JPH06182213A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH06182213A
JPH06182213A JP4336016A JP33601692A JPH06182213A JP H06182213 A JPH06182213 A JP H06182213A JP 4336016 A JP4336016 A JP 4336016A JP 33601692 A JP33601692 A JP 33601692A JP H06182213 A JPH06182213 A JP H06182213A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
purification
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4336016A
Other languages
Japanese (ja)
Other versions
JP3295992B2 (en
Inventor
Hiroshi Akama
弘 赤間
Goji Masuda
剛司 増田
Hiroyuki Kanesaka
浩行 金坂
Naoki Kachi
直樹 可知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33601692A priority Critical patent/JP3295992B2/en
Publication of JPH06182213A publication Critical patent/JPH06182213A/en
Application granted granted Critical
Publication of JP3295992B2 publication Critical patent/JP3295992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for purification of exhaust gas excellent in activity at a low temp. and durability and capable of efficient purification of exhaust gas from the internal-combustion engine of an automobile, etc., in a wide range of fuel-air ratio from a region close to the stoichiometric region of the exhaust gas to the loan region. CONSTITUTION:This catalyst for purification of exhaust gas has a multilayered structure and contains K and/or Ca. The multilayered structure is formed by coating a honeycomb carrier with an inorg. material based on activated alumina contg. one or more kinds of noble metals selected from the group consisting of Pt, Pd and Rh in one or more layers and further coating the upper layer with an inorg. material based on zeolite contg. one or more kinds of metals selected from among Cu, Co, Ni, Ag, Fe and Zn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車エンジン等の内
燃機関の排気ガス浄化用触媒に関し、特に空燃費がスト
イキ近傍からリーン領域に至る幅広い範囲において有効
に作用し、かつ低温活性及び耐久性に優れた排気ガス浄
化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for an internal combustion engine such as an automobile engine, and more particularly to a catalyst having a wide range of air-fuel efficiency ranging from near stoichiometric to lean, and having low temperature activity and durability. Relates to an exhaust gas purifying catalyst excellent in

【0002】[0002]

【従来の技術】従来、自動車等の内燃機関からの排気ガ
スを浄化する触媒として、一般に活性アルミナにパラジ
ウム(Pd)、白金(Pt)及びロジウム(Rh)等の
貴金属成分を担持したものが用いられている。このもの
は、炭化水素(HC)、一酸化炭素(CO)及び窒素酸
化物(NOx)を一度に除去できることから、3元触媒
と呼ばれている。しかし、これは、内燃機関をストイキ
近傍の条件で運転した場合にのみ有効であり、酸素含有
量が多く、より燃費の良好なリーン領域で運転した場合
には、NOx除去活性が低下する。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas from an internal combustion engine of an automobile or the like, a catalyst obtained by supporting a noble metal component such as palladium (Pd), platinum (Pt) and rhodium (Rh) on activated alumina is generally used. Has been. This is called a three-way catalyst because it can remove hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) at once. However, this is effective only when the internal combustion engine is operated under conditions near stoichiometry, and when operating in a lean region where the oxygen content is high and fuel consumption is better, the NOx removal activity decreases.

【0003】一方、リーン領域でのNOx除去には、金
属イオン交換ゼオライトやアルミナ、ジルコニア、チタ
ニア等各種金属酸化物からなる触媒が有効であることが
知られている。しかし、これはストイキ近傍での排気ガ
ス浄化性能が得られない。さらにはリーン領域でも、金
属酸化物系触媒は低温活性に劣り、またゼオライト系触
媒は耐久性(耐熱性、耐水熱性及び耐硫黄性等)が十分
でないという欠点があるために、実用化に際して大きな
障害となっている。
On the other hand, it is known that catalysts composed of metal ion-exchanged zeolite and various metal oxides such as alumina, zirconia and titania are effective for removing NOx in the lean region. However, this does not provide exhaust gas purification performance in the vicinity of stoichiometry. Furthermore, even in the lean region, metal oxide catalysts are inferior in low-temperature activity, and zeolite catalysts have the disadvantages of insufficient durability (heat resistance, hydrothermal resistance, sulfur resistance, etc.). It is an obstacle.

【0004】特開平1−127044号公報によれば、
モノリス担体上に貴金属を担持したアルミナからなる酸
化触媒によって第1層を形成し、その上層に銅(Cu)
とゼオライトからなる第2触媒層を設けることにより、
リーン領域でエンジンを運転する場合の排気ガス中のN
Ox,CO及びHCを効率よく浄化する、リーン領域に
おける3元触媒が提供できるとしている。このものはC
u−ゼオライト系触媒の低い酸化性能を、アルミナ担持
貴金属触媒の高い酸化性能によって補ったもので、リー
ン領域でのみ有効であり、したがってストイキ近傍では
十分な浄化性能が期待されない。さらに、上記公開特許
公報に提案されている触媒では、ゼオライト系触媒の耐
久性および低温活性の改善については工夫がされていな
い。
According to Japanese Patent Laid-Open No. 1-127044,
The first layer is formed on the monolith carrier by an oxidation catalyst composed of alumina carrying a noble metal, and copper (Cu) is formed on the first layer.
By providing a second catalyst layer consisting of
N in the exhaust gas when operating the engine in the lean range
It is said that it is possible to provide a three-way catalyst in the lean region that efficiently purifies Ox, CO and HC. This is C
The low oxidation performance of the u-zeolite-based catalyst is complemented by the high oxidation performance of the alumina-supported noble metal catalyst, which is effective only in the lean region, and therefore, sufficient purification performance is not expected in the vicinity of stoichiometry. Further, in the catalyst proposed in the above-mentioned Japanese Patent Laid-Open Publication, no improvement has been made on the durability and low temperature activity of the zeolite-based catalyst.

