JP2008008367A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2008008367A
JP2008008367A JP2006178315A JP2006178315A JP2008008367A JP 2008008367 A JP2008008367 A JP 2008008367A JP 2006178315 A JP2006178315 A JP 2006178315A JP 2006178315 A JP2006178315 A JP 2006178315A JP 2008008367 A JP2008008367 A JP 2008008367A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
bearing member
peripheral surface
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006178315A
Other languages
Japanese (ja)
Inventor
Seiji Hori
政治 堀
Takaharu Inazuka
貴開 稲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006178315A priority Critical patent/JP2008008367A/en
Publication of JP2008008367A publication Critical patent/JP2008008367A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device capable of easily and inexpensively forming a dynamic pressure generating part. <P>SOLUTION: A radial difference is formed on an inner peripheral surface 8a of a bearing member 7, by actively utilizing a difference in a molding contraction quantity of the bearing member 7, and the dynamic pressure generating part is formed by this radial difference. Thus, there is no need to process a recess-projection corresponding to a shape of the dynamic pressure generating part in an inner mood for molding the inner peripheral surface 8a of the bearing member 7, and since the inner mold is sufficient in a true circular shape, manufacturing cost of the inner mold is reduced. Since the inner mold is sufficient in the true circular shape, the inner mold and the bearing member 7 are not unreasonably drawn in mold separation, and damage of the dynamic pressure generating part can be avoided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に生じる潤滑流体の動圧作用で軸部材を回転自在に支持する動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by the hydrodynamic action of a lubricating fluid generated in a bearing gap.

動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えばファンモータなどの小型モータ用として好適に使用可能である。   The hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, a magneto-optical disk drive device such as MD, MO, etc. It can be suitably used for a spindle motor of the present invention, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or an electric device such as a small motor such as a fan motor.

例えば、特許文献1に示されている動圧軸受装置は、樹脂製の軸受部材(軸受スリーブ)と軸部材とを備え、軸受部材の内周面には、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧溝が形成される。この動圧溝は、軸受部材の内周面を成形するための内型の外周面に、動圧溝形状と逆の凹凸を形成し、この凹凸形状を転写することにより形成される。軸受部材の内周から内型を離型する際は、樹脂材料のすべり性を利用して、いわゆる無理抜きにより取り出される。   For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a resin bearing member (bearing sleeve) and a shaft member, and an inner peripheral surface of the bearing member and a shaft member are provided on the inner peripheral surface of the bearing member. A dynamic pressure groove for generating a dynamic pressure action is formed in the lubricating fluid in the radial bearing gap formed between the outer peripheral surface and the outer peripheral surface. The dynamic pressure groove is formed by forming irregularities opposite to the dynamic pressure groove shape on the outer peripheral surface of the inner mold for forming the inner peripheral surface of the bearing member, and transferring the irregular shape. When the inner mold is released from the inner periphery of the bearing member, the inner mold is taken out by so-called forced removal by utilizing the slipperiness of the resin material.

特開2004−316712号公報JP 2004-316712 A

しかし、内型の外周面にヘリングボーン形状等の複雑な形状の凹凸を形成するには、内型に高精度の加工が必要とされるため、加工コストの高騰を招く。また、内型と軸受部材との分離が無理抜きとなることにより、動圧溝が損傷するおそれがある。   However, in order to form irregularities having a complicated shape such as a herringbone shape on the outer peripheral surface of the inner mold, the inner mold needs to be processed with high precision, resulting in an increase in processing cost. In addition, if the inner mold and the bearing member are separated from each other by force, the dynamic pressure grooves may be damaged.

本発明の課題は、動圧発生部を容易且つ低コストに形成することができる動圧軸受装置を提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device capable of forming a hydrodynamic pressure generating section easily and at low cost.

前記課題を解決するため、本発明は、樹脂で型成形された軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されたラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部とを備えた動圧軸受装置において、軸受部材が内周面に成形収縮量差に基づく径差を有し、この径差で前記動圧発生部を形成した。   In order to solve the above problems, the present invention provides a bearing member molded with resin, a shaft member inserted in the inner periphery of the bearing member, and an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. In the hydrodynamic bearing device having a hydrodynamic pressure generating portion that generates hydrodynamic action on the lubricating fluid in the formed radial bearing gap, the bearing member has a radial difference based on a difference in molding shrinkage on the inner peripheral surface. The dynamic pressure generating part was formed by the diameter difference.

このように本発明では、軸受部材の成形収縮量の差を積極的に活用することで、軸受部材の内周面に径差を形成し、この径差で動圧発生部を形成する。この成形収縮量の差は、例えば軸受部材の円周方向の肉厚を異ならせることで設けることができる。これにより、軸受部材の内周面を成形する内型に、動圧発生部の形状に対応させた凹凸を加工する必要は無く、例えば真円形状にすることができるので、内型の製作コストが安価なものとなる。また、内型の断面形状を軸方向で一定にすることもでき、これによると離型時に内型と軸受部材とが無理抜きとなることはなく、動圧発生部の損傷を回避できる。   As described above, in the present invention, the difference in molding shrinkage of the bearing member is positively utilized to form a diameter difference on the inner peripheral surface of the bearing member, and the dynamic pressure generating portion is formed by this diameter difference. This difference in molding shrinkage can be provided, for example, by varying the circumferential thickness of the bearing member. As a result, it is not necessary to process the unevenness corresponding to the shape of the dynamic pressure generating portion in the inner mold for molding the inner peripheral surface of the bearing member, and for example, it can be made into a perfect circle shape. Is cheaper. Further, the cross-sectional shape of the inner mold can be made constant in the axial direction. According to this, the inner mold and the bearing member are not forcibly removed at the time of mold release, and damage to the dynamic pressure generating portion can be avoided.

