 can also be formed integrally with the housing 7.

蓋部10の端面10aにはスラスト軸受面が形成される。このスラスト軸受面には、例えばポンプインタイプのスパイラル形状の動圧発生溝が形成される(図示省略)。尚、動圧発生溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、蓋部10の端面10aを平坦面として、軸部材2のフランジ部2bの下側端面2b2に動圧発生溝を形成してもよい。 A thrust bearing surface is formed on the end surface 10a of the lid portion 10. For example, a pump-in type spiral-shaped dynamic pressure generating groove is formed on the thrust bearing surface (not shown). As the shape of the dynamic pressure generating groove, a herringbone shape, a radial groove shape, or the like may be adopted. Further, the end surface 10a of the lid portion 10 may be used as a flat surface, and a dynamic pressure generating groove may be formed in the lower end surface 2b2 of the flange portion 2b of the shaft member 2.

ハウジング7の内部には、軸方向に延びる軸方向通油路11と、半径方向に延びる半径方向通油路12とが形成される。図2に示す実施形態において、軸方向通油路11は、軸受スリーブ8の外周面とハウジング7の内周面7aとの間に形成され、半径方向通油路12は、軸受スリーブ8の上側端面8cとシール部9の下側端面9bとの間に形成されている。軸方向通油路11の下端は、軸受スリーブ8の下側端面8bよりも下方の空間に開口し、上端は半径方向通油路12の外径端と連通する。半径方向通油路12の内径端はシール空間Sに開口している。 Inside the housing 7, an axial oil passage 11 extending in the axial direction and a radial oil passage 12 extending in the radial direction are formed. In the embodiment shown in FIG. 2, the axial oil passage 11 is formed between the outer peripheral surface of the bearing sleeve 8 and the inner peripheral surface 7a of the housing 7, and the radial oil passage 12 is above the bearing sleeve 8. It is formed between the end surface 8c and the lower end surface 9b of the seal portion 9. The lower end of the axial oil passage 11 opens in a space below the lower end surface 8b of the bearing sleeve 8, and the upper end communicates with the outer diameter end of the radial oil passage 12. The inner diameter end of the radial oil passage 12 opens in the seal space S.

図2の実施形態では、軸受スリーブ8の外周面8dに軸方向に延びる軸方向溝8d1を設け、軸方向溝8d1とハウジング7の内周面7aとで画成された隙間により、軸受スリーブ8の外周面8dに沿う軸方向通油路11が形成されている。軸受スリーブ8の上側端面8cには、環状溝8c1と環状溝8c1の内径側に位置する複数の半径方向溝8c2とが設けられ、環状溝8c1および半径方向溝8c2と、シール部9の下側端面9aとで形成される隙間により、軸受スリーブ8の上側端面8cに沿う半径方向通油路12が形成されている。また、シール部9の下側端面の外径側領域は、軸受スリーブ8の上側端面8cから離反した位置にあり、この外径側領域と軸受スリーブ8の上側端面8cとの間に形成された環状隙間13に、軸方向通油路11の上端と半径方向通油路12の外径端とがそれぞれ開口している。環状隙間13は、軸方向通油路11もしくは半径方向通油路12の一部を構成する。かかる構成から、軸受スリーブ8の下側端面8bよりも下方の空間が、軸方向通油路11および半径方向通油路12を介してシール空間S、さらにはラジアル軸受隙間と連通した状態となる。 In the embodiment of FIG. 2, an axial groove 8d1 extending in the axial direction is provided on the outer peripheral surface 8d of the bearing sleeve 8, and the bearing sleeve 8 is provided by a gap defined by the axial groove 8d1 and the inner peripheral surface 7a of the housing 7. An axial oil passage 11 is formed along the outer peripheral surface 8d of the above. The upper end surface 8c of the bearing sleeve 8 is provided with an annular groove 8c1 and a plurality of radial grooves 8c2 located on the inner diameter side of the annular groove 8c1, the annular groove 8c1 and the radial groove 8c2, and the lower side of the seal portion 9. A radial oil passage 12 along the upper end surface 8c of the bearing sleeve 8 is formed by the gap formed by the end surface 9a. Further, the outer diameter side region of the lower end surface of the seal portion 9 is located at a position separated from the upper end surface 8c of the bearing sleeve 8, and is formed between this outer diameter side region and the upper end surface 8c of the bearing sleeve 8. The upper end of the axial oil passage 11 and the outer diameter end of the radial oil passage 12 are opened in the annular gap 13, respectively. The annular gap 13 constitutes a part of the axial oil passage 11 or the radial oil passage 12. From this configuration, the space below the lower end surface 8b of the bearing sleeve 8 is in a state of communicating with the seal space S and the radial bearing gap via the axial oil passage 11 and the radial oil passage 12. ..