【0005】[0005]

【発明が解決しようとする課題】このような背景から、
ストイキ近傍のみならず、リーン領域でも排気ガスを効
率良く浄化でき、かつ低温活性と耐久性に優れた触媒が
望まれていた。従って本発明の目的はゼオライト系触媒
の耐久性を改善すると共に、低温活性の向上を図り、か
つストイキ近傍及びリーン領域で有効に作用する触媒を
提供することにある。
From such a background,
There has been a demand for a catalyst that can efficiently purify exhaust gas not only in the vicinity of the stoichiometry but also in the lean region, and that has excellent low-temperature activity and durability. Therefore, it is an object of the present invention to provide a catalyst which not only improves the durability of the zeolite-based catalyst but also improves the low temperature activity thereof, and effectively acts in the vicinity of stoichiometry and in the lean region.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、3元触媒とゼオライト系触媒の構成、組
合せ方を鋭意研究、工夫した結果、白金(Pt)、パラ
ジウム(Pd)およびロジウム(Rh)からなる群から
選ばれた1種以上の貴金属を含有する3元触媒と、銅
(Cu)、コバルト(Co)、ニッケル(Ni)、銀
(Ag)、鉄(Fe)および亜鉛(Zn)からなる群か
ら選ばれた1種以上の金属を含有するゼオライト系の触
媒とを組み合わせ、前者を内層部に、後者を外層部に配
置させることにより、3元触媒とゼオライト系触媒の単
なる組み合わせから期待される以上の性能が得られ、更
に触媒にカリウム(K)および/またはカルシウム(C
a)を含有させることによりその効果が著しく促進され
ることを見い出し、本発明を達成するに至った。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have made extensive studies and devised a structure and a combination method of a three-way catalyst and a zeolite-based catalyst. As a result, platinum (Pt), palladium (Pd) ) And rhodium (Rh), and a three-way catalyst containing one or more precious metals selected from the group consisting of copper (Cu), cobalt (Co), nickel (Ni), silver (Ag), and iron (Fe). And a zeolite-based catalyst containing at least one metal selected from the group consisting of zinc (Zn), and arranging the former in the inner layer and the latter in the outer layer to form a three-way catalyst and a zeolite-based catalyst. Performance beyond what is expected can be obtained from a simple combination of catalysts, and potassium (K) and / or calcium (C
It was found that the effect is remarkably promoted by including a), and the present invention has been accomplished.

【0007】従って本発明の排気ガス浄化用触媒は、白
金、パラジウムおよびロジウムからなる群から選ばれた
1種以上の貴金属を含有する活性アルミナを主成分とす
る無機物をハニカム状担体に1層以上に積層塗布した
後、その上層に銅、コバルト、ニッケル、銀、鉄および
亜鉛からなる群から選ばれた1種以上の金属を含有する
ゼオライトを主成分とする無機物を塗布してなる多層構
造を有すること、かつカリウム(K)および/またはカ
ルシウム(Ca)を含有することを特徴とする。
Therefore, the exhaust gas-purifying catalyst of the present invention has at least one layer of an inorganic material containing activated alumina containing at least one precious metal selected from the group consisting of platinum, palladium and rhodium on a honeycomb-shaped carrier. A multi-layer structure in which an inorganic substance containing a zeolite as a main component containing at least one metal selected from the group consisting of copper, cobalt, nickel, silver, iron and zinc is coated on the upper layer It is characterized by having and containing potassium (K) and / or calcium (Ca).

【0008】[0008]

【作用】次に作用を説明する。本発明の触媒は、エンジ
ンのリーン領域においてNOx除去性能の高いゼオライ
ト系触媒とストイキ近傍で高い排気ガス浄化性能を有す
る貴金属系3元触媒とを組み合わせ、前者を上層部に、
後者を内層部に塗布したものである。
[Operation] Next, the operation will be described. The catalyst of the present invention is a combination of a zeolite-based catalyst having high NOx removal performance in a lean region of an engine and a precious metal-based three-way catalyst having high exhaust gas purification performance in the vicinity of stoichiometry, the former being the upper layer portion,
The latter is applied to the inner layer portion.

【0009】本発明の触媒において、3元触媒とゼオラ
イト系触媒の上記の組み合わせ方により3元触媒とゼオ
ラント系触媒の単なる組み合わせから期待される以上の
性能が得られ、さらに触媒にKおよび/またはCaを加
えることによりその効果が著しく促進されることについ
ては、その詳細な機構は明らかではないが、概略次のよ
うに考えられる。リーン領域においては、貴金属系3元
触媒はNOx除去性能が低下するのみで、HCおよびC
Oの浄化性能は高く、HCおよびCOの燃焼による反応
熱が発生する。この熱はゼオライト系触媒の温度を高
め、より低い排気ガス温度からでもNOx除去反応が進
行するようになる。このとき同時に、NOx還元除去に
有効なHCの部分酸化生成物が生じるため、より一層の
高反応率が達成されるものと考えられる。
In the catalyst of the present invention, the above-mentioned combination of the three-way catalyst and the zeolite-based catalyst provides a performance higher than that expected from a simple combination of the three-way catalyst and the zeolant-based catalyst. Regarding the fact that the effect is remarkably promoted by adding Ca, its detailed mechanism is not clear, but it is considered as follows. In the lean region, the noble metal-based three-way catalyst only deteriorates the NOx removal performance.
Purification performance of O is high, and reaction heat is generated by combustion of HC and CO. This heat raises the temperature of the zeolite-based catalyst, and the NOx removal reaction proceeds even at a lower exhaust gas temperature. At this time, at the same time, a partial oxidation product of HC, which is effective for NOx reduction and removal, is produced, and it is considered that a higher reaction rate is achieved.

