JP2007321965A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2007321965A
JP2007321965A JP2006156304A JP2006156304A JP2007321965A JP 2007321965 A JP2007321965 A JP 2007321965A JP 2006156304 A JP2006156304 A JP 2006156304A JP 2006156304 A JP2006156304 A JP 2006156304A JP 2007321965 A JP2007321965 A JP 2007321965A
Authority
JP
Japan
Prior art keywords
oil
bearing
bearing device
holding member
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006156304A
Other languages
Japanese (ja)
Inventor
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006156304A priority Critical patent/JP2007321965A/en
Publication of JP2007321965A publication Critical patent/JP2007321965A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/60Oil repelling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a fluid bearing device from being contaminated with oil when oiling. <P>SOLUTION: The fluid bearing device is provided with an oil repellent part P1 by applying an oil repellent agent to an upper end face 7a3 of a holding member 7. Consequently, even if oil overflows until flowing over the outer diameter end of a sealing member 9 from a seal space S when oiling from the seal space S formed at the inner periphery of the sealing member 9, oil can be prevented from further spreading to the outer diameter side by the oil repellent action of the oil repellent part P1. Further, the outer peripheral surface 7a2 of the bearing device can be prevented from being contaminated with oil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に形成される油膜で軸部を回転自在に支持する流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft portion with an oil film formed in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. Suitable for small motors such as fan motors used for spindle motors such as magneto-optical disk drive devices, etc., polygon scanner motors for laser beam printers (LBP), color wheels for projectors, cooling fans for electrical equipment, etc. It can be used.

例えば、特許文献1に示されている流体軸受装置は、ラジアル軸受隙間の外部への開放端側にシール部材が配され、シール部材の内周面と、シール部材の内周に挿入された軸部材の外周面との間に、シール空間を形成する。ラジアル軸受隙間を含む軸受装置の内部空間に充満された潤滑油の油面は、常にこのシール空間内に保持される。この軸受装置では、軸受装置の使用時(モータ起動時、停止時を問わない)のシール空間からの油漏れをより確実に防止するために、シール部材の端面や内周面に撥油剤を塗布したり、シール部材自体を撥油性を有する樹脂材で形成している。   For example, in the hydrodynamic bearing device shown in Patent Document 1, a seal member is arranged on the open end side to the outside of the radial bearing gap, and the shaft is inserted into the inner peripheral surface of the seal member and the inner periphery of the seal member. A seal space is formed between the outer peripheral surface of the member. The oil level of the lubricating oil filled in the internal space of the bearing device including the radial bearing gap is always held in this seal space. In this bearing device, an oil repellent agent is applied to the end surface and inner peripheral surface of the seal member in order to more reliably prevent oil leakage from the seal space when the bearing device is used (whether the motor is started or stopped). Alternatively, the seal member itself is formed of a resin material having oil repellency.

一方、軸受装置の組立時に潤滑油を注入する方法として、例えば特許文献2には、減圧雰囲気下にさらした軸受装置の軸受隙間の開放端に潤滑油を滴下した後、軸受装置を大気に開放することにより、潤滑油を軸受隙間に充填する、いわゆる滴下含油による方法が示されている。この方法によると、軸受装置の外周面を汚すことなく、注油することができる。   On the other hand, as a method of injecting lubricating oil at the time of assembling the bearing device, for example, Patent Document 2 discloses that after the lubricating oil is dropped on the open end of the bearing gap of the bearing device exposed to a reduced pressure atmosphere, the bearing device is opened to the atmosphere. By doing so, a so-called dripping oil impregnation method in which lubricating oil is filled in the bearing gap is shown. According to this method, it is possible to lubricate without contaminating the outer peripheral surface of the bearing device.

特開2004−176815号公報JP 2004-176815 A 特開2002−174243号公報JP 2002-174243 A

特許文献2の方法では、軸受装置の端面に滴下する油量を適正に管理する必要があるが、特に小型の軸受装置の場合、軸受内部に充満される油量も極少量であるため、滴下する油量を調整することが困難となる。このような場合には、油不足を避けるため、適正量よりも多めの油を滴下することがある。例えば特許文献1の軸受装置に注油する場合、滴下した油が、撥油性を有するシール部材の端面を越えて軸受装置の外径端に達し、外周面を汚染する恐れがある。このように軸受装置の外周面が油で汚染されると、接着強度が低下し、あるいはこれを防止するために外周面の油を除去する工程が必要となってコストアップを招く。   In the method of Patent Document 2, it is necessary to appropriately control the amount of oil dripped onto the end face of the bearing device. However, in the case of a small bearing device, the amount of oil filled in the bearing is extremely small, so dripping It becomes difficult to adjust the amount of oil to be used. In such a case, in order to avoid oil shortage, more oil than the appropriate amount may be dripped. For example, when lubricating the bearing device of Patent Document 1, the dropped oil may reach the outer diameter end of the bearing device beyond the end surface of the oil-repellent seal member and contaminate the outer peripheral surface. When the outer peripheral surface of the bearing device is contaminated with oil in this way, the adhesive strength is reduced, or a process for removing the oil on the outer peripheral surface is required to prevent this, resulting in an increase in cost.