なお、軸方向通油路11および半径方向通油路12は、軸受スリーブ8の下側端面8bよりも下方の空間とシール空間Sとを連通させるものである限り任意の形態を採用することができ、図2および図3に示す形態には限定されない。例えば軸方向溝8d1をハウジング7の内周面7aに形成してもよい。また、環状溝8c1や半径方向溝8c2をシール部9の下側端面9aに形成してもよい。 The axial oil passage 11 and the radial oil passage 12 may adopt any form as long as the space below the lower end surface 8b of the bearing sleeve 8 and the seal space S are communicated with each other. However, it is not limited to the form shown in FIGS. 2 and 3. For example, the axial groove 8d1 may be formed on the inner peripheral surface 7a of the housing 7. Further, the annular groove 8c1 and the radial groove 8c2 may be formed on the lower end surface 9a of the seal portion 9.

流体動圧軸受装置1の内部には、潤滑流体としての潤滑油が真空含浸等の手段により供給され、ハウジング7の内部の全ての空間、例えば軸受スリーブ8の内周面8aと軸部2aの外周面との間の隙間、軸受スリーブ8の下側端面8bとフランジ部2bの上側端面2b1との間の隙間、フランジ部2bの下側端面2b2と蓋部10の端面10aとの間の隙間、軸方向通油路11、および半径方向通油路12が、軸受スリーブ8の内部気孔を含めて全て潤滑油で満たされる。この時、油面は、シール空間S内に形成される。 Lubricating oil as a lubricating fluid is supplied to the inside of the hydrodynamic bearing device 1 by means such as vacuum impregnation, and all the spaces inside the housing 7, for example, the inner peripheral surface 8a and the shaft portion 2a of the bearing sleeve 8. A gap between the outer peripheral surface, a gap between the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and a gap between the lower end surface 2b2 of the flange portion 2b and the end surface 10a of the lid portion 10. , The axial oil passage 11, and the radial oil passage 12 are all filled with lubricating oil including the internal pores of the bearing sleeve 8. At this time, the oil level is formed in the seal space S.

軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面8a1と軸部2aの円筒面2a1との間にラジアル軸受隙間が形成される。そして、動圧発生溝G1,G2によりラジアル軸受隙間に形成された油膜の圧力が高められ、これにより軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。これと同時に、軸受スリーブ8の下側端面8b(スラスト軸受面)とフランジ部2bの上側端面2b1との間、及び、蓋部10の端面10a(スラスト軸受面)とフランジ部2bの下側端面2b2との間に、それぞれスラスト軸受隙間が形成される。そして、軸受スリーブ8の下側端面8bの動圧発生溝8b1及び蓋部10の端面10aの動圧発生溝により、各スラスト軸受隙間に形成された油膜の圧力が高められ、これにより軸部材を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。 When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surface 8a1 on the inner peripheral surface 8a of the bearing sleeve 8 and the cylindrical surface 2a1 on the shaft portion 2a. Then, the pressure of the oil film formed in the radial bearing gap is increased by the dynamic pressure generating grooves G1 and G2, whereby the first radial bearing portion R1 and the second radial bearing portion R2 that non-contactly support the shaft member 2 in the radial direction. Is configured. At the same time, between the lower end surface 8b (thrust bearing surface) of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and the end surface 10a (thrust bearing surface) of the lid portion 10 and the lower end surface of the flange portion 2b. Thrust bearing gaps are formed between the two and 2b2. Then, the pressure of the oil film formed in each thrust bearing gap is increased by the dynamic pressure generating groove 8b1 on the lower end surface 8b of the bearing sleeve 8 and the dynamic pressure generating groove on the end surface 10a of the lid portion 10, whereby the shaft member is formed. A first thrust bearing portion T1 and a second thrust bearing portion T2 that support non-contact in both thrust directions are configured.