【0010】貴金属系3元触媒層とゼオライト系触媒層
の組み合わせ方を上記と逆にすると、上記のような高い
NOx除去性能は得られない。これは、HCおよびCO
燃焼による反応熱の効果は得られるが、NOxの還元除
去反応に有効なHCの部分酸化生成物がうまく生成しな
いためか、あるいは生成してもそれが有効に活用されな
いためと思われる。
If the combination of the noble metal-based three-way catalyst layer and the zeolite-based catalyst layer is reversed, the above high NOx removal performance cannot be obtained. This is HC and CO
Although the effect of reaction heat due to combustion can be obtained, it is considered that the partial oxidation product of HC, which is effective in the reduction and removal reaction of NOx, is not successfully produced, or even if it is produced, it is not effectively utilized.

【0011】KやCaの添加効果は、3元触媒中の貴金
属の完全酸化性能を弱め、NOxの還元除去反応に有効
なHCの部分酸化生成物の生成を助けることにあり、こ
のようにして生成した該部分酸化生成物は、触媒の多層
化によって効率良く利用されて高いNOx除去性能を達
成するものと考えられる。KやCaのもう一つの効果
は、ゼオライト中の活性サイトである金属イオンを安定
化し、高温域での安定した活性と触媒の高耐久性を与え
るものである。これによって、より幅広い温度域で高い
排気ガス浄化性能が実現可能となる。KおよびCaの含
有量は、ハニカム状担体を除く触媒部に対して、Kまた
はCaとして0.05〜2.0重量%であることが好まし
い。0.05重量%未満では本発明の効果が得難く、2.0
重量%を超えても添加量に見合うだけの効果が得られな
い。
The effect of adding K or Ca is to weaken the complete oxidation performance of the noble metal in the three-way catalyst and to assist the production of the partial oxidation product of HC which is effective in the reduction and removal reaction of NOx. It is considered that the produced partial oxidation product is efficiently utilized by multilayering the catalyst to achieve high NOx removal performance. Another effect of K and Ca is to stabilize the metal ion which is the active site in the zeolite, and to provide stable activity at high temperature and high durability of the catalyst. This makes it possible to achieve high exhaust gas purification performance in a wider temperature range. The content of K and Ca is preferably 0.05 to 2.0% by weight as K or Ca with respect to the catalyst portion excluding the honeycomb-shaped carrier. If it is less than 0.05% by weight, the effect of the present invention is difficult to obtain,
Even if it exceeds the weight%, the effect corresponding to the added amount cannot be obtained.

【0012】本発明の触媒は、機能の異なる触媒層を積
層した構造を有するため、主としてハニカム形状で使用
に供される。このハニカム担体材料としては、一般にコ
ージエライト質のものが多く用いられているが、本発明
はこれに限定されるものではない。金属材料からなるハ
ニカム担体を用いることも可能である。また、触媒その
ものをハニカム形状に成形しても良い。
Since the catalyst of the present invention has a structure in which catalyst layers having different functions are laminated, it is mainly used in a honeycomb shape. As the honeycomb carrier material, a cordierite material is generally used in many cases, but the present invention is not limited to this. It is also possible to use a honeycomb carrier made of a metal material. Further, the catalyst itself may be formed into a honeycomb shape.

【0013】本発明に用いられるゼオライトは、モルデ
ナイト、Y型ゼオライトあるいはZSM−5をはじめと
するペンタシル型ゼオライトといったものが挙げられる
が、これに限定されるものではない。天然に産するも
の、人工的に合成したものいずれも有効であるが、ゼオ
ライト中のシリカ分(SiO2 )とアルミナ分(Al2
3 )の比率(SiO2 /Al2 3 モル比)が10〜
100で、ゼオライト空洞(細孔)の半径は0.5nm以
上のものが好ましい。SiO2 /Al2 3 の比が10
未満のゼオラントでは脱アルミニウム現象が起こり易
く、熱安定性が十分ではないために触媒耐久性が低くな
り、一方、比が100を超えるとゼオラントへの金属の
担持量が少なくなって触媒活性が不十分となる。またゼ
オライト細孔が0.5nmより小さいと、コーキングが起
こった際に細孔が閉塞し易く、失活をまねき易くなる。
また、ゼオライトは、天然品、合成品ともに水熱処理、
再合成などによって結晶性を良くしたり、安定化する
と、より耐久性の高い触媒が得られるので望ましい。
Examples of the zeolite used in the present invention include, but are not limited to, mordenite, Y-type zeolite, and pentasil-type zeolite such as ZSM-5. Both naturally occurring substances and artificially synthesized substances are effective, but the silica component (SiO 2 ) and alumina component (Al 2
O 3 ) ratio (SiO 2 / Al 2 O 3 molar ratio) is 10 to
It is preferable that the radius of the zeolite cavity (pore) is 100 and the radius is 0.5 nm or more. The ratio of SiO 2 / Al 2 O 3 is 10
When the amount is less than zeolant, dealumination phenomenon is likely to occur and the thermal stability is not sufficient, resulting in low catalyst durability. On the other hand, when the ratio exceeds 100, the amount of metal supported on zeolant is small and the catalytic activity becomes unsatisfactory. Will be enough. Further, if the zeolite pores are smaller than 0.5 nm, the pores are likely to be clogged when coking occurs, leading to deactivation.
Zeolite is hydrothermally treated for both natural and synthetic products.
It is desirable to improve the crystallinity or stabilize it by resynthesis or the like because a catalyst having higher durability can be obtained.