本発明の課題は、注油時に流体軸受装置の外周部が油で汚染されることを防止することにある。   An object of the present invention is to prevent the outer peripheral portion of a hydrodynamic bearing device from being contaminated with oil during lubrication.

前記課題を解決するため、本発明は、潤滑油で満たされたラジアル軸受隙間と、内周にラジアル軸受隙間とつながったシール空間を形成するシール部材と、シール部材の外径側に配置され、シール部材を保持する保持部材とを備える流体軸受装置において、保持部材の端面に撥油部を設けたことを特徴とする。   In order to solve the above problems, the present invention is arranged on the outer diameter side of the seal member, a radial bearing gap filled with lubricating oil, a seal member forming a seal space connected to the radial bearing gap on the inner periphery, In a hydrodynamic bearing device including a holding member that holds a seal member, an oil repellent portion is provided on an end surface of the holding member.

このように本発明では、シール部材の外径側に配置された保持部材の端面に撥油部を設けた。これにより、シール部材の内周に形成されたシール空間から注油する際、シール空間からシール部材の外径端を越えるまで油が溢れ出た際にも、撥油部の撥油作用により、それ以上の外径側への油の広がりを防止することができる。従って、軸受装置の外周部の油による汚染を防止することができる。   Thus, in the present invention, the oil repellent portion is provided on the end face of the holding member disposed on the outer diameter side of the seal member. As a result, when oil is poured from the seal space formed on the inner periphery of the seal member, even when oil overflows from the seal space to beyond the outer diameter end of the seal member, The spread of oil to the outer diameter side can be prevented. Therefore, contamination of the outer peripheral portion of the bearing device with oil can be prevented.

また、この軸受装置において、保持部材の端面とシール部材の端面との間に凹部を形成すると、撥油部の撥油作用により内径側に戻された油を捕捉することができるため、軸受装置の外周部の油による汚染をより確実に防止することができる。   Further, in this bearing device, if the recess is formed between the end surface of the holding member and the end surface of the seal member, the oil returned to the inner diameter side by the oil repellent action of the oil repellent portion can be captured. It is possible to more reliably prevent contamination of the outer periphery of the oil by oil.

また、シール部材の端面に撥油部を設けると、軸受装置の使用時におけるシール空間からの油漏れを防止することができる。このように、保持部材の端面及びシール部材の端面に撥油部を設けると、注油時にシール空間から溢れ出た油が、撥油部上を滑るようにして保持部材の外径端まで一気に達し、軸受装置の外周部を汚染する恐れがある。この点に鑑み、シール部材の端面の撥油部と保持部材の端面の撥油部との間に非撥油性領域を設けると、保持部材の撥油部ではじかれた油を非撥油性領域に保持できるため、油の外径側への広がりをより確実に防止できる。尚、ここで言う「非撥油性」とは、撥油剤塗布のような積極的に撥油性を付与する処理を行っていないことを意味する(以下の説明において同様)。   Further, when the oil repellent portion is provided on the end face of the seal member, oil leakage from the seal space during use of the bearing device can be prevented. As described above, when the oil repellent part is provided on the end face of the holding member and the end face of the seal member, the oil overflowing from the seal space at the time of lubricating oil reaches the outer diameter end of the holding member at a stretch so as to slide on the oil repellent part. There is a risk of contaminating the outer periphery of the bearing device. In view of this point, when a non-oil repellent region is provided between the oil repellent portion on the end surface of the seal member and the oil repellent portion on the end surface of the holding member, the oil repelled by the oil repellent portion of the holding member is removed. Therefore, it is possible to more reliably prevent the oil from spreading to the outer diameter side. The term “non-oil repellency” as used herein means that the treatment for positively imparting oil repellency such as application of an oil repellant is not performed (the same applies in the following description).