この動圧軸受装置には、軸受部材に内面を成形面とした軸方向の貫通孔を形成することができる。この貫通孔は、軸受部材を成形するためのキャビティ内に、貫通孔の内面形状に対応した外周面を有する成形ピンを配置することで形成される。軸受部材のうち、貫通孔がある領域は、貫通孔のない領域と比べ、貫通孔の分だけ肉厚が薄くなる。このように、軸受部材の肉厚が円周方向で異なることで、樹脂の成形収縮量に差が生じ、軸受部材の内周面に動圧発生部となる径差が形成される。   In this hydrodynamic bearing device, an axial through hole having an inner surface as a molding surface can be formed in the bearing member. This through hole is formed by disposing a forming pin having an outer peripheral surface corresponding to the inner surface shape of the through hole in a cavity for forming the bearing member. Of the bearing member, the region with the through hole is thinner than the region without the through hole by the thickness of the through hole. As described above, when the thickness of the bearing member is different in the circumferential direction, a difference occurs in the amount of molding shrinkage of the resin, and a diameter difference serving as a dynamic pressure generating portion is formed on the inner peripheral surface of the bearing member.

あるいは、この動圧軸受装置には、軸受部材の外周面に外径へ向けて突出した突出部を形成することができる。この突出部により軸受部材の肉厚が円周方向で異なるため、樹脂の成形収縮量に差が生じ、軸受部材の内周面に動圧発生部となる径差が形成される。   Alternatively, in this dynamic pressure bearing device, a protruding portion protruding toward the outer diameter can be formed on the outer peripheral surface of the bearing member. Since the thickness of the bearing member differs in the circumferential direction due to the protrusion, a difference occurs in the amount of molding shrinkage of the resin, and a diameter difference serving as a dynamic pressure generating portion is formed on the inner peripheral surface of the bearing member.

以上のように、本発明によれば、動圧発生部を容易且つ低コストに形成することができる動圧軸受装置が得られる。   As described above, according to the present invention, it is possible to obtain a hydrodynamic bearing device in which the hydrodynamic pressure generating portion can be formed easily and at low cost.

以下、本発明の第1実施形態を図1〜図5に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を相対回転自在に非接触支持する動圧軸受装置1と、軸部材2に固定されるディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。動圧軸受装置1の軸受部材7は、ブラケット6の内周に固定される。また、ディスクハブ3には、情報記録媒体としてのディスクDが一又は複数枚(図1では2枚)保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that supports the shaft member 2 in a non-contact manner so as to be relatively rotatable, a disk hub 3 that is fixed to the shaft member 2, and a radius, for example. A stator coil 4 and a rotor magnet 5 and a bracket 6 are provided to face each other with a gap in the direction. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the bracket 6. The disk hub 3 holds one or a plurality of disks D (two sheets in FIG. 1) as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk are rotated. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸受部材7と、軸受部材7の内周に挿入される軸部材2と、軸受部材7の一端を閉口する蓋部材10と、軸受部材7の他端をシールするシール部11とを主に備えている。なお、説明の便宜上、軸方向両端に形成される軸受部材7の開口部のうち、蓋部材10で閉口される側を下側、閉口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 seals a bearing member 7, a shaft member 2 inserted into the inner periphery of the bearing member 7, a lid member 10 that closes one end of the bearing member 7, and the other end of the bearing member 7. The seal part 11 is mainly provided. For the sake of convenience of explanation, of the openings of the bearing member 7 formed at both ends in the axial direction, the side closed by the lid member 10 will be described as the lower side, and the side opposite to the closed side will be described as the upper side.

軸部材2は、軸部2aと軸部2aの下端に設けたフランジ部2bとからなり、SUS鋼等の金属材料で一体または別体に形成される。軸部材2の各部は、同種の材料で形成する他、別材料で形成することもできる。例えば軸部2aを金属材料で形成すると共に、フランジ部2bの一部または全部を樹脂材料で形成することもでき、この場合、軸部材2は、軸部2aをインサート部品とする樹脂の射出成形で製作することが可能である。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a, and is formed integrally or separately from a metal material such as SUS steel. Each part of the shaft member 2 can be made of the same kind of material or a different material. For example, the shaft portion 2a can be formed of a metal material, and a part or all of the flange portion 2b can be formed of a resin material. It is possible to make with.

軸受部材7は、軸方向両端を開口した形状をなし、略円筒状のスリーブ部8と、スリーブ部8の外径側に位置するハウジング部9とを一体に備えている。この実施形態では、軸受部材7は、例えば液晶ポリマー(LCP)やポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物を射出成形することで形成される。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The bearing member 7 has a shape in which both ends in the axial direction are opened, and includes a substantially cylindrical sleeve portion 8 and a housing portion 9 positioned on the outer diameter side of the sleeve portion 8. In this embodiment, the bearing member 7 is made of, for example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenyl sulfone (PPSU), polyether sulfone ( It is formed by injection molding a resin composition having an amorphous resin such as PES) or polyetherimide (PEI) as a base resin. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

軸受部材7の内周面、すなわちスリーブ部8の内周面8aは、図3に誇張して示すように、大径部8a1と小径部8a2とを円周方向で交互に備えた非真円形状を呈する。軸部材2の回転時には、スリーブ部8の内周面8aと軸部2aの外周面2a1との間に、ラジアル軸受部Rのラジアル軸受隙間を形成する。   The inner peripheral surface of the bearing member 7, that is, the inner peripheral surface 8a of the sleeve portion 8, as exaggeratedly shown in FIG. 3, is a non-circular shape in which large diameter portions 8a1 and small diameter portions 8a2 are alternately provided in the circumferential direction. Presents a shape. When the shaft member 2 rotates, a radial bearing gap of the radial bearing portion R is formed between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the shaft portion 2a.