【0014】本発明の触媒におけるゼオライト系触媒
は、上記ゼオライトにCu,Co,Ni,Ag,Feお
よびZnからなる群から選ばれた一種以上の金属を担持
してなるものである。該金属の原料は、硝酸塩、酢酸
塩、塩化物あるいはアンミン錯化合物等各種のものが用
いられ、水溶液にしてイオン交換法、含浸法あるいは混
練法等で担持させる方法、金属原料を気化させ、気相で
ゼオライトと接触させて担持する方法、さらには該金属
の酸化物、炭酸塩等を単に物理的に混合することにより
担持させる方法等各種の方法を用いることができる。ま
た、触媒へのK及びCaの添加方法としては、硝酸塩、
酢酸塩、塩化物あるいは炭酸塩等各種の形態のものを水
溶液にして含浸法あるいは混練法により添加する方法を
採用できる。ゼオライト触媒の場合にはイオン交換法を
用いることもできる。さらには、物理的に該塩を混合す
ることによっても効果が得られる。ゼオライトに担持す
る金属の種類としては、Cu,Co,Ni,Ag,Fe
およびZnが挙げられる。これらを担持したゼオライト
はいずれも、リーン領域において、炭化水素が存在した
場合に窒素酸化物を還元除去する能力を有するので、本
発明を構成する触媒として用いることができる。しか
し、該金属の中で比較的高い活性を示すのは、Cu及び
Coであり、その他の金属は、Cu及びCoと組み合わ
せて用いるのが好ましい。
The zeolitic catalyst in the catalyst of the present invention comprises the above zeolite carrying one or more metals selected from the group consisting of Cu, Co, Ni, Ag, Fe and Zn. As the raw material of the metal, various ones such as nitrate, acetate, chloride or ammine complex compound are used, and a method of forming an aqueous solution and supporting it by an ion exchange method, an impregnation method or a kneading method, vaporizing the metal raw material, and vaporizing Various methods can be used, such as a method of supporting by contacting with zeolite in a phase, and a method of supporting by simply physically mixing the oxide, carbonate or the like of the metal. In addition, as a method of adding K and Ca to the catalyst, nitrate,
A method in which various forms such as acetate, chloride or carbonate are made into an aqueous solution and added by an impregnation method or a kneading method can be adopted. In the case of a zeolite catalyst, the ion exchange method can also be used. Further, the effect can be obtained by physically mixing the salt. The types of metals supported on zeolite include Cu, Co, Ni, Ag, and Fe.
And Zn. Any of the zeolites supporting these has an ability to reduce and remove nitrogen oxides in the lean region in the presence of hydrocarbons, and thus can be used as a catalyst constituting the present invention. However, it is Cu and Co that exhibit relatively high activity among the metals, and other metals are preferably used in combination with Cu and Co.

【0015】[0015]

【実施例】以下、本発明を実施例、比較例および試験例
を用いて詳細に説明する。 実施例1 γ−アルミナを主成分とする活性アルミナ粉末1000
gに対して、パラジウムが1.38重量%になるように、
ジニトロジ−アンミンパラジウム水溶液を加え、よく攪
拌した後、乾燥器中で120℃で8時間乾燥した。これ
を空気気流中で400℃で2時間焼成した。このパラジ
ウムを担持した活性アルミナ1400gをセリア(酸化
セリウム:CeO2 )936g、γ−アルミナを主成分
とする活性アルミナ320g、硝酸酸性ベーマイトゾル
(ベーマイトの10重量%けん濁液に10重量%のHN
3 を添加することにより得られたゾル)2212gと
共にボールミルポットに投入し、8時間粉砕してスラリ
ーを得た。このスラリーを、1平方インチ断面当たり約
400個の流路を持つコージエライト製のハニカム担体
(0.9L)に塗布し、乾燥器中で120℃で2時間乾燥
した後、空気気流中400℃で2時間焼成した。この時
の粉末塗布量は85gであった。
EXAMPLES The present invention will be described in detail below with reference to examples, comparative examples and test examples. Example 1 Activated alumina powder 1000 containing γ-alumina as a main component
Palladium is 1.38 wt% with respect to g,
An aqueous dinitrodi-amminepalladium solution was added, and the mixture was stirred well and dried in a dryer at 120 ° C. for 8 hours. This was fired in an air stream at 400 ° C. for 2 hours. 1400 g of this activated alumina supporting palladium was 936 g of ceria (cerium oxide: CeO 2 ), 320 g of activated alumina containing γ-alumina as a main component, nitric acid boehmite sol (10% by weight of boehmite suspension in 10% by weight of HN).
2212 g of the sol obtained by adding O 3 ) was put into a ball mill pot and pulverized for 8 hours to obtain a slurry. This slurry was applied to a cordierite honeycomb carrier (0.9 L) having about 400 channels per square inch cross section, dried in a dryer at 120 ° C for 2 hours, and then in an air stream at 400 ° C. It was baked for 2 hours. The powder coating amount at this time was 85 g.