また、軸部材2の回転中は、第1ラジアル軸受部R1と第2ラジアル軸受部R2の各動圧発生溝G1,G2の非対称性等に起因して、軸受スリーブ8の内周面8aと軸部2aの外周面との間の隙間を満たす潤滑油に一定方向の流れ(例えば下向き)が生じる。そのため、第2ラジアル軸受部R2のラジアル軸受隙間から流出した潤滑油は、スラスト軸受隙間、軸方向通油路11、半径方向通油路12を経てシール空間Sに達し、さらには第1ラジアル軸受部R1のラジアル軸受隙間を介して第2ラジアル軸受部のラジアル軸受隙間に還流する。 Further, during the rotation of the shaft member 2, due to the asymmetry of the dynamic pressure generating grooves G1 and G2 of the first radial bearing portion R1 and the second radial bearing portion R2, the inner peripheral surface 8a of the bearing sleeve 8 and the like. A flow in a certain direction (for example, downward) occurs in the lubricating oil that fills the gap between the shaft portion 2a and the outer peripheral surface. Therefore, the lubricating oil flowing out from the radial bearing gap of the second radial bearing portion R2 reaches the seal space S through the thrust bearing gap, the axial oil passage 11, and the radial oil passage 12, and further reaches the seal space S, and further, the first radial bearing. It returns to the radial bearing gap of the second radial bearing portion through the radial bearing gap of the portion R1.

軸受スリーブ8は、金属粉末を含む原料粉を金属内で圧縮成形することによって圧粉体を形成し、この圧粉体を所定条件で焼結することによって焼結体を形成し、この焼結体に、サイジング(再圧縮)、洗浄等を施した後、潤滑剤(潤滑油)を含油させることになる。すなわち、軸受内部に潤滑油を含油するが、通常、軸受内部が密封された流体動圧軸受装置に潤滑油を含浸する際、一度、軸受内部を減圧して、圧力差により軸受内部に潤滑油を含浸する。 The bearing sleeve 8 forms a green compact by compression-molding a raw material powder containing a metal powder in a metal, and a sintered body is formed by sintering the green compact under predetermined conditions. After sizing (recompressing), cleaning, etc., the body is impregnated with a lubricant (lubricating oil). That is, the inside of the bearing is impregnated with lubricating oil. Normally, when the fluid dynamic bearing device in which the inside of the bearing is sealed is impregnated with the lubricating oil, the inside of the bearing is depressurized once and the inside of the bearing is lubricated by the pressure difference. Is impregnated.