スリーブ部8の下端面8bの全面または一部環状面領域には、複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図4に示すように、複数の動圧溝8b1をスパイラル形状に配列した領域が形成される。軸部材2の回転時には、動圧溝8b1の形成領域とフランジ部2bの上端面2b1との間に、第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   A region where a plurality of dynamic pressure grooves are arranged is formed in the entire lower surface 8b of the sleeve portion 8 or in a partial annular surface region. In this embodiment, for example, as shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 8b1 are arranged in a spiral shape is formed. During rotation of the shaft member 2, a thrust bearing gap of the first thrust bearing portion T1 is formed between the formation region of the dynamic pressure groove 8b1 and the upper end surface 2b1 of the flange portion 2b (see FIG. 2).

スリーブ部8の外径側に位置するハウジング部9は略筒状をなすもので、その軸方向両端をスリーブ部8の両端面8b、8cよりも軸方向上下に突出させた形態をなす。ハウジング部9の下端突出部9aの内周には、軸受部材7の下端側を閉口する蓋部材10が接着、圧入、接着剤介在下での圧入(以下、圧入接着と称す)、溶着、あるいは溶接等の手段で固定される。この際、ハウジング部9と蓋部材10との固定面間では、軸受内部に充満した潤滑油が少なくとも外部に漏出しない程度の密封性が確保されている。   The housing portion 9 positioned on the outer diameter side of the sleeve portion 8 is substantially cylindrical, and has a shape in which both ends in the axial direction protrude above and below the both end surfaces 8b and 8c of the sleeve portion 8 in the axial direction. A lid member 10 that closes the lower end side of the bearing member 7 is bonded, press-fitted, press-fitted with an adhesive (hereinafter referred to as press-fitting adhesion), welding, It is fixed by means such as welding. Under the present circumstances, between the fixed surfaces of the housing part 9 and the cover member 10, the sealing performance of the extent which the lubricating oil with which the inside of a bearing was filled at least is not leaked outside is ensured.

ハウジング部9の上端突出部9bの内周には環状のシール部11が、その下端面11bをスリーブ部8の上端面8cに当接させた状態で固定される。シール部11の内周面11aと、この面に対向する軸部2aの外周面2a1との間には、その半径方向寸法を上方に向けて漸次拡大させたテーパ状のシール空間S1が形成される。軸受内部が潤滑油で満たされた状態では、潤滑油の油面は常にシール空間S1の範囲内にある。   An annular seal portion 11 is fixed to the inner periphery of the upper end protruding portion 9 b of the housing portion 9 with its lower end surface 11 b in contact with the upper end surface 8 c of the sleeve portion 8. Between the inner peripheral surface 11a of the seal portion 11 and the outer peripheral surface 2a1 of the shaft portion 2a facing this surface, a tapered seal space S1 is formed in which the radial dimension is gradually enlarged upward. The In a state where the bearing is filled with the lubricating oil, the oil level of the lubricating oil is always within the range of the seal space S1.

軸受部材7の径方向中間部には、図2に示すように、軸受部材7を軸方向に貫通する複数の貫通孔12が形成される。この貫通孔12は、この実施形態では、円周方向等間隔の複数箇所、例えば4箇所に設けられる。貫通孔12は、下端でスリーブ部8の下端面8bの動圧溝8b1形成領域よりも外径側に開口する(図4参照)と共に、上端でスリーブ部8の上端面8cの外径側に開口する。   As shown in FIG. 2, a plurality of through-holes 12 penetrating the bearing member 7 in the axial direction are formed in the radial intermediate portion of the bearing member 7. In this embodiment, the through-holes 12 are provided at a plurality of, for example, four locations at equal intervals in the circumferential direction. The through-hole 12 opens to the outer diameter side of the lower end surface 8b of the sleeve portion 8 at the lower end side than the region where the dynamic pressure groove 8b1 is formed (see FIG. 4), and at the upper end to the outer diameter side of the upper end surface 8c of the sleeve portion 8. Open.

貫通孔12の内径の大きさは、軸受内部の潤滑流体の流動性や、貫通孔12の成形性などを考慮して適宜の値に設定される。しかし、貫通孔12の内径が大きすぎると、軸受部材の強度低下を招いたり、他の流体保持空間から流体流路へ流体が過剰に流れ込むことで、本来圧力が高まるべき箇所、すなわちラジアル軸受隙間およびスラスト軸受隙間から流体が逃げ、あるいは局所的に負圧状態を生じ、かえって圧力バランスが崩れる恐れがある。このため、貫通孔12の内径は、内部を潤滑流体が良好に流れることのでき、且つ、軸受部材7の円周方向での成形収縮差により後述する動圧発生部が形成される範囲内で、できるだけ小径に設定することが望ましい。   The size of the inner diameter of the through hole 12 is set to an appropriate value in consideration of the fluidity of the lubricating fluid inside the bearing, the moldability of the through hole 12, and the like. However, if the inner diameter of the through hole 12 is too large, the strength of the bearing member is reduced, or excessive fluid flows from the other fluid holding space into the fluid flow path, so that the pressure should be increased, that is, the radial bearing gap. In addition, fluid may escape from the thrust bearing gap, or a negative pressure state may be locally generated, and the pressure balance may be lost. For this reason, the inside diameter of the through-hole 12 is within a range in which the lubricating fluid can flow satisfactorily and a dynamic pressure generating portion described later is formed due to a molding shrinkage difference in the circumferential direction of the bearing member 7. It is desirable to set the diameter as small as possible.