以上のように、本発明によれば、注油時に流体軸受装置が油で汚染されることを防止できる。   As described above, according to the present invention, it is possible to prevent the hydrodynamic bearing device from being contaminated with oil during lubrication.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る流体軸受装置(動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を有する動圧軸受装置1と、軸部材2に取付けられるディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6に取付けられ、ロータマグネット5はディスクハブ3に固定されている。動圧軸受装置1は、ブラケット6の内周に固定される。また、ディスクハブ3には、情報記録媒体としてのディスクDが一又は複数枚(図1では2枚)保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device (dynamic pressure bearing device) 1 according to an embodiment of the present invention. The spindle motor is used in a disk drive device such as an HDD, and is opposed to a dynamic pressure bearing device 1 having a shaft member 2 and a disk hub 3 attached to the shaft member 2 through, for example, a radial gap. The stator coil 4, the rotor magnet 5, and the bracket 6 are provided. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is fixed to the disk hub 3. The hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6. The disk hub 3 holds one or a plurality of disks D (two sheets in FIG. 1) as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk are rotated. The disk held by the hub 3 rotates integrally with the shaft member 2.

図2(a)は、動圧軸受装置1を示している。この動圧軸受装置1は、軸部材2と、内周に軸部材2を挿入した軸受スリーブ8と、軸受スリーブ8の一端開口部に配置されたシール部材9と、軸受スリーブ8及びシール部材9の外径側に配置され、軸受スリーブ8及びシール部材9を保持するコップ状の保持部材7とで構成される。なお、説明の便宜上、保持部材7が開口している側を上側、閉口している側を下側として以下説明する。   FIG. 2A shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a bearing sleeve 8 having the shaft member 2 inserted on the inner periphery, a seal member 9 disposed at one end opening of the bearing sleeve 8, a bearing sleeve 8 and a seal member 9. And a cup-shaped holding member 7 that holds the bearing sleeve 8 and the seal member 9. For convenience of explanation, the side where the holding member 7 is open will be described as the upper side, and the side where the holding member 7 is closed will be described as the lower side.

軸部材2は、軸部2aと軸部2aの下端に設けたフランジ部2bとからなり、SUS鋼等の金属材料で一体または別体に形成される。軸部2aの外周面2a1の上方部には、油漏れを防止するための環状溝2a2が形成される。軸部材2の各部は、同種の材料で形成する他、別材料で形成することもできる。例えば軸部2aを金属材料で形成すると共に、フランジ部2bの一部または全部を樹脂材料で形成することもでき、この場合、軸部材2は、軸部2aをインサート部品とする樹脂の射出成形で製作することが可能である。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a, and is formed integrally or separately from a metal material such as SUS steel. An annular groove 2a2 for preventing oil leakage is formed in the upper part of the outer peripheral surface 2a1 of the shaft part 2a. Each part of the shaft member 2 can be made of the same kind of material or a different material. For example, the shaft portion 2a can be formed of a metal material, and a part or all of the flange portion 2b can be formed of a resin material. In this case, the shaft member 2 is a resin injection molding using the shaft portion 2a as an insert part. It is possible to make with.

軸受スリーブ8は、例えば、銅を主成分とする焼結金属で円筒状に形成され、保持部材7の内周面7a1に、接着、圧入、接着剤介在の下での圧入(以下、圧入接着と称す)、あるいは溶着等、適宜の手段で固定される。尚、軸受スリーブ8を、他の金属材料、樹脂材料、あるいはセラミック等で形成することも可能である。   The bearing sleeve 8 is formed, for example, in a cylindrical shape with a sintered metal containing copper as a main component, and is bonded, press-fitted, and press-fitted under the presence of adhesive (hereinafter referred to as press-fitting adhesion) to the inner peripheral surface 7 a 1 of the holding member 7. Or by welding or other suitable means. The bearing sleeve 8 can be formed of other metal materials, resin materials, ceramics, or the like.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3(a)に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。軸部2aの回転時には、該動圧溝8a1、8a2形成領域が軸部2aの外周面2a1とラジアル軸受部R1、R2のラジアル軸受隙間を介して対向する。   A region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner surface or a part of the cylindrical region of the inner peripheral surface 8 a of the bearing sleeve 8. In this embodiment, for example, as shown in FIG. 3A, two regions having a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape are formed apart from each other in the axial direction. When the shaft portion 2a rotates, the dynamic pressure grooves 8a1 and 8a2 formation regions face the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gaps of the radial bearing portions R1 and R2.