【0016】次に、同様に活性アルミナ粉末1000g
に対して、ロジウムが1重量%となるように、硝酸ロジ
ウム水溶液を加え、よく攪拌した後、乾燥、焼成し、ロ
ジウムを担持したアルミナ粉末を作った。この粉末44
4gを、活性アルミナ粉末319g、硝酸酸性ベーマイ
トゾル637gと共にボールミルポットに投入し、8時
間粉砕してスラリーを得た。このスラリーを、上記アル
ミナ担持Pd触媒層が塗布されたハニカムに、塗布量が
30gになるように塗布し、同様に乾燥、焼成した。
Next, similarly, 1000 g of activated alumina powder
On the other hand, an aqueous rhodium nitrate solution was added so that the rhodium content was 1% by weight, and the mixture was thoroughly stirred, then dried and fired to produce an alumina powder carrying rhodium. This powder 44
4 g was put into a ball mill pot together with 319 g of activated alumina powder and 637 g of nitric acid acidic boehmite sol, and pulverized for 8 hours to obtain a slurry. This slurry was applied to a honeycomb coated with the alumina-supported Pd catalyst layer so that the coating amount was 30 g, and similarly dried and fired.

【0017】一方、SiO2 /Al2 3 モル比が約3
0のNa型ZSM−5ゼオライトに、0.1N硝酸銅水溶
液を用いて、イオン交換法によりCuを(Cuとして)
約3重量%担持した後、乾燥器中120℃で24時間乾
燥した。次いで、電気炉により大気中500℃で2時間
焼成することにより、Cu−ZSM−5触媒の粉末を得
た。この粉末1800gを、シリカゾル(固形分20
%)1170gおよび、水1170gをボールミルポッ
トに入れ、8時間粉砕してスラリーを得た。このスラリ
ーを塗布量130gになるように、上記の既に3元触媒
が塗布されたハニカム担体に塗布し、同様に乾燥、焼成
した。
On the other hand, the SiO 2 / Al 2 O 3 molar ratio is about 3
Cu (as Cu) by an ion exchange method using 0.1N copper nitrate aqueous solution to Na type ZSM-5 zeolite of 0.
After supporting about 3% by weight, it was dried in a dryer at 120 ° C. for 24 hours. Then, the powder of Cu-ZSM-5 catalyst was obtained by baking at 500 degreeC in the atmosphere for 2 hours with an electric furnace. 1800 g of this powder was mixed with silica sol (solid content 20
%) 1170 g and water 1170 g were put in a ball mill pot and pulverized for 8 hours to obtain a slurry. This slurry was applied to the above honeycomb carrier already coated with the three-way catalyst so that the coating amount was 130 g, and similarly dried and fired.

【0018】以上のようにして、第1内層にアルミナ担
持Pd触媒層を85g、第2内層にアルミナ担持Rh触
媒層を30g、その外層にCu−ZSM−5触媒層を1
30g塗布した、3層構造の触媒を得た。第1内層と第
2内層からなる触媒層は、ストイキ条件でエンジンを運
転したときの排ガス中のHC,CO,NOxを一度に除
去できる3元触媒である。本触媒を、硝酸カリウム及び
硝酸カルシウムの混合水溶液に浸せきし、K及びCa
を、ハニカムを除く担持触媒層に対し、それぞれ0.1重
量%、0.5重量%担持させ、乾燥器で120℃,4時間
乾燥した後、電気炉で500℃,2時間焼成して実施例
1の触媒(1)を得た。
As described above, 85 g of the alumina-supported Pd catalyst layer was used as the first inner layer, 30 g of the alumina-supported Rh catalyst layer was used as the second inner layer, and 1 Cu-ZSM-5 catalyst layer was used as the outer layer.
A catalyst having a three-layer structure coated with 30 g was obtained. The catalyst layer including the first inner layer and the second inner layer is a three-way catalyst that can remove HC, CO, and NOx in exhaust gas at the same time when the engine is operated under stoichiometric conditions. The catalyst was dipped in a mixed aqueous solution of potassium nitrate and calcium nitrate to obtain K and Ca.
Was carried on the supported catalyst layer excluding the honeycomb by 0.1 wt% and 0.5 wt% respectively, dried in a dryer at 120 ° C. for 4 hours, and then calcined in an electric furnace at 500 ° C. for 2 hours. The catalyst (1) of Example 1 was obtained.