この実施形態では、貫通孔12と、蓋部材10の当接面10b1に複数設けられた半径方向溝10cと、シール部11の下端面11bに複数設けられた半径方向溝11b1とで、内部を流体が流通可能の流体流路が構成される。   In this embodiment, the inside is formed by the through-hole 12, a plurality of radial grooves 10 c provided on the contact surface 10 b 1 of the lid member 10, and a plurality of radial grooves 11 b 1 provided on the lower end surface 11 b of the seal portion 11. A fluid flow path is formed through which fluid can flow.

このような軸受部材7は、例えば以下のようにして形成される。図5に示すように、真円状の内周面を有する外型14と、真円状の外周面を有する内型15とで形成されたキャビティ16に、貫通孔12を成形するための成形ピン13を配置し、スプルー17およびゲート18を介してキャビティ16内に樹脂材料を射出する。射出直後の軸受部材7の内周面8a’は真円形状を呈している(図3に点線で示す)が、その後の固化時の成形収縮により、内周面8a’は拡径方向に後退する。キャビティ16に充満された樹脂のうち、成形ピン13の存在する領域の肉厚は、キャビティ16の径方向幅(図5にLで示す)よりも成形ピン13の直径分(図5にlで示す)だけ薄くなる。このように、円周方向で樹脂の肉厚が異なることにより、径方向の成形収縮量に差が生じ、内周面8a’の拡径量が円周方向で異なる。   Such a bearing member 7 is formed as follows, for example. As shown in FIG. 5, molding for molding a through hole 12 in a cavity 16 formed by an outer mold 14 having a perfect circular inner peripheral surface and an inner mold 15 having a perfect circular outer peripheral surface. The pin 13 is disposed, and a resin material is injected into the cavity 16 through the sprue 17 and the gate 18. The inner peripheral surface 8a ′ of the bearing member 7 immediately after injection has a perfect circle shape (indicated by a dotted line in FIG. 3), but the inner peripheral surface 8a ′ recedes in the diameter increasing direction due to molding shrinkage at the time of subsequent solidification. To do. Of the resin filled in the cavity 16, the thickness of the region where the molding pin 13 is present is larger than the radial width of the cavity 16 (indicated by L in FIG. 5) than the diameter of the molding pin 13 (indicated by l in FIG. 5). Only thin). As described above, the difference in the thickness of the resin in the circumferential direction causes a difference in the amount of molding shrinkage in the radial direction, and the diameter expansion amount of the inner peripheral surface 8a 'varies in the circumferential direction.

本発明では、この成形収縮量の差を積極的に活用して非真円形状の内周面8a(図3に実線で示す)を形成し、この非真円形状の内周面8aの大径部8a1と小径部8a2との径差を、ラジアル軸受隙間の潤滑油に動圧作用を発生させる動圧発生部として機能させる。これにより、軸受部材7の内周面8aを成形する内型15に、動圧発生部の形状に対応させた凹凸を加工する必要は無く、例えば図5のように真円形状とすることができるため、内型15の製作コストが安価なものとなる。また、内型15の断面形状を軸方向で一定に形成すると、離型時に内型15と軸受部材7とが無理抜きとなることはなく、動圧発生部の損傷を回避できる。   In the present invention, the difference in molding shrinkage is actively utilized to form a non-circular inner peripheral surface 8a (shown by a solid line in FIG. 3), and the non-circular inner peripheral surface 8a is large. The diameter difference between the diameter portion 8a1 and the small diameter portion 8a2 is caused to function as a dynamic pressure generating portion that generates a dynamic pressure action in the lubricating oil in the radial bearing gap. Thereby, it is not necessary to process the unevenness | corrugation corresponding to the shape of the dynamic-pressure generation | occurrence | production part in the inner type | mold 15 which shape | molds the internal peripheral surface 8a of the bearing member 7, For example, it is set as a perfect circle shape like FIG. Therefore, the manufacturing cost of the inner mold 15 is low. In addition, when the cross-sectional shape of the inner die 15 is formed to be constant in the axial direction, the inner die 15 and the bearing member 7 are not forcedly removed at the time of releasing, and damage to the dynamic pressure generating portion can be avoided.

なお、成形ピン13による軸受部材7の成形収縮量を、軸方向で均一にするために、成形ピン13の径方向の断面形状、すなわち貫通孔12の径方向の断面形状は、図2で示すように軸方向で一定であることが望ましい。もちろん、成形ピン13の断面形状が軸方向で一定でなくても特に問題がない場合は、軸方向で異なる断面形状を有する成形ピンを使用してもよい。   In order to make the molding shrinkage of the bearing member 7 by the molding pin 13 uniform in the axial direction, the radial sectional shape of the molding pin 13, that is, the radial sectional shape of the through hole 12 is shown in FIG. Thus, it is desirable to be constant in the axial direction. Of course, if there is no particular problem even if the cross-sectional shape of the forming pin 13 is not constant in the axial direction, a forming pin having a different cross-sectional shape in the axial direction may be used.