軸受スリーブ8の下側端面8bの全面又は一部環状領域には、スラスト動圧発生部として、例えば図3(b)に示すように、複数の動圧溝8b1をスパイラル状に配列した領域が形成される。軸部2aの回転時には、該動圧溝8b1形成領域が軸部2aのフランジ部2bの上側端面2b1と第1スラスト軸受部T1のスラスト軸受隙間を介して対向する。   On the entire or part of the annular region of the lower end surface 8b of the bearing sleeve 8, there is a region in which a plurality of dynamic pressure grooves 8b1 are arranged in a spiral shape as a thrust dynamic pressure generating portion, for example, as shown in FIG. It is formed. When the shaft portion 2a rotates, the dynamic pressure groove 8b1 formation region faces the upper end surface 2b1 of the flange portion 2b of the shaft portion 2a via the thrust bearing gap of the first thrust bearing portion T1.

保持部材7は、側部7aと底部7bとを有するコップ状に一体形成される。側部7aの内周面7a1の下端部には、段部7cが形成され、軸受スリーブ8の下側端面8bと当接する。側部7aの上端面7a3には、図2(b)に示すように、撥油剤による撥油部P1が設けられる。   The holding member 7 is integrally formed in a cup shape having a side portion 7a and a bottom portion 7b. A step portion 7c is formed at the lower end portion of the inner peripheral surface 7a1 of the side portion 7a and abuts on the lower end surface 8b of the bearing sleeve 8. As shown in FIG. 2B, an oil repellent portion P1 made of an oil repellent is provided on the upper end surface 7a3 of the side portion 7a.

保持部材7の底部7bの上側端面7b1の全面又は一部環状領域には、スラスト動圧発生部として、図示は省略するが、複数の動圧溝をスパイラル状に配列した領域が形成される。軸部2aの回転時には、該動圧溝形成領域が軸部2aのフランジ部2bの下側端面2b2と第2スラスト軸受部T2のスラスト軸受隙間を介して対向する。   Although not shown in the drawings, a region where a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the entire upper surface 7b1 of the bottom 7b of the holding member 7 or a partial annular region. When the shaft portion 2a rotates, the dynamic pressure groove forming region faces the lower end surface 2b2 of the flange portion 2b of the shaft portion 2a via the thrust bearing gap of the second thrust bearing portion T2.

保持部材7は、例えば樹脂材料で形成され、この樹脂材料として、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂や、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物が使用できる。また、上記樹脂に配合可能な充填剤として、例えば炭素繊維やガラス繊維等の繊維状充填剤、チタン酸カリウム等のウィスカ状充填剤、マイカ等の鱗片状充填剤、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の導電性充填剤を挙げることができる。これら充填剤は、保持部材7の補強や導電性付与など、目的に応じて上記ベース樹脂に適量配合される。また、保持部材7を形成する材料は樹脂に限らず、真ちゅう等の金属材料を使用することもできる。   The holding member 7 is formed of, for example, a resin material. Examples of the resin material include crystalline resins such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK), and polyphenylsulfone (PPSU). ), Polyethersulfone (PES), polyetherimide (PEI) and other resin compositions based on an amorphous resin can be used. Examples of fillers that can be added to the resin include fibrous fillers such as carbon fibers and glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon black, graphite, and carbon nano Examples thereof include conductive fillers such as materials and various metal powders. These fillers are blended in an appropriate amount in the base resin depending on the purpose, such as reinforcement of the holding member 7 or imparting conductivity. Further, the material forming the holding member 7 is not limited to resin, and a metal material such as brass can also be used.

シール部材9は、金属材料や樹脂材料でリング状に形成され、保持部材7の内周面7a1の上端部に、下側端面9bを軸受スリーブ8の上側端面8cに当接させた状態で、例えば接着や圧入接着(接着剤介在下での圧入)により固定される。シール部材9の内周面9aは、上方へ向けて漸次拡径したテーパ面を有し、軸部2aの外周面2a1との間に、断面積が上方へ向けて漸次拡大し、かつラジアル軸受隙間につながったシール空間Sを形成する。このシール空間Sの毛細管力で潤滑油を軸受装置の内部側に引き込むと共に、シール空間Sで軸受内部の潤滑油の熱膨張による体積増加を吸収することにより、軸受内部の油が外部へ漏れ出すことを防止できる。   The seal member 9 is formed in a ring shape with a metal material or a resin material, and the lower end surface 9b is in contact with the upper end surface 8c of the bearing sleeve 8 at the upper end portion of the inner peripheral surface 7a1 of the holding member 7, For example, it is fixed by bonding or press-fitting (press-fitting with an adhesive interposed). The inner peripheral surface 9a of the seal member 9 has a tapered surface that gradually increases in diameter upward, and the cross-sectional area gradually increases upward from the outer peripheral surface 2a1 of the shaft portion 2a. A seal space S connected to the gap is formed. The capillary oil in the seal space S pulls the lubricating oil into the bearing device, and the seal space S absorbs the increase in volume due to the thermal expansion of the lubricating oil in the bearing, thereby leaking the oil in the bearing to the outside. Can be prevented.