ところで、本流体動圧軸受装置では、潤滑剤(潤滑油)を含油させる前の状態の組立状態では、軸受スリーブ8に揮発する液体が含浸されている。揮発する液体としては、炭化水素系洗浄液であるのが好ましい。ここで、炭化水素系洗浄液は、炭素と水素のみからなる化合物である。炭化水素系洗浄剤はその化学的構造から、ノルマルパラフィン系,イソパラフィン系,ナフテン系,芳香族系の4種類に分類される。特徴としては,金属への腐食性が少ないこと,蒸留再生によるリサイクルが可能なこと、比較的安価で経済的であること、脱脂力が高いことなどが挙げられる。 By the way, in this fluid dynamic bearing device, the bearing sleeve 8 is impregnated with a volatile liquid in the assembled state before the lubricant (lubricating oil) is impregnated. The volatilizing liquid is preferably a hydrocarbon-based cleaning liquid. Here, the hydrocarbon-based cleaning liquid is a compound consisting only of carbon and hydrogen. Hydrocarbon-based cleaning agents are classified into four types according to their chemical structure: normal paraffin-based, isoparaffin-based, naphthenic-based, and aromatic-based. Its features include low corrosiveness to metals, recyclability by distillation regeneration, relatively low cost and economy, and high degreasing power.

このため、減圧の際に、あらかじめ含浸した液体(ここでは炭化水素洗浄液)が揮発するため、含油時の焼結金属内部には、あらかじめ含浸した液体は残っていない状態となる。上記減圧条件の一例として、温度60℃以上、減圧レベル13Pa以下、減圧保持時間10min以上と設定できる。 Therefore, when the pressure is reduced, the pre-impregnated liquid (here, the hydrocarbon cleaning liquid) volatilizes, so that the pre-impregnated liquid does not remain inside the sintered metal during oiling. As an example of the above decompression conditions, the temperature can be set to 60 ° C. or higher, the decompression level is 13 Pa or less, and the decompression holding time is 10 min or more.

また、前記洗浄工程で使用する洗浄液として、あらかじめ含浸した液体である炭化水素系洗浄液を用いることができる。焼結金属内に予め含浸させておく液体にこの炭化水素系洗浄液を用いるようにすれば、焼結金属の洗浄後の乾燥工程を簡略化できる。すなわち、輸送時などに問題が起きないレベルで表層部の洗浄液のみ乾燥させると、通常よりも乾燥温度を低く、乾燥時間を短くできる。 Further, as the cleaning liquid used in the cleaning step, a hydrocarbon-based cleaning liquid which is a liquid impregnated in advance can be used. If this hydrocarbon-based cleaning liquid is used as the liquid to be impregnated in the sintered metal in advance, the drying step after cleaning the sintered metal can be simplified. That is, if only the cleaning liquid on the surface layer is dried at a level that does not cause a problem during transportation, the drying temperature can be lowered and the drying time can be shortened.

本発明の流体動圧軸受装置では、焼結金属(軸受スリーブ8)の内部に液体を含浸した状態で、軸受スリーブ8の外周面8dもしくはハウジング7の内周面7aに接着剤17を塗布する。あらかじめ焼結金属内部に液体を含浸しておくと気孔は液体で満たされているため、その液体が蓋となり、接着剤17が気孔内部に吸い込まれにくくなる。軸受の組立完了後に軸受内部(焼結金属内部も含む)に潤滑油を含油するが、含油する前に上記のあらかじめ含浸した液体を抜くことが出来れば、適切に潤滑油を含油することができる。 In the hydrodynamic bearing device of the present invention, the adhesive 17 is applied to the outer peripheral surface 8d of the bearing sleeve 8 or the inner peripheral surface 7a of the housing 7 in a state where the inside of the sintered metal (bearing sleeve 8) is impregnated with liquid. .. If the inside of the sintered metal is impregnated with a liquid in advance, the pores are filled with the liquid, so that the liquid serves as a lid and the adhesive 17 is less likely to be sucked into the inside of the pores. Lubricating oil is impregnated inside the bearing (including the inside of the sintered metal) after the assembly of the bearing is completed. However, if the above-mentioned pre-impregnated liquid can be removed before oiling, the lubricating oil can be appropriately lubricated. ..