蓋部材10の上端面10aの一部環状面領域には、図示は省略するが、複数の動圧溝を、例えば図4に示すスパイラル形状とは円周方向反対向きの形状となるよう配列した領域が形成される。軸部材2の回転時には、この動圧溝形成領域とフランジ部2bの下端面2b2との間に、第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   Although not shown in the partial annular surface region of the upper end surface 10a of the lid member 10, for example, a plurality of dynamic pressure grooves are arranged so as to have a shape opposite to the spiral shape shown in FIG. A region is formed. When the shaft member 2 rotates, a thrust bearing gap of the second thrust bearing portion T2 is formed between the dynamic pressure groove forming region and the lower end surface 2b2 of the flange portion 2b (see FIG. 2).

また、蓋部材10の上端面10aの外周には上方に突出する突出部10bが設けられており、突出部10bの上端に位置する当接面10b1をスリーブ部8の下端面8bに当接させた状態で、蓋部材10が下端突出部9aの内周に固定される。この場合、突出部10bの軸方向寸法からフランジ部2bの軸方向幅を減じた値が、スラスト軸受部T1、T2の各スラスト軸受隙間の総和に等しくなる。   A protrusion 10b that protrudes upward is provided on the outer periphery of the upper end surface 10a of the lid member 10, and the contact surface 10b1 positioned at the upper end of the protrusion 10b is brought into contact with the lower end surface 8b of the sleeve portion 8. In this state, the lid member 10 is fixed to the inner periphery of the lower end protruding portion 9a. In this case, a value obtained by subtracting the axial width of the flange portion 2b from the axial dimension of the protruding portion 10b is equal to the sum of the thrust bearing gaps of the thrust bearing portions T1 and T2.

潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   Various types of lubricating oil can be used, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD, in consideration of temperature changes during use or transportation, An ester-based lubricating oil excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ) and the like can be suitably used.

上記構成の動圧軸受装置1において、軸部材2の回転時、スリーブ部8の内周面8aは、対向する軸部2aの外周面2a1との間にラジアル軸受隙間を形成する。スリーブ部8の内周面8aは大径部8a1及び小径部8a2を有する非真円形状を呈するため、ラジアル軸受隙間は円周方向で異なる隙間幅を有する。軸部材2の回転に伴い、ラジアル軸受隙間のうち、大径部8a1が面する比較的隙間幅が大きい部分の潤滑油が、小径部8a2が面する比較的隙間幅が小さい部分に押し込まれることにより、潤滑油膜の圧力が上昇する。このように、ラジアル軸受隙間に生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持するラジアル軸受部Rが構成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, a radial bearing gap is formed between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the opposing shaft portion 2a. Since the inner peripheral surface 8a of the sleeve portion 8 has a non-circular shape having a large diameter portion 8a1 and a small diameter portion 8a2, the radial bearing gap has a different gap width in the circumferential direction. As the shaft member 2 rotates, the lubricating oil in the portion having a relatively large gap width facing the large diameter portion 8a1 in the radial bearing gap is pushed into the portion having the relatively small gap width facing the small diameter portion 8a2. As a result, the pressure of the lubricating oil film increases. Thus, the radial bearing portion R that supports the shaft member 2 in the radial direction in a non-contact manner is formed by the dynamic pressure action of the lubricating oil generated in the radial bearing gap.

これと同時に、スリーブ部8の下端面8bの動圧溝8b1形成領域とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、および蓋部材10の上端面10aの動圧溝形成領域とこれに対向するフランジ部2bの下端面2b2との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、動圧溝の動圧作用により高められる。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第一スラスト軸受部T1と第二スラスト軸受部T2とがそれぞれ構成される。   At the same time, the thrust bearing gap between the dynamic pressure groove 8b1 formation region of the lower end surface 8b of the sleeve portion 8 and the upper end surface 2b1 of the flange portion 2b opposed thereto, and the dynamic pressure groove of the upper end surface 10a of the lid member 10 The pressure of the lubricating oil film formed in the thrust bearing gap between the formation region and the lower end surface 2b2 of the flange portion 2b facing the formation region is increased by the dynamic pressure action of the dynamic pressure groove. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in the thrust direction in a non-contact manner are constituted by the pressure of these oil films.

このとき、上述のように、軸受部材7に形成された貫通孔12と、蓋部材10の突出部10bの端面に形成された半径方向溝10cと、シール部11の下側端面11bに形成された11b1とで構成される流体流路により、第1スラスト軸受部T1のスラスト軸受隙間の外径端とラジアル軸受隙間の上端とが連通状態となる。これによれば、何らかの理由でハウジング7の閉塞側の流体(潤滑油)の圧力が過度に高まり、あるいは低下するといった事態を避けて、軸部材2をスラスト方向に安定して非接触支持することが可能となる。   At this time, as described above, the through hole 12 formed in the bearing member 7, the radial groove 10c formed in the end surface of the protruding portion 10b of the lid member 10, and the lower end surface 11b of the seal portion 11 are formed. The outer diameter end of the thrust bearing gap of the first thrust bearing portion T1 and the upper end of the radial bearing gap are in communication with each other by the fluid flow path constituted by 11b1. According to this, avoiding a situation where the pressure of the fluid (lubricating oil) on the closing side of the housing 7 is excessively increased or decreased for some reason, the shaft member 2 is stably supported without contact in the thrust direction. Is possible.