シール部材9の上側端面9cおよび軸部2aの環状溝2a2には、図2(b)に示すように、撥油剤による撥油部P2及びP3がそれぞれ設けられる。これにより、シール空間S内の潤滑油が外部へ漏れ出すことをより一層効果的に防止することができる。また、シール部材9の上側端面9cと保持部材7の上側端面7a3との間には、図4に示すように、シール部材9の上側端面9cの外周チャンファ部9dと、保持部材7上側端面7a3の内周チャンファ部7a4とで環状空間が形成される。この環状空間のうち、奥部はシール部材9と保持部材7とを接着固定する際の接着剤溜りGとすることもできる。環状空間の開口側は、後述のように、注油時に溢れ出た油を捕捉する凹部Fとなる。   The upper end face 9c of the seal member 9 and the annular groove 2a2 of the shaft portion 2a are provided with oil repellent portions P2 and P3 made of an oil repellent as shown in FIG. Thereby, it is possible to more effectively prevent the lubricating oil in the seal space S from leaking to the outside. Further, between the upper end surface 9c of the seal member 9 and the upper end surface 7a3 of the holding member 7, as shown in FIG. 4, the outer peripheral chamfer portion 9d of the upper end surface 9c of the seal member 9 and the upper end surface 7a3 of the holding member 7 are provided. An annular space is formed by the inner chamfer portion 7a4. The inner part of the annular space can be used as an adhesive reservoir G when the sealing member 9 and the holding member 7 are bonded and fixed. As will be described later, the opening side of the annular space serves as a recess F that captures oil that has overflowed during oiling.

上記のような構成を有する動圧軸受装置1を組み立てた後、内部に潤滑油を注入し、ラジアル軸受隙間及びスラスト軸受隙間を含む動圧軸受装置1の内部空間が潤滑油で満たす。潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の流体軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   After assembling the hydrodynamic bearing device 1 having the above-described configuration, lubricating oil is injected therein, and the internal space of the hydrodynamic bearing device 1 including the radial bearing gap and the thrust bearing gap is filled with the lubricating oil. Various types of lubricating oil can be used, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD is low in consideration of temperature changes during use or transportation. Ester lubricants excellent in evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ) and the like can be suitably used.

軸受内部への潤滑油の注入は、いわゆる滴下含油により行われる。具体的には、注油前の動圧軸受装置1を配置したチャンバー内を減圧した状態で、動圧軸受装置1のシール空間Sに潤滑油を滴下する。このとき、軸受内部に十分な油を供給するために、比較的多量な潤滑油を滴下する場合、滴下した油が保持部材7の上端面7a3の外径端まで達すると、保持部材7の外周面7a2に流れ落ち、外周面7a2が油で汚染される。本発明では、図4に示すように、潤滑油が保持部材7の上端面7a3の撥油部P1ではじかれ、表面張力により盛り上がった状態で撥油部P1より内径側に留まるため、外周面7a2が油で汚染されることを防止できる。   The lubricating oil is injected into the bearing by so-called dripping oil impregnation. Specifically, the lubricating oil is dropped into the seal space S of the fluid dynamic bearing device 1 in a state where the pressure in the chamber in which the fluid dynamic bearing device 1 before lubrication is disposed is reduced. At this time, when a relatively large amount of lubricating oil is dropped in order to supply sufficient oil to the inside of the bearing, when the dropped oil reaches the outer diameter end of the upper end surface 7a3 of the holding member 7, the outer periphery of the holding member 7 It flows down to the surface 7a2, and the outer peripheral surface 7a2 is contaminated with oil. In the present invention, as shown in FIG. 4, the lubricating oil is repelled by the oil repellent part P1 of the upper end surface 7a3 of the holding member 7 and stays on the inner diameter side from the oil repellent part P1 in a state of rising due to surface tension. 7a2 can be prevented from being contaminated with oil.

さらに、本実施形態では、図4に示すように、保持部材7のチャンファ部7a4とシール部材9のチャンファ部9dとで、凹部Gが形成される。この凹部Gにより、撥油部P1ではじかれた潤滑油を捕捉する効果が得られる。   Further, in the present embodiment, as shown in FIG. 4, a recess G is formed by the chamfer portion 7 a 4 of the holding member 7 and the chamfer portion 9 d of the seal member 9. The recess G provides an effect of capturing the lubricating oil repelled by the oil repellent part P1.