【0019】実施例2 実施例1と同じNa型ZSM−5ゼオライトに、0.1N
硝酸カルシウム水溶液を用いて、イオン交換法により、
Caを(Caとして)0.2重量%担持した後、乾燥器中
で120℃,24時間乾燥した。ついで、0.2N硝酸銅
水溶液を用いて、イオン交換法によりCuを(Cuとし
て)約3重量%担持した後、乾燥器中120℃で24時
間乾燥した。その後、電気炉により大気中500℃で2
時間焼成してCaを含有したCu−ZSM−5触媒の粉
末を得た。このゼオライト触媒粉末を用い、他は実施例
1と同様にして3層構造の触媒を得た。本触媒を硝酸カ
リウム水溶液に浸せきし、Kを担持した後、実施例1と
同様にして触媒(2)を得た。本触媒中のK含有量は、
ハニカムを除く触媒に対して、0.14重量%であった。
Example 2 The same Na-type ZSM-5 zeolite as in Example 1 was added with 0.1N.
Ion exchange method using calcium nitrate aqueous solution
After supporting 0.2% by weight of Ca (as Ca), it was dried in a dryer at 120 ° C. for 24 hours. Then, about 3% by weight of Cu (as Cu) was loaded by an ion exchange method using a 0.2N copper nitrate aqueous solution, and then dried in a dryer at 120 ° C. for 24 hours. After that, 2 hours at 500 ℃ in the atmosphere with an electric furnace
It was calcined for a time to obtain a Cu-ZSM-5 catalyst powder containing Ca. A catalyst having a three-layer structure was obtained in the same manner as in Example 1 except that this zeolite catalyst powder was used. This catalyst was immersed in an aqueous potassium nitrate solution to carry K, and then a catalyst (2) was obtained in the same manner as in Example 1. The K content in this catalyst is
It was 0.14% by weight with respect to the catalyst excluding the honeycomb.

【0020】実施例3 実施例1と同じNa型ZSM−5ゼオライトに、0.05
N酢酸カルシウム水溶液を用いて、イオン交換法によ
り、Caを(Caとして)0.1重量%担持した後、乾燥
器中で120℃,24時間乾燥した。ついで、0.2Nの
硝酸銅と硝酸コバルトの混合水溶液(Cu/Co原子比
=7/3)を用いて、イオン交換法によりCu及びCo
を(Cu及びCoとして)約3重量%担持した後、乾燥
器中で120℃,24時間乾燥した。その後、電気炉に
より大気中500℃で2時間焼成してCaを含有したC
u−Co−ZSM−5触媒の粉末を得た。このゼオライ
ト触媒粉末を用い、他は実施例1と同様にして3層構造
の触媒を得、これを硝酸カリウム及び硝酸カルシウムの
混合水溶液中に浸せきし、K及びCaを担持した後、実
施例1と同様にして触媒(3)を得た。本触媒中のK及
びCa含有量は、ハニカムを除く触媒部に対して、それ
ぞれ0.14重量%、0.11重量%であった。
Example 3 The same Na-type ZSM-5 zeolite as in Example 1 was mixed with 0.05
0.1% by weight of Ca (as Ca) was loaded by an ion exchange method using an aqueous solution of N-calcium acetate, and then dried in a dryer at 120 ° C. for 24 hours. Then, using a mixed aqueous solution of 0.2N copper nitrate and cobalt nitrate (Cu / Co atomic ratio = 7/3), Cu and Co were ion-exchanged.
About 3% by weight (as Cu and Co), and dried in a dryer at 120 ° C. for 24 hours. Then, C containing Ca by firing in an electric furnace at 500 ° C. for 2 hours in the atmosphere
A powder of u-Co-ZSM-5 catalyst was obtained. Using this zeolite catalyst powder, a catalyst having a three-layer structure was obtained in the same manner as in Example 1 except that it was dipped in a mixed aqueous solution of potassium nitrate and calcium nitrate to carry K and Ca, and then, as in Example 1. Similarly, a catalyst (3) was obtained. The K and Ca contents in this catalyst were 0.14% by weight and 0.11% by weight, respectively, with respect to the catalyst portion excluding the honeycomb.

【0021】実施例4 実施例3において、Na型ZSM−5ゼオライトをSi
2 /Al2 3 モル比が約33のH型モルデナイトに
替えて、他は同様にして触媒(4)を得た。
Example 4 In Example 3, Na-type ZSM-5 zeolite was mixed with Si.
A catalyst (4) was obtained in the same manner except that the H-type mordenite having an O 2 / Al 2 O 3 molar ratio of about 33 was used.

【0022】実施例5 実施例1において、ジニトロジアンミンパラジウム水溶
液に替えて、ジニトロジアンミン白金水溶液を用い、活
性アルミナ粉末1000gに対して、白金が1重量%に
なるように触媒を調製した他は同様にして、触媒(5)
を得た。
Example 5 The same as Example 1 except that a dinitrodiammineplatinum aqueous solution was used in place of the dinitrodiamminepalladium aqueous solution, and the catalyst was prepared so that platinum was 1% by weight with respect to 1000 g of activated alumina powder. And then the catalyst (5)
Got

【0023】実施例6 実施例3において、硝酸コバルトに替えて、硝酸ニッケ
ルを用いた他は同様にして、触媒(6)を得た。
Example 6 A catalyst (6) was obtained in the same manner as in Example 3, except that nickel nitrate was used instead of cobalt nitrate.

【0024】実施例7 実施例3において、硝酸コバルトに替えて、硝酸銀を用
いた他は同様にして、触媒(7)を得た。
Example 7 A catalyst (7) was obtained in the same manner as in Example 3 except that silver nitrate was used instead of cobalt nitrate.

【0025】実施例8 実施例3において、硝酸コバルトに替えて、硝酸鉄を用
いた他は同様にして、触媒(8)を得た。
Example 8 A catalyst (8) was obtained in the same manner as in Example 3 except that iron nitrate was used instead of cobalt nitrate.

【0026】実施例9 実施例3において、硝酸コバルトに替えて、硝酸亜鉛を
用いた他は同様にして、触媒(9)を得た。
Example 9 A catalyst (9) was obtained in the same manner as in Example 3, except that zinc nitrate was used instead of cobalt nitrate.