以上、本発明の第1実施形態を説明したが、本発明はこの実施形態に限られない。以下、本発明の他の実施形態を説明する。なお、以下に示す図において、第1実施形態と構成・作用を同一にする部位および部材については、同一の参照番号を付し、重複説明を省略する。   Although the first embodiment of the present invention has been described above, the present invention is not limited to this embodiment. Hereinafter, other embodiments of the present invention will be described. Note that, in the drawings shown below, parts and members that have the same configuration and function as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

例えば、図6に示すように、軸受部材7の外周面に外径方向の突出部7aを設けることにより、軸受部材7の肉厚の差を大きくし、成形収縮量の差を積極的に大きくすることで、非真円形状の内周面8aを形成することもできる。ここでは、突出部7aを円周方向等間隔に3箇所設けた場合を示している。この場合、突出部7aの円周方向位置に大径部8a1が形成される。   For example, as shown in FIG. 6, by providing a protruding portion 7 a in the outer diameter direction on the outer peripheral surface of the bearing member 7, the difference in thickness of the bearing member 7 is increased, and the difference in molding shrinkage is positively increased. By doing so, the non-circular inner peripheral surface 8a can also be formed. Here, the case where three protrusion parts 7a are provided at equal intervals in the circumferential direction is shown. In this case, a large diameter portion 8a1 is formed at the circumferential position of the protruding portion 7a.

このときの大径部8a1と小径部8a2との径差は、突出部7aの突出量によって、調節することができる。あるいは、貫通孔12を設ける位置によって調節することもできる。例えば、図6に示すように、貫通孔12を突出部7aを避けた円周方向位置に形成すると、軸受部材7の肉厚差を大きくすることができるため、大径部8a1と小径部8a2との径差をさらに大きくすることができる。   The diameter difference between the large diameter portion 8a1 and the small diameter portion 8a2 at this time can be adjusted by the protruding amount of the protruding portion 7a. Or it can also adjust with the position which provides the through-hole 12. FIG. For example, as shown in FIG. 6, when the through hole 12 is formed at a circumferential position avoiding the protruding portion 7a, the thickness difference of the bearing member 7 can be increased, so that the large diameter portion 8a1 and the small diameter portion 8a2 are formed. And the diameter difference can be further increased.

以下に、本発明が適用される他の実施形態に係る動圧軸受装置の構成例を示す。図7に示す動圧軸受装置21は、主に、第一シール部23、および第二シール部24をそれぞれ軸部材22に設け、シール部23、24の外周面23a、24aとこれに対向するハウジング部9の内周面9a1、9b1との間にシール空間S2、S3を形成している。また、第一シール部23(下側)の上端面23bとスリーブ部8の下端面8bとの間に第一スラスト軸受部T11が形成されると共に、第二シール部24(上側)の下端面24bとスリーブ部8の上端面8c(この実施形態では、かかる上端面8cにも動圧溝形成領域が設けられる。)との間に第二スラスト軸受部T12が形成される。なお、この実施形態では、シール部23、24を何れも軸部材22とは別体とし、これらシール部23、24を軸部材22に接着、圧入等の手段で固定した場合を例示しているが、これに限らず、例えばシール部23、24のうち何れか一方を軸部材22と一体に形成することもできる。   Below, the structural example of the hydrodynamic bearing apparatus which concerns on other embodiment to which this invention is applied is shown. The hydrodynamic bearing device 21 shown in FIG. 7 is mainly provided with a first seal portion 23 and a second seal portion 24 on the shaft member 22, respectively, and faces the outer peripheral surfaces 23a and 24a of the seal portions 23 and 24. Seal spaces S2 and S3 are formed between the inner peripheral surfaces 9a1 and 9b1 of the housing portion 9. A first thrust bearing portion T11 is formed between the upper end surface 23b of the first seal portion 23 (lower side) and the lower end surface 8b of the sleeve portion 8, and the lower end surface of the second seal portion 24 (upper side). A second thrust bearing portion T12 is formed between 24b and the upper end surface 8c of the sleeve portion 8 (in this embodiment, the upper end surface 8c is also provided with a dynamic pressure groove forming region). In this embodiment, the seal portions 23 and 24 are both separated from the shaft member 22, and the seal portions 23 and 24 are fixed to the shaft member 22 by means such as adhesion and press-fitting. However, the present invention is not limited thereto, and for example, one of the seal portions 23 and 24 can be formed integrally with the shaft member 22.

この実施形態では、流体流路は、軸受部材27を軸方向に貫通し、その軸方向両側(スリーブ部8の両端面8b、8cの側)に開口する一又は複数(例えば4本)の貫通孔12で構成される。この流体流路により、動圧軸受装置21の内部に満たされた潤滑油が、第1及び第2スラスト軸受部T11、T12のスラスト軸受隙間の外径端との間で流通可能となる。   In this embodiment, the fluid flow path penetrates the bearing member 27 in the axial direction, and one or a plurality of (for example, four) penetrating openings on both sides in the axial direction (both ends 8b and 8c side of the sleeve portion 8). Consists of holes 12. By this fluid flow path, the lubricating oil filled in the hydrodynamic bearing device 21 can flow between the outer diameter ends of the thrust bearing gaps of the first and second thrust bearing portions T11 and T12.