ところで、凹部Gを含め、保持部材7の上端面7a3及びシール部材9の上側端面9cの全面に撥油部が設けられた場合、注油時にシール空間Sから溢れ出た油は、撥油部上を滑るようにして保持部材7の外径端まで一気に達し、外周面7a2を汚染する恐れがある。本実施形態では、図4に示すように、撥油部P1の内径側に非撥油性の領域(凹部F)が形成されることにより、撥油部P1ではじかれた油を凹部Fに保持できるため、油を撥油部P1の内径側に留めておくことができる。   By the way, when the oil repellent portion is provided on the entire upper end surface 7a3 of the holding member 7 and the upper end surface 9c of the seal member 9 including the concave portion G, the oil overflowing from the seal space S during oil injection As a result, the outer diameter end of the holding member 7 may be reached at once, and the outer peripheral surface 7a2 may be contaminated. In the present embodiment, as shown in FIG. 4, the oil repelled in the oil repellent part P1 is retained in the recess F by forming a non-oil repellent region (recessed part F) on the inner diameter side of the oil repellent part P1. Therefore, the oil can be kept on the inner diameter side of the oil repellent portion P1.

上記のようにして内部に潤滑油が充満された動圧軸受装置1において、軸部2aの回転時、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間に形成されるラジアル軸受隙間の潤滑油が、動圧溝8a1、8a2の軸方向中心側に押し込まれ、その圧力が上昇する。このように、動圧溝8a1、8a2によって生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ構成される。   In the hydrodynamic bearing device 1 filled with lubricating oil as described above, it is formed between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a when the shaft portion 2a rotates. Lubricating oil in the radial bearing gap is pushed toward the axial center of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. As described above, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by the dynamic pressure action of the lubricating oil generated by the dynamic pressure grooves 8a1 and 8a2. .

これと同時に、軸受スリーブ8の下側端面8bとフランジ部2bの上側端面2b1との間のスラスト軸受隙間、およびフランジ部2bの下側端面2b2と保持部材7の底部7bの上側端面7b1との間のスラスト軸受隙間に形成される油膜の圧力が、動圧溝8b1等の動圧作用により高められる。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される。   At the same time, the thrust bearing gap between the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and the lower end surface 2b2 of the flange portion 2b and the upper end surface 7b1 of the bottom portion 7b of the holding member 7 The pressure of the oil film formed in the thrust bearing gap is increased by the dynamic pressure action of the dynamic pressure groove 8b1 and the like. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in the thrust direction in a non-contact manner are constituted by the pressure of these oil films.

また、本実施形態では、軸受スリーブ8の外周面に、1又は複数本、例えば円周方向等間隔に配置された3本の軸方向溝8dが形成される。この軸方向溝8dと、保持部材7の内周に設けられた段部7cに形成された径方向溝7c1と、シール部材9の下側端面9bの外径部と軸受スリーブ8の上側端面8cとの間の隙間と、軸受スリーブ8の上側端面8cに形成された周方向溝8c2と、周方向溝8c2の内径側に形成された径方向溝8c1とにより、スラスト軸受隙間の外径端とラジアル軸受隙間の上端とを連通させることができる。これにより、軸受内部の潤滑油を循環させることが可能となり、軸受内部の潤滑油に局所的な負圧が発生したり、潤滑油が局所的に劣化したりすることを防ぐことができるため、これらに伴う軸受性能の低下を防止できる。また、本実施形態では、図3に示すように、動圧溝8a1が、その軸方向中心に対して軸方向で非対称な形状を呈している。これにより、軸部2aの回転時には、ラジアル軸受隙間の潤滑油が下方に押し込まれ、軸受内部の潤滑油に強制的な循環が生じ、潤滑油の局所的な負圧の発生や劣化等の不具合をより一層効果的に防止することができる。   In the present embodiment, one or a plurality of, for example, three axial grooves 8 d arranged at equal intervals in the circumferential direction are formed on the outer peripheral surface of the bearing sleeve 8. The axial groove 8d, the radial groove 7c1 formed in the step 7c provided on the inner periphery of the holding member 7, the outer diameter portion of the lower end surface 9b of the seal member 9, and the upper end surface 8c of the bearing sleeve 8 Between the outer diameter end of the thrust bearing gap and the circumferential groove 8c2 formed on the upper end surface 8c of the bearing sleeve 8 and the radial groove 8c1 formed on the inner diameter side of the circumferential groove 8c2. The upper end of the radial bearing gap can be communicated. This makes it possible to circulate the lubricating oil inside the bearing and prevent local negative pressure from being generated in the lubricating oil inside the bearing or preventing local deterioration of the lubricating oil. It is possible to prevent the bearing performance from deteriorating due to these. Moreover, in this embodiment, as shown in FIG. 3, the dynamic pressure groove 8a1 has an asymmetric shape in the axial direction with respect to the axial center. As a result, when the shaft portion 2a rotates, the lubricating oil in the radial bearing gap is pushed downward, and forced circulation occurs in the lubricating oil inside the bearing, causing problems such as local negative pressure generation and deterioration of the lubricating oil. Can be more effectively prevented.