このため、接着剤17が焼結金属(軸受スリーブ8)の気孔内部に吸い込まれていかないため、軸受スリーブ8の外周面8dとハウジング7の内周面7aの隙間は接着剤で満たされ、全面に渡って均一に接着固定され、十分な接着強度を確保することができる。また、エアをトラップするような隙間も発生しないため、軸受内部にエアが混入することによる潤滑油の漏れや回転精度の低下といった心配も無くなる。 Therefore, since the adhesive 17 is not sucked into the pores of the sintered metal (bearing sleeve 8), the gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7a of the housing 7 is filled with the adhesive, and the entire surface is filled with the adhesive. It is uniformly adhered and fixed over the bearing, and sufficient adhesive strength can be ensured. In addition, since there is no gap that traps air, there is no need to worry about leakage of lubricating oil or deterioration of rotation accuracy due to air mixing inside the bearing.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、揮発する液体や含油前の減圧条件としては、前記実施形態のものに限るものではなく、潤滑油を軸受内部に含油させる際に、軸受スリーブに残渣が残らなければよい。また、前記実施形態では、含油前の減圧工程で予め含浸する液体を発揮させるものであったが、接着固定後に個別に減圧工程(液体を揮発させる工程)を追加してもよい。 Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and various modifications can be made, and the volatile liquid and the depressurizing condition before oiling are those of the embodiment. It is not limited to this, and it is sufficient that no residue remains on the bearing sleeve when the lubricating oil is impregnated inside the bearing. Further, in the above-described embodiment, the liquid to be impregnated in advance is exhibited in the decompression step before oiling, but a decompression step (step of volatilizing the liquid) may be added individually after adhesion fixing.

また、軸受スリーブ8として、黄銅等の軟質金属や樹脂材料等、非多孔質材料で形成されたものも使用する場合にも適用することができる。 Further, the bearing sleeve 8 can also be applied when a material formed of a non-porous material such as a soft metal such as brass or a resin material is used.

また、本発明は、軸部材2を回転側、軸受スリーブ8を静止側とした流体動圧軸受装置のみならず、軸部材2を静止側、軸受スリーブ8を回転側とした流体動圧軸受装置にも好ましく適用することができる。 Further, the present invention includes not only a fluid dynamic bearing device in which the shaft member 2 is on the rotating side and the bearing sleeve 8 is on the stationary side, but also a fluid dynamic bearing device in which the shaft member 2 is on the stationary side and the bearing sleeve 8 is on the rotating side. It can also be preferably applied to.

また、本発明は、送風用の羽根を有するロータ、あるいはポリゴンミラーが軸部材2に設けられる流体動圧軸受装置にも好ましく適用することができる。すなわち、本発明は、図1に示すディスク駆動装置用のスピンドルモータのみならず、PC用のファンモータやレーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器用モータに組み込まれる流体動圧軸受装置にも好ましく適用することができる。 The present invention can also be preferably applied to a rotor having blades for blowing air or a fluid dynamic bearing device in which a polygon mirror is provided on the shaft member 2. That is, the present invention is a fluid incorporated not only in the spindle motor for the disk drive shown in FIG. 1, but also in other electric device motors such as a fan motor for a PC and a polygon scanner motor for a laser beam printer (LBP). It can also be preferably applied to a hydraulic bearing device.

本発明の有用性を実証するため、以下に説明する確認試験を実施した。すなわち、焼結金属(軸受スリーブ8)内部へ液体の含浸有無による接着強度の差を確認した。評価条件は下記の通りである。
(a)焼結金属材質は銅鉄系、ハウジング材質は真鍮、焼結金属外径とハウジング内径は隙間接着とした。
(b)接着前に焼結金属の内部に炭化水素洗浄液(NSクリーン100:JX日鉱日石エネルギー株式会社の商品名)を含浸した。
(c)接着剤は熱硬化型エポキシ接着剤を使用し、塗布量は接着隙間と同じ容積になるように調整した。
(d)接着剤塗布後に120℃×1時間焼成して、焼結金属外径とハウジング内径の抜去力を測定した。
In order to demonstrate the usefulness of the present invention, the confirmation test described below was carried out. That is, the difference in adhesive strength depending on the presence or absence of liquid impregnation inside the sintered metal (bearing sleeve 8) was confirmed. The evaluation conditions are as follows.
(A) The sintered metal material was copper iron, the housing material was brass, and the outer diameter of the sintered metal and the inner diameter of the housing were gap-bonded.
(B) Before bonding, the inside of the sintered metal was impregnated with a hydrocarbon cleaning solution (NS Clean 100: trade name of JX Nippon Oil & Energy Co., Ltd.).
(C) A thermosetting epoxy adhesive was used as the adhesive, and the coating amount was adjusted so as to have the same volume as the adhesive gap.
(D) After applying the adhesive, the material was fired at 120 ° C. for 1 hour, and the extraction force of the outer diameter of the sintered metal and the inner diameter of the housing was measured.

測定結果を表1に示す。軸受スリーブ8に軸方向荷重を付与し、接着剤層18が破壊された(ハウジングから軸受スリーブが抜け落ちた)際の軸方向荷重(抜去力)で評価した。確認試験として、No,1〜No,15のサンプル品を用いて行った。この場合、各No,1〜No,15のサンプル品としては、絶乾(絶対乾燥状態であり、軸受スリーブ8に液体が含浸されていない状態)のものと、NSクリーン100を含浸させた2種類とした。表1において、MAXに、絶乾したものの最大抜去力と、NSクリーン100を含浸させたものの最大抜去力とを示し、MINに、絶乾したものの最小抜去力と、NSクリーン100を含浸させたものの最小抜去力とを示し、Avgに、絶乾したものの平均抜去力と、NSクリーン100を含浸させたものの平均抜去力とを示している。

Figure 2020139608
The measurement results are shown in Table 1. An axial load was applied to the bearing sleeve 8, and the evaluation was made based on the axial load (pulling force) when the adhesive layer 18 was broken (the bearing sleeve fell off from the housing). As a confirmation test, sample products of No, 1 to No, 15 were used. In this case, the sample products of No, 1 to No, 15 are completely dry (absolutely dry state and the bearing sleeve 8 is not impregnated with liquid) and NS Clean 100 impregnated with 2 The type was used. In Table 1, MAX shows the maximum extraction force of the absolutely dried product and the maximum extraction force of the product impregnated with NS Clean 100, and MIN is impregnated with the minimum extraction force of the absolutely dried product and NS Clean 100. The minimum withdrawal force of the thing is shown, and the average withdrawal power of the one impregnated with NS Clean 100 and the average withdrawal power of the one impregnated with NS Clean 100 are shown in Avg.
Figure 2020139608

測定の結果として、NSクリーン100を含浸したものの方が、絶乾させたものよりも、平均で約2700Nの抜去力は高い結果となった。すなわち、NSクリーン100を含浸したものでは、「軸受スリーブの外周面とハウジング内周面の隙間は接着剤で満たされ、全面に渡って均一に接着固定され、十分な接着強度を確保することができる。」と言える。 As a result of the measurement, the one impregnated with NS Clean 100 had a higher withdrawal force of about 2700 N on average than the one impregnated with absolute dryness. That is, in the case of the one impregnated with NS Clean 100, "the gap between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing is filled with an adhesive, and the entire surface is uniformly adhered and fixed to ensure sufficient adhesive strength. I can say. "

2 軸部材
4 ステータコイル
5 ロータマグネット
7 ハウジング
7a 内周面
8 軸受スリーブ
8a 内周面
15 径方向隙間
18 接着剤層
2 Shaft member 4 Stator coil 5 Rotor magnet 7 Housing 7a Inner peripheral surface 8 Bearing sleeve 8a Inner peripheral surface 15 Radial gap 18 Adhesive layer

Claims (4)