図8に示す動圧軸受装置31は、スリーブ部8の下端面8bとフランジ部32bの上端面32b1との間に第一スラスト軸受部T21が形成されると共に、ディスクハブ33を構成する円盤部33aの下端面33a1とハウジング部39の上端面39aとの間に第二スラスト軸受部T22が形成される。また、ハウジング部39の外周上端にテーパシール面39bを設け、このテーパシール面39bと、この面に対向するディスクハブ33の筒部33bの内周面33b1との間にシール空間S4を形成する。   8 includes a first thrust bearing portion T21 formed between the lower end surface 8b of the sleeve portion 8 and the upper end surface 32b1 of the flange portion 32b, and a disc portion constituting the disc hub 33. A second thrust bearing portion T22 is formed between the lower end surface 33a1 of 33a and the upper end surface 39a of the housing portion 39. Further, a taper seal surface 39b is provided at the outer peripheral upper end of the housing portion 39, and a seal space S4 is formed between the taper seal surface 39b and the inner peripheral surface 33b1 of the cylindrical portion 33b of the disk hub 33 facing this surface. .

この実施形態では、流体流路は、軸受部材37を軸方向に貫通し、その軸方向両側(スリーブ部8の両端面8b、8cの側)に開口する一又は複数(例えば4本)の貫通孔12で構成される。この流体流路により、動圧軸受装置31の内部に満たされた潤滑油が、第1スラスト軸受部T11のスラスト軸受隙間の外径端と、スリーブ部8の上側端面8cと円盤部33aの下側端面33a1との間の隙間とで流通可能となる。   In this embodiment, the fluid flow path penetrates the bearing member 37 in the axial direction, and one or a plurality (for example, four) of penetrating openings on both sides in the axial direction (both ends 8b and 8c side of the sleeve portion 8). Consists of holes 12. By this fluid flow path, the lubricating oil filled in the hydrodynamic bearing device 31 is allowed to flow outside the outer diameter end of the thrust bearing gap of the first thrust bearing portion T11, below the upper end surface 8c of the sleeve portion 8 and the disk portion 33a. It becomes possible to circulate through the gap between the side end face 33a1.

以上の実施形態では、軸受部材として、スリーブ部とハウジング部とが一体成形された場合を例示したが、これに限らず、例えば、貫通孔を有するスリーブ状の軸受部材を、別途形成したハウジングの内周に固定してもよい。   In the above embodiment, the case where the sleeve portion and the housing portion are integrally formed as the bearing member is illustrated. However, the present invention is not limited to this. For example, a sleeve-shaped bearing member having a through hole is separately formed in the housing. You may fix to an inner periphery.

また、以上の実施形態では、流体流路を構成する貫通孔12を、スリーブ部8の両端面8b、8cに開口する位置に形成した場合を説明したが、貫通孔12は、図示の位置に限らず、軸受部材7、27、37を軸方向に貫通する限り、任意の位置に形成することができる。また、図2に示すように、流体流路を、貫通孔12に加え、蓋部材10やシール部11に設けられる半径方向溝10c、11b1とで構成する場合、これら半径方向溝10c、11b1を対向する部材の側(例えばスリーブ部8の両端面8b、8c)に設けることも可能である。   Moreover, although the above embodiment demonstrated the case where the through-hole 12 which comprises a fluid flow path was formed in the position opened to the both end surfaces 8b and 8c of the sleeve part 8, the through-hole 12 is in the position shown in figure. Not limited to this, the bearing members 7, 27, and 37 can be formed at any positions as long as they penetrate the axial direction. In addition, as shown in FIG. 2, when the fluid flow path is constituted by the radial grooves 10c and 11b1 provided in the lid member 10 and the seal portion 11 in addition to the through-hole 12, the radial grooves 10c and 11b1 are formed. It is also possible to provide on the side of the opposing member (for example, both end faces 8b, 8c of the sleeve portion 8).

また、上記実施形態では、円筒状の内周面を有する貫通孔12を例示したが、軸受部材7に形成される貫通孔は、その両端開口間で流体を流通可能とする限り、また、成形ピンで以って軸受部材の射出成形と同時に形成可能である限り、断面矩形等の他形状の貫通孔を採用することもできる。   Moreover, in the said embodiment, although the through-hole 12 which has a cylindrical internal peripheral surface was illustrated, as long as the through-hole formed in the bearing member 7 can distribute | circulate the fluid between the both-ends opening, it is shaping | molding. As long as the pin can be formed at the same time as the injection molding of the bearing member, a through-hole having another shape such as a rectangular cross section can be adopted.

また、スラスト軸受部の動圧発生部は上記のようなスパイラル形状の動圧発生部に限らず、図示は省略するが、ヘリングボーン形状の動圧溝や、動圧発生部が形成される領域(例えばスリーブ部8の両端面8b、8c、蓋部材10の上端面10a、ハウジング部39の上端面39a)に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ軸受が波型形状になったもの)等で構成することもできる。   In addition, the dynamic pressure generating portion of the thrust bearing portion is not limited to the spiral-shaped dynamic pressure generating portion as described above, and although not shown in the drawing, a herringbone-shaped dynamic pressure groove and a region where the dynamic pressure generating portion is formed (For example, a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction on both end surfaces 8b and 8c of the sleeve portion 8, the upper end surface 10a of the lid member 10, and the upper end surface 39a of the housing portion 39). A so-called step bearing or a corrugated bearing (the corrugated step bearing) may be used.