本発明の実施形態は上記に限られない。上記の実施形態では、保持部材7の上端面7a3に撥油剤を塗布することにより撥油部P1が形成されているが、これに限らず、例えば保持部材7のうち、少なくとも上端面7a3を含む領域、あるいは全部を、撥油性を有する材料、例えばPTFEを配合した樹脂材料で形成することにより、撥油部P1を形成することもできる。   The embodiment of the present invention is not limited to the above. In the above embodiment, the oil repellent portion P1 is formed by applying an oil repellent to the upper end surface 7a3 of the holding member 7. However, the present invention is not limited to this. For example, the holding member 7 includes at least the upper end surface 7a3. The oil repellent part P1 can also be formed by forming the region or the whole with a material having oil repellency, for example, a resin material blended with PTFE.

また、上記の実施形態では、保持部材7の側部7a及び底部7bが一体に形成されているが、これらを別体に形成してもよい。また、上記では、軸受スリーブ8と保持部材7とが別体に形成されているが、軸受スリーブ8と保持部材7の側部7aとを、樹脂等で一体に形成し、一端開口部を別体に形成した底部7bで閉塞してもよい。   Moreover, in said embodiment, although the side part 7a and the bottom part 7b of the holding member 7 are integrally formed, you may form these separately. In the above description, the bearing sleeve 8 and the holding member 7 are formed separately. However, the bearing sleeve 8 and the side portion 7a of the holding member 7 are integrally formed of resin or the like, and one end opening is separated. You may block | close with the bottom part 7b formed in the body.

また、以上では、ラジアル動圧発生部が軸受スリーブ8の内周面8aに形成され、スラスト動圧発生部が軸受スリーブ8の下側端面8b及び底部7bの上側端面7b1に形成されているが、これに限らず、動圧発生部を、軸受隙間を介して対向する面、すなわち、軸部2aの外周面2a1や、フランジ部2bの上側端面2b1、下側端面2b2に形成することもできる。   In the above, the radial dynamic pressure generating portion is formed on the inner peripheral surface 8a of the bearing sleeve 8, and the thrust dynamic pressure generating portion is formed on the lower end surface 8b of the bearing sleeve 8 and the upper end surface 7b1 of the bottom portion 7b. However, the present invention is not limited to this, and the dynamic pressure generating portion can be formed on the surface facing the bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a, the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b. .

また、動圧発生部の形状は上記に限らず、例えばラジアル軸受部の動圧発生部として、スパイラル形状の動圧溝や、ステップ軸受、あるいは多円弧軸受等を形成することもできる。また、スラスト軸受部の動圧発生部として、ヘリングボーン形状の動圧溝や、ステップ軸受、波型軸受等を形成することもできる。   In addition, the shape of the dynamic pressure generating portion is not limited to the above, and for example, as a dynamic pressure generating portion of the radial bearing portion, a spiral dynamic pressure groove, a step bearing, a multi-arc bearing, or the like can be formed. Further, a herringbone-shaped dynamic pressure groove, a step bearing, a wave bearing, or the like can be formed as the dynamic pressure generating portion of the thrust bearing portion.

あるいは、軸部材2の外周面2a1及び軸受スリーブ8の内周面8aを真円形状とし、ラジアル軸受部Rをいわゆる真円軸受で構成することもできる。また、下端に球面状凸部を有する軸部材を使用し、この球面状凸部の先端と保持部材7の内底面7b1とを接触摺動させることにより、スラスト軸受部をいわゆるピボット軸受で構成することもできる。   Alternatively, the outer peripheral surface 2a1 of the shaft member 2 and the inner peripheral surface 8a of the bearing sleeve 8 can be formed into a perfect circle shape, and the radial bearing portion R can be configured by a so-called perfect circular bearing. In addition, a thrust bearing portion is formed of a so-called pivot bearing by using a shaft member having a spherical convex portion at the lower end and sliding the tip of the spherical convex portion and the inner bottom surface 7b1 of the holding member 7 in contact with each other. You can also.

本発明の流体軸受装置は、以上のようにHDD等のディスク駆動装置に限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ、あるいは電気機器等に使用されるファンモータ等における回転軸支持用としても使用することができる。   As described above, the hydrodynamic bearing device of the present invention is not limited to a disk drive device such as an HDD, but a spindle motor for driving a magneto-optical disk of an optical disk, a small motor for information equipment used under high-speed rotation, and a laser beam printer. It can also be used for supporting a rotating shaft in a polygon scanner motor or a fan motor used in an electric device or the like.

動圧軸受装置1を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus. 動圧軸受装置1の(a)断面図、および(b)外側部材10の開口側端面10a付近の拡大断面図である。2A is a cross-sectional view of the hydrodynamic bearing device 1 and FIG. 軸受スリーブ8の(a)断面図、および(b)下面図である。It is (a) sectional drawing of the bearing sleeve 8, and (b) bottom view. 滴下含油により動圧軸受装置1に注油する状態を示す断面図である。It is sectional drawing which shows the state which lubricates the hydrodynamic bearing apparatus 1 by dripping oil impregnation.

符号の説明Explanation of symbols

1 流体軸受装置(動圧軸受装置)
2 軸部材
7 保持部材
7a 側部
7b 底部
8 軸受スリーブ
9 シール部材
P1、P2、P3 撥油部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
F 凹部(非撥油性領域)
G 接着剤溜り
1 Fluid bearing device (dynamic pressure bearing device)
2 Shaft member 7 Holding member 7a Side portion 7b Bottom portion 8 Bearing sleeve 9 Seal members P1, P2, P3 Oil repellent portion R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space F Recessed portion (non-oil repellent region)
G Adhesive reservoir

Claims (4)

潤滑油で満たされたラジアル軸受隙間と、内周にラジアル軸受隙間とつながったシール空間を形成するシール部材と、シール部材の外径側に配置され、シール部材を保持する保持部材とを備える流体軸受装置において、
保持部材の端面に撥油部を設けたことを特徴とする流体軸受装置。
A fluid comprising a radial bearing gap filled with lubricating oil, a seal member that forms a seal space connected to the radial bearing gap on the inner periphery, and a holding member that is disposed on the outer diameter side of the seal member and holds the seal member In the bearing device,
A hydrodynamic bearing device, wherein an oil repellent portion is provided on an end surface of a holding member.
保持部材の端面とシール部材の端面との間に、凹部を形成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a recess is formed between an end surface of the holding member and an end surface of the seal member. シール部材の端面に撥油部を設けた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an oil repellent portion is provided on an end surface of the seal member. シール部材の端面の撥油部と保持部材の端面の撥油部との間に、非撥油性領域を設けた請求項3記載の流体軸受装置。   4. The hydrodynamic bearing device according to claim 3, wherein a non-oil repellent region is provided between the oil repellent portion on the end face of the seal member and the oil repellent portion on the end face of the holding member.
JP2006156304A 2006-06-05 2006-06-05 Fluid bearing device Withdrawn JP2007321965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156304A JP2007321965A (en) 2006-06-05 2006-06-05 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156304A JP2007321965A (en) 2006-06-05 2006-06-05 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2007321965A true JP2007321965A (en) 2007-12-13

Family

ID=38854957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156304A Withdrawn JP2007321965A (en) 2006-06-05 2006-06-05 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2007321965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096208A (en) * 2008-10-14 2010-04-30 Ntn Corp Fluid bearing device
JP2012225386A (en) * 2011-04-18 2012-11-15 Ntn Corp Fluid dynamic pressure bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096208A (en) * 2008-10-14 2010-04-30 Ntn Corp Fluid bearing device
JP2012225386A (en) * 2011-04-18 2012-11-15 Ntn Corp Fluid dynamic pressure bearing device

Similar Documents

Publication Publication Date Title
US8128289B2 (en) Fluid dynamic bearing device
KR101244275B1 (en) Fluid bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP2008064302A (en) Hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2006292013A (en) Dynamic pressure bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP2007255449A (en) Fluid bearing device
JP2007321965A (en) Fluid bearing device
US8197141B2 (en) Fluid dynamic bearing device
JP2009281464A (en) Fluid bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2008008367A (en) Dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP2010060034A (en) Hydrodynamic pressure bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP2008169944A (en) Fluid bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP5101122B2 (en) Hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP4689567B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901