【0027】比較例1 実施例1と同様にCu−ZSM−5触媒を得、スラリー
化し、これを該コージエライトハニカム担体に塗布量2
40gになるように塗布した。乾燥器中で120℃,2
時間乾燥後、空気気流中400℃で2時間焼成して触媒
(10)を得た。
Comparative Example 1 A Cu-ZSM-5 catalyst was obtained in the same manner as in Example 1 and made into a slurry, and this was coated on the cordierite honeycomb carrier in an amount of 2
It was applied so as to be 40 g. 120 ° C in a dryer, 2
After drying for an hour, it was calcined in an air stream at 400 ° C. for 2 hours to obtain a catalyst (10).

【0028】比較例2 γ−アルミナを主成分とする活性アルミナ粉末1000
gに対して白金が1.4重量%になるようにジニトロジア
ンミン白金水溶液を加え、よく攪拌した後、乾燥器中で
120℃で3時間乾燥した。これを空気気流中400℃
で2時間焼成し、活性アルミナ担持白金触媒の粉末を得
た。この粉末1400gをγ−アルミナを主成分とする
活性アルミナ1256g、硝酸酸性ベーマイトゾル22
20gをボールミルポットに投入し、8時間粉砕してス
ラリーを得た。このスラリーを該コージエライト製ハニ
カム担体に塗布し、乾燥器中で120℃,2時間乾燥し
た後、空気気流中400℃で2時間焼成した。この時の
粉末塗布量は120gとした。この上層に、実施例1で
得たCu−ZSM−5触媒を同様に130g塗布し、内
層部に酸化触媒、外層部にゼオライト系触媒を配した2
層構造の触媒(11)を得た。
Comparative Example 2 1000 activated alumina powder containing γ-alumina as a main component
An aqueous dinitrodiammine platinum solution was added so that platinum was 1.4% by weight with respect to g, and the mixture was stirred well and dried in a dryer at 120 ° C. for 3 hours. 400 ° C in an air stream
The powder was calcined for 2 hours to obtain a powder of a platinum catalyst supporting activated alumina. 1400 g of this powder was added to 1256 g of activated alumina containing γ-alumina as a main component, and nitric acid-acidified boehmite sol 22.
20 g was put into a ball mill pot and pulverized for 8 hours to obtain a slurry. This slurry was applied to the cordierite honeycomb carrier, dried in a dryer at 120 ° C. for 2 hours, and then fired in an air stream at 400 ° C. for 2 hours. The amount of powder applied at this time was 120 g. To this upper layer, 130 g of the Cu-ZSM-5 catalyst obtained in Example 1 was similarly applied, and the oxidation catalyst was arranged in the inner layer portion and the zeolite catalyst was arranged in the outer layer portion.
A layered catalyst (11) was obtained.

【0029】比較例3 実施例1の触媒(1)の調製において、K及びCaを添
加せず、他は同様にして触媒(12)を得た。
Comparative Example 3 A catalyst (12) was obtained in the same manner as in the preparation of the catalyst (1) of Example 1, except that K and Ca were not added.

【0030】比較例4 実施例1の触媒(1)の調製仮定において、コージエラ
イトハニカム担体への各触媒の塗布順序を変え、Cu−
ZSM−5触媒を内層に、アルミナ担持Pd触媒をその
上層に、さらにその上層にアルミナ担持Rh触媒を配し
た3層構造の触媒を得た。それに実施例1と同様に、K
及びCaを添加して触媒(13)を得た。
Comparative Example 4 On the assumption that the catalyst (1) of Example 1 was prepared, the order of applying each catalyst to the cordierite honeycomb carrier was changed to Cu-
A three-layer structure catalyst having a ZSM-5 catalyst as an inner layer, an alumina-supported Pd catalyst as an upper layer, and an alumina-supported Rh catalyst as an upper layer was obtained. In addition, as in the first embodiment, K
And Ca were added to obtain a catalyst (13).

【0031】試験例 下記のエンジン排気ガスを用いた台上評価により、上記
実施例1〜9及び比較例1〜4の触媒の急速耐久処理の
前後におけるNOx除去性能(触媒入口温度250〜3
00℃および400〜500℃における最高NOx除去
率)を表2に示す。表3には、ストイキ(空燃費14.
6)付近での実施例3、比較例1及び4の触媒(急速耐
久処理前)のNOx除去性能(触媒入口温度300〜4
00℃における最高NOx除去率)を示す。
Test Example By the bench evaluation using the following engine exhaust gas, the NOx removal performance before and after the rapid durability treatment of the catalysts of Examples 1 to 9 and Comparative Examples 1 to 4 (catalyst inlet temperature 250 to 3)
Table 2 shows the maximum NOx removal rates at 00 ° C and 400 to 500 ° C. Table 3 shows stoichiometry (air mileage 14.
6) NOx removal performance (catalyst inlet temperature 300 to 4) of the catalysts of Example 3 and Comparative Examples 1 and 4 (before the rapid endurance treatment) near 6)
The maximum NOx removal rate at 00 ° C) is shown.