また、以上の実施形態では、スリーブ部8や蓋部材10、ハウジング部39の側にスラスト動圧発生部(動圧溝8b1等)が形成される場合を説明したが、動圧発生部が形成される領域は、例えばこれらに対向するフランジ部2bの両端面2b1、2b2、あるいはディスクハブ33の下端面33a1の側に設けることもできる。   Moreover, although the above embodiment demonstrated the case where the thrust dynamic pressure generation part (dynamic pressure groove 8b1 etc.) was formed in the sleeve part 8, the lid member 10, and the housing part 39 side, the dynamic pressure generation part was formed. The region to be formed can be provided, for example, on both end surfaces 2b1 and 2b2 of the flange portion 2b opposed to these, or on the lower end surface 33a1 side of the disc hub 33.

また、以上の説明では、動圧軸受装置1、21、31の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing devices 1, 21, and 31 and causes the hydrodynamic action in the radial bearing gap and the thrust bearing gap. A fluid capable of generating a dynamic pressure action in each bearing gap, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

本発明の実施形態に係る動圧軸受装置1を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus 1 which concerns on embodiment of this invention. 動圧軸受装置1の断面図である。1 is a cross-sectional view of a fluid dynamic bearing device 1. FIG. 軸受部材7の径方向断面図である。3 is a radial cross-sectional view of a bearing member 7. FIG. 軸受部材7の下面図である。4 is a bottom view of the bearing member 7. FIG. 軸受部材7の射出成形工程を示す断面図である。5 is a cross-sectional view showing an injection molding process of the bearing member 7. 本発明の他の実施形態の軸受部材7を示す断面図である。It is sectional drawing which shows the bearing member 7 of other embodiment of this invention. 本発明の他の実施形態に係る動圧軸受装置21を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 21 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る動圧軸受装置31を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 31 which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
7 軸受部材
8 スリーブ部
9 ハウジング部
10 蓋部材
11 シール部
12 貫通孔
13 成形ピン
14 外型
15 内型
16 キャビティ
R ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 7 Bearing member 8 Sleeve part 9 Housing part 10 Lid member 11 Seal part 12 Through-hole 13 Forming pin 14 Outer mold 15 Inner mold 16 Cavity R Radial bearing part T1, T2 Thrust bearing part

Claims (3)

樹脂で型成形された軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されたラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部とを備えた動圧軸受装置において、
軸受部材が内周面に成形収縮量差に基づく径差を有し、この径差で前記動圧発生部を形成した動圧軸受装置。
The bearing member molded with resin, the shaft member inserted in the inner periphery of the bearing member, and the lubricating fluid in the radial bearing gap formed between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member In the hydrodynamic bearing device provided with a dynamic pressure generating unit that generates a pressure action,
A hydrodynamic bearing device in which a bearing member has a diameter difference based on a difference in molding shrinkage on an inner peripheral surface, and the dynamic pressure generating portion is formed by the diameter difference.
軸受部材に、内面を成形面とした軸方向の貫通孔を形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an axial through hole having an inner surface as a molding surface is formed in the bearing member. 軸受部材の外周面に、外径へ向けて突出した突出部を形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a protruding portion protruding toward the outer diameter is formed on the outer peripheral surface of the bearing member.
JP2006178315A 2006-06-28 2006-06-28 Dynamic pressure bearing device Withdrawn JP2008008367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178315A JP2008008367A (en) 2006-06-28 2006-06-28 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178315A JP2008008367A (en) 2006-06-28 2006-06-28 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2008008367A true JP2008008367A (en) 2008-01-17

Family

ID=39066771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178315A Withdrawn JP2008008367A (en) 2006-06-28 2006-06-28 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2008008367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016514A (en) * 2012-12-25 2013-04-03 浙江大学 Sliding bearing with non-circular shaft neck
CN103486135A (en) * 2013-09-23 2014-01-01 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing component with throttling structure
CN103498872A (en) * 2013-09-23 2014-01-08 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing of which oil outlets having function of balancing main shaft and components thereof
KR20220078037A (en) * 2020-12-03 2022-06-10 지엠비코리아 주식회사 The manufacturing method for inner race of bearing made by plastic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016514A (en) * 2012-12-25 2013-04-03 浙江大学 Sliding bearing with non-circular shaft neck
CN103486135A (en) * 2013-09-23 2014-01-01 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing component with throttling structure
CN103498872A (en) * 2013-09-23 2014-01-08 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing of which oil outlets having function of balancing main shaft and components thereof
KR20220078037A (en) * 2020-12-03 2022-06-10 지엠비코리아 주식회사 The manufacturing method for inner race of bearing made by plastic
KR102524026B1 (en) * 2020-12-03 2023-05-08 지엠비코리아 주식회사 The manufacturing method for inner race of bearing made by plastic

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2007024146A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2008064302A (en) Hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP5143400B2 (en) Hydrodynamic bearing device and injection molding die for bearing member
JP2006292013A (en) Dynamic pressure bearing device
JP2008008367A (en) Dynamic pressure bearing device
JP4559336B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4642682B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4642708B2 (en) Hydrodynamic bearing device
JP2007267503A (en) Dynamic pressure bearing apparatus
JP5133156B2 (en) Fluid dynamic bearing device
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP2006258123A (en) Dynamic pressure bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device
JP2008128446A (en) Fluid bearing device
JP2008111521A (en) Fluid bearing device
JP2007255646A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901