軸受スリーブと、この軸受スリーブとの間で軸受隙間を形成する軸部材と、前記軸受スリーブを収納するハウジングと、前記軸受隙間に生じる流体の動圧作用で前記軸部材と前記軸受スリーブをラジアル方向に相対回転自在に非接触支持する流体動圧軸受装置において、
前記軸受スリーブは、揮発する液体の含浸が可能な多孔質の焼結材料からなり、この液体が含浸された状態で、前記軸受スリーブの外周面と前記ハウジングの内周面との間の径方向隙間に形成された接着剤層を介して前記ハウジングの内周に固定されることを特徴とする流体動圧軸受装置。
The shaft member forming a bearing gap between the bearing sleeve and the bearing sleeve, the housing for accommodating the bearing sleeve, and the dynamic pressure action of the fluid generated in the bearing gap causes the shaft member and the bearing sleeve to move in the radial direction. In a hydrodynamic bearing device that supports non-contact with relative rotation.
The bearing sleeve is made of a porous sintered material that can be impregnated with a volatile liquid, and in a state of being impregnated with this liquid, the radial direction between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing. A fluid dynamic bearing device characterized in that it is fixed to the inner circumference of the housing via an adhesive layer formed in a gap.
前記液体が炭化水素系洗浄液であることを特徴とする請求項1に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 1, wherein the liquid is a hydrocarbon-based cleaning liquid. 潤滑油をモータ内部に含油させる状態で、前記液体が前記軸受スリーブから抜かれていることを特徴とする請求項1又は請求項2に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 1 or 2, wherein the liquid is drained from the bearing sleeve in a state where the lubricating oil is impregnated inside the motor. 請求項1〜請求項3のいずれか1項に記載の流体動圧軸受装置と、ロータマグネットと、ステーコイルとを有することを特徴とするモータ。 A motor comprising the fluid dynamic bearing device according to any one of claims 1 to 3, a rotor magnet, and a stay coil.
JP2019037442A 2019-03-01 2019-03-01 Hydrodynamic pressure bearing device and motor including the same Pending JP2020139608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037442A JP2020139608A (en) 2019-03-01 2019-03-01 Hydrodynamic pressure bearing device and motor including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037442A JP2020139608A (en) 2019-03-01 2019-03-01 Hydrodynamic pressure bearing device and motor including the same

Publications (1)

Publication Number Publication Date
JP2020139608A true JP2020139608A (en) 2020-09-03

Family

ID=72264677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037442A Pending JP2020139608A (en) 2019-03-01 2019-03-01 Hydrodynamic pressure bearing device and motor including the same

Country Status (1)

Country Link
JP (1) JP2020139608A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120678A (en) * 2002-10-23 2003-04-23 Mitsubishi Materials Corp Sintered oil-retaining bearing
JP2004308921A (en) * 2004-07-28 2004-11-04 Ntn Corp Dynamic pressure type bearing unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120678A (en) * 2002-10-23 2003-04-23 Mitsubishi Materials Corp Sintered oil-retaining bearing
JP2004308921A (en) * 2004-07-28 2004-11-04 Ntn Corp Dynamic pressure type bearing unit

Similar Documents

Publication Publication Date Title
US8356938B2 (en) Fluid dynamic bearing apparatus
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
JP5619550B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
JP2008008368A (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2015132380A (en) Fluid dynamic pressure bearing device and motor having the same
JP2020139608A (en) Hydrodynamic pressure bearing device and motor including the same
JP2003336636A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
JP4828908B2 (en) Hydrodynamic bearing device
JP5726687B2 (en) Fluid dynamic bearing device
JP4435614B2 (en) Hydrodynamic bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP7313920B2 (en) Hydrodynamic bearing unit and motor
JP5394182B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2001124059A (en) Dynamic pressure bearing unit
JP4739114B2 (en) Hydrodynamic bearing device
JP2009103179A (en) Fluid bearing device
JP2007321965A (en) Fluid bearing device
JP2020141532A (en) Fluid dynamic pressure bearing device and motor including the same
JP6942002B2 (en) Fluid dynamic bearing device and motor equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206