【0032】[0032]

【表1】 性能評価条件 触媒容量:0.9L 空間速度:約25000〜35000h-1 触媒層入口温度:200〜500℃ エンジン:サニー(日産自動車(株))用排気量160
0cc(SCV)エンジン 燃 料 :無鉛レギュラーガソリン 平均空燃費(A/F):約20 THC(全炭化水素)/NO比=7.8 急速耐久処理条件 触媒入口排気ガス温度:570℃ 平均空燃費:約18 処理時間 :80h
[Table 1] Performance evaluation conditions Catalyst capacity: 0.9 L Space velocity: Approximately 25000-35000 h -1 Catalyst layer inlet temperature: 200-500 ° C Engine: Sunny (Nissan Motor Co., Ltd.) displacement 160
0cc (SCV) engine Fuel: Unleaded regular gasoline Average air fuel consumption (A / F): Approx. 20 THC (total hydrocarbons) / NO ratio = 7.8 Rapid endurance treatment conditions Catalyst inlet exhaust gas temperature: 570 ° C Average fuel consumption : About 18 Processing time: 80h

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表2及び表3によれば、本発明の触媒は、
ストイキ近傍及びリーン領域で有効に働き、高効率でN
Oxを除去する。また急速耐久処理後も高いNOx除去
活性を維持しており、極めて有効であることがわかる。
According to Tables 2 and 3, the catalyst of the present invention is
It works effectively in the vicinity of the stoichiki and in the lean region, and it is highly efficient and N
Remove Ox. Further, the high NOx removal activity is maintained even after the rapid durability treatment, which shows that it is extremely effective.

【0036】[0036]

【発明の効果】Pt,Pd及びRhからなる群から選ば
れた1種以上の貴金属を含有する貴金属系の前記3元触
媒を内層部に、その上層に前記金属を含有するゼオライ
ト系触媒を塗布し、かつKおよび/またはCaを含んだ
本発明の触媒は、ストイキ近傍からリーン領域までの幅
広い空燃比で内燃機関からの排気ガスを効率良く浄化で
き、低温活性と耐久性に優れるので、環境汚染が極めて
少なく、燃費の良い自動車を提供することができる。
EFFECT OF THE INVENTION The noble metal-based three-way catalyst containing one or more noble metals selected from the group consisting of Pt, Pd and Rh is applied to the inner layer portion and the zeolite catalyst containing the above metal is applied to the upper layer. In addition, the catalyst of the present invention containing K and / or Ca can efficiently purify the exhaust gas from the internal combustion engine with a wide air-fuel ratio from the vicinity of stoichiometry to the lean region, and is excellent in low-temperature activity and durability. It is possible to provide a vehicle with extremely low pollution and good fuel efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 可知 直樹 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Kachi 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 白金、パラジウムおよびロジウムからな
る群から選ばれた1種以上の貴金属を含有する活性アル
ミナを主成分とする無機物をハニカム状担体に1層以上
に積層塗布した後、その上層に銅、コバルト、ニッケ
ル、銀、鉄および亜鉛からなる群から選ばれた1種以上
の金属を含有するゼオライトを主成分とする無機物を塗
布してなる多層構造を有すること、かつカリウム(K)
および/またはカルシウム(Ca)を含有することを特
徴とする排気ガス浄化用触媒。
1. A honeycomb carrier is laminated with one or more layers of an inorganic material containing activated alumina containing at least one precious metal selected from the group consisting of platinum, palladium and rhodium as a main component, and then coated on the upper layer thereof. Having a multilayer structure formed by applying an inorganic substance containing a zeolite as a main component containing one or more metals selected from the group consisting of copper, cobalt, nickel, silver, iron and zinc, and potassium (K)
And / or calcium (Ca) is contained, The exhaust gas purification catalyst characterized by the above-mentioned.
JP33601692A 1992-12-16 1992-12-16 Exhaust gas purification catalyst Expired - Fee Related JP3295992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33601692A JP3295992B2 (en) 1992-12-16 1992-12-16 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33601692A JP3295992B2 (en) 1992-12-16 1992-12-16 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH06182213A true JPH06182213A (en) 1994-07-05
JP3295992B2 JP3295992B2 (en) 2002-06-24

Family

ID=18294827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33601692A Expired - Fee Related JP3295992B2 (en) 1992-12-16 1992-12-16 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3295992B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
WO2009141875A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
WO2009141875A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure

Also Published As

Publication number Publication date
JP3295992B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
EP1166856B1 (en) Exhaust gas purifying catalyst
CN113507980B (en) Lean NO x Trapping catalyst
JPH04371231A (en) Catalyst for purification of exhaust gas
JPH05168939A (en) Exhaust gas purifying catalyst
JP4413520B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
US20030040425A1 (en) Method for washcoating a catalytic material onto a monolithic structure
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP3161113B2 (en) Exhaust gas purification catalyst
JP3855503B2 (en) Exhaust gas purification catalyst
JP3295992B2 (en) Exhaust gas purification catalyst
JPH07144134A (en) Catalyst for purifying exhaust gas
JP3287873B2 (en) Exhaust gas purification catalyst
JP4301348B2 (en) Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same
JP2000042415A (en) Catalyst for exhaust gas purification using hydrocarbon reforming material
JPH0957066A (en) Catalyst for purification of exhaust gas
JP2848175B2 (en) Automotive exhaust purification system
JPH07289909A (en) Catalyst for purifying exhaust gas
Gregori et al. Lean NO x trap catalyst
JPH11138005A (en) Exhaust gas purification catalyst and production of the same
JPH09271640A (en) Removal of nitrogen oxide, nitrogen oxide removing production of catalyst of catalyst
JP3787504B2 (en) Exhaust gas purification catalyst
JPH08257405A (en) Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same
JP3097363B2 (en) Exhaust gas purification catalyst
JPH06170235A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees