JPH06181101A - Semiconductor ceramic having positive resistance-temperature characteristic - Google Patents

Semiconductor ceramic having positive resistance-temperature characteristic

Info

Publication number
JPH06181101A
JPH06181101A JP33176392A JP33176392A JPH06181101A JP H06181101 A JPH06181101 A JP H06181101A JP 33176392 A JP33176392 A JP 33176392A JP 33176392 A JP33176392 A JP 33176392A JP H06181101 A JPH06181101 A JP H06181101A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
semiconductor
resistance
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33176392A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Harunobu Sano
晴信 佐野
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP33176392A priority Critical patent/JPH06181101A/en
Publication of JPH06181101A publication Critical patent/JPH06181101A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide semiconductor ceramic having such a positive resistance- temperature characteristic that the magnitude and fluctuation of the resistance value can be reduced by increasing the ohmic resistance. CONSTITUTION:The title laminated semiconductor or ceramic 1 is constituted by integrally sintering a laminated body formed by alternately piling up semiconductor ceramic layers 2 and internal electrodes 2 and forming first external electrodes 7 connected to one end faces 3a of the electrodes 3 on the left and right end faces of the sintered laminated body 4. Ni or an Ni alloy is used for the electrodes 3 and a metallic material composed mainly of Ni, Cu, Fe, or Co is used for at least the parts of the electrodes 7 which are brought into contact with the electrodes 3. In addition, the thickness of the electrodes 7 is controlled to 1mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気抵抗値が温度によ
って変化する正の抵抗温度特性を有する積層型の半導体
磁器に関し、詳細には内部電極,及び外部電極に採用さ
れる金属材料の組み合わせを改善することによって、オ
ーミック性を向上して低抵抗化を図ることができ、かつ
抵抗値のばらつきを小さくできるようにした電極材料の
構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated semiconductor porcelain having a positive resistance-temperature characteristic in which an electric resistance value changes with temperature, and more specifically, a combination of metal materials used for internal electrodes and external electrodes. The present invention relates to a structure of an electrode material capable of improving ohmic characteristics to reduce resistance and reducing variation in resistance value.

【0002】[0002]

【従来の技術】正の抵抗温度特性を有するBaTiO3
系半導体磁器は、キュリー点以上で抵抗値が急激に増加
する特性を有しており、例えば電気回路の過電流保護素
子として、あるいはテレビのブラウン管枠の消磁素子と
して、多くの分野で使用されている。また、近年の低抵
抗化に対応するために、ディスク型に代わるものとして
積層型の半導体磁器が提案されている。この積層型半導
体磁器は、半導体セラミック層と内部電極とを交互に積
層して一体焼結するとともに、該焼結体の左, 右端面に
外部電極を形成し、該外部電極と上記各内部電極の一端
面とを交互に接続した構造となっている。
2. Description of the Related Art BaTiO 3 having a positive resistance temperature characteristic
The system semiconductor porcelain has a characteristic that the resistance value sharply increases above the Curie point. There is. Further, in order to cope with the recent low resistance, a laminated semiconductor ceramic has been proposed as an alternative to the disk type. In this laminated semiconductor ceramic, semiconductor ceramic layers and internal electrodes are alternately laminated and integrally sintered, and external electrodes are formed on the left and right end faces of the sintered body. It has a structure in which one end face of is connected alternately.

【0003】このような積層型半導体磁器では内部電極
に採用される金属材料として、従来、高温焼成に対応す
るためにPd−Ag系,あるいはPt−Pd系を使用
し、また上記外部電極の金属材料としてはAg等を使用
している(特開昭55-88304号公報, 特開昭57-60802号公
報参照) 。
In such a laminated semiconductor ceramic, a Pd-Ag system or a Pt-Pd system is conventionally used as a metal material adopted for the internal electrode in order to cope with high temperature firing, and the metal of the external electrode is used. Ag or the like is used as the material (see JP-A-55-88304 and JP-A-57-60802).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の積層型半導体磁器において、内部電極に上記Pt等
の金属材料を採用した場合、内部電極とセラミック層と
のオーミック接触が得られ難く、その結果抵抗値が大幅
に上昇するという問題点がある。また、上記外部電極に
Ag等を採用すると、抵抗値にばらつきが生じ易いとい
う問題がある。
However, in the above conventional laminated semiconductor ceramics, when the metal material such as Pt is used for the internal electrode, it is difficult to obtain ohmic contact between the internal electrode and the ceramic layer, and as a result, There is a problem that the resistance value increases significantly. Further, when Ag or the like is used for the external electrodes, there is a problem that the resistance value tends to vary.

【0005】本発明は上記従来の状況に鑑みてなされた
もので、内部電極のオーミック接触を向上して抵抗値を
低くできるとともに、抵抗値のばらつきを小さくできる
正の抵抗温度特性を有する半導体磁器を提供することを
目的としている。
The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to improve the ohmic contact of the internal electrodes to reduce the resistance value and to reduce the variation in the resistance value. Is intended to provide.

【0006】[0006]

【課題を解決するための手段】本件発明者らは、上述の
抵抗値の増大,及びばらつきの問題を解消するために検
討したところ、内部電極と外部電極に使用されている金
属材料の組み合わせについて着目した。そして、このよ
うな金属材料を見出すために種々検討した結果、半導体
磁器の焼成温度に対応できるとともに、オーミック性接
触が得られる金属材料として、Niが適していることを
見出した。一方、このNiを内部電極として採用した場
合、該電極に接続される外部電極にはNi,Cu,F
e,Coが有効であることを見出し、これらを組み合わ
せることにより抵抗値の増大及びばらつきの両方の問題
を解消できることに想到し、本発明を成したものであ
る。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied to solve the above-mentioned problems of increase and variation in resistance value, and found that a combination of metal materials used for internal electrodes and external electrodes was used. I paid attention. As a result of various studies to find such a metal material, it was found that Ni is suitable as a metal material that can cope with the firing temperature of the semiconductor porcelain and can obtain ohmic contact. On the other hand, when this Ni is used as the internal electrode, the external electrodes connected to the electrode are Ni, Cu, F
The inventors of the present invention have found that e and Co are effective, and thought that combining both of them can solve the problems of both increase and variation in resistance value.

【0007】そこで本発明は、半導体セラミック層と内
部電極とを交互に積層して一体焼結し、該焼結体の端面
に上記内部電極が接続される外部電極を形成してなる正
の抵抗温度特性を有する半導体磁器において、上記内部
電極をNi,あるはNi合金により構成するとともに、
上記外部電極の少なくとも内部電極に接する部分をN
i,Cu,Fe,Coのうち何れかを主成分とする金属
材料で構成したことを特徴としている。
Therefore, according to the present invention, a semiconductor ceramic layer and an internal electrode are alternately laminated and integrally sintered, and an external electrode to which the internal electrode is connected is formed on an end surface of the sintered body. In a semiconductor porcelain having temperature characteristics, the internal electrodes are made of Ni or a Ni alloy, and
At least a portion of the external electrode that is in contact with the internal electrode is N
It is characterized in that it is made of a metal material containing any one of i, Cu, Fe and Co as a main component.

【0008】ここで、上記外部電極の厚さは1mm以内
にするのが望ましい。これは上記外部電極にNi,C
u,Fe,Coを採用した場合、これの厚さを大きくす
ると熱収縮により剥離する場合があるという点が判明し
たからである。
Here, it is desirable that the thickness of the external electrode is within 1 mm. This is because Ni, C
This is because when u, Fe, and Co are adopted, it becomes clear that if the thickness of u, Fe, and Co is increased, they may peel due to thermal contraction.

【0009】[0009]

【作用】本発明に係る正の抵抗温度特性を有する半導体
磁器によれば、内部電極にNi,Ni合金を採用したの
で、高温焼成に対する耐熱性を確保しながら、セラミッ
ク層とのオーミック性を向上でき、その結果抵抗値を低
減できる。また、該内部電極に接続される外部電極にN
i,Cu,Fe,Coを採用したので、上記内部電極に
Niを採用する場合の抵抗値のばらつきを回避でき、品
質に対する信頼性を向上できる。
According to the semiconductor porcelain having the positive resistance temperature characteristic according to the present invention, since Ni and Ni alloy are adopted for the internal electrodes, the ohmic property with the ceramic layer is improved while ensuring the heat resistance against high temperature firing. As a result, the resistance value can be reduced. In addition, the external electrode connected to the internal electrode has N
Since i, Cu, Fe, and Co are used, it is possible to avoid variations in resistance value when Ni is used for the internal electrodes, and improve reliability of quality.

【0010】また、上記外部電極の厚さを1mm以下と
した場合は、熱収縮による剥離の問題を解消でき、この
点からも品質に対する信頼性を向上できる。
When the thickness of the external electrode is 1 mm or less, the problem of peeling due to heat shrinkage can be solved, and the reliability of the quality can be improved also from this point.

【0011】[0011]

【実施例】以下、本発明の実施例を図について説明す
る。図1及び図2は本発明の一実施例による正の抵抗温
度特性を有する半導体磁器を説明するための図である。
図において、1は本実施例の積層型半導体磁器である。
この半導体磁器1は直方体状のもので、BaTiO3
主成分とする半導体セラミック層2と内部電極3とを交
互に積層し、該積層体を一体焼結して焼結体4を形成し
て構成されている。また上記各内部電極3の一端面3a
は焼結体4の左, 右端面4a,4bに交互に露出されて
おり、残りの各端面はセラミック層2の内側に位置して
焼結体4内に埋設されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views for explaining a semiconductor ceramic having a positive resistance temperature characteristic according to an embodiment of the present invention.
In the figure, reference numeral 1 is a laminated semiconductor ceramic of this embodiment.
The semiconductor porcelain 1 has a rectangular parallelepiped shape, and semiconductor ceramic layers 2 containing BaTiO 3 as a main component and internal electrodes 3 are alternately laminated, and the laminated bodies are integrally sintered to form a sintered body 4. It is configured. Further, one end surface 3a of each internal electrode 3 is
Are alternately exposed on the left and right end faces 4a, 4b of the sintered body 4, and the remaining end faces are located inside the ceramic layer 2 and embedded in the sintered body 4.

【0012】上記焼結体4の左, 右端面4a,4bには
第1外部電極7が被覆形成されている。この第1外部電
極7の厚さは1mm以下に設定されており、該第1外部
電極7と上記各内部電極3の一端面3aとは電気的に接
続されている。また、上記焼結体4の各端面4a,4b
の第1外部電極7の外表面には第2外部電極5が被覆形
成されており、この外部電極5にはAg−Pdからなる
金属材料が採用されている。
A first external electrode 7 is formed on the left and right end surfaces 4a and 4b of the sintered body 4 so as to cover it. The thickness of the first external electrode 7 is set to 1 mm or less, and the first external electrode 7 and one end surface 3a of each internal electrode 3 are electrically connected. In addition, the end surfaces 4a and 4b of the sintered body 4 are
The outer surface of the first outer electrode 7 is covered with the second outer electrode 5, and the outer electrode 5 is made of a metal material of Ag-Pd.

【0013】そして、上記内部電極3にはNi,あるい
はNi合金が採用されている。また上記第1外部電極の
少なくとも内部電極に接する部分にはNi,Cu,F
e,Coの中から選ばれた何れかを主成分とする金属材
料が採用されている。
Then, Ni or Ni alloy is adopted for the internal electrodes 3. Further, at least a portion of the first external electrode that is in contact with the internal electrode is made of Ni, Cu, F
A metal material whose main component is one selected from e and Co is adopted.

【0014】次に本実施例の積層型半導体磁器1の一製
造方法について説明する。まず、原料として、BaCO
3 ,CaCO3 ,TiO2 ,La2 3 ,MnO 2 ,S
iO2 を用いて以下の組成となるよう調合する。 (Ba0.848Ca0.15La0.0021.01TiO3 +0.01SiO2
+0.001 MnO2 上記原料を、純水,及びジルコニアボールとともにポリ
エチレン製ポットに入れて5時間粉砕混合した後、乾燥
させて1100℃で2時間仮焼成する。
Next, one of the laminated semiconductor porcelain 1 of this embodiment is manufactured.
The manufacturing method will be described. First, as a raw material, BaCO
3, CaCO3, TiO2, La2O3, MnO 2, S
iO2To prepare the following composition. (Ba0.848Ca0.15La0.002)1.01TiO3+0.01 SiO2
+0.001 MnO2 The above raw materials were mixed with pure water and zirconia balls.
Put in an ethylene pot, crush and mix for 5 hours, then dry
Then, calcination is performed at 1100 ° C. for 2 hours.

【0015】次いで、この仮焼成体を再度粉砕して仮焼
成粉を形成し、この仮焼成粉に有機バインダー,溶剤,
及び分散剤を混合し、厚さ0.1 mmのセラミックグリーン
シートを成形する。次に、このグリーンシートを7.5 ×
6.5 mm2 のサイズとなるよう矩形状に打ち抜いて多数の
半導体セラミック層2を形成する。
Next, the calcined body is pulverized again to form a calcined powder, and the calcined powder is mixed with an organic binder, a solvent, and
And a dispersant are mixed to form a ceramic green sheet having a thickness of 0.1 mm. Next, add this green sheet to 7.5 x
A large number of semiconductor ceramic layers 2 are formed by punching into a rectangular shape so as to have a size of 6.5 mm 2 .

【0016】次に、Ni粉末にワニスを混合してなる電
極ペーストを作成する。この電極ペーストを上記各セラ
ミック層2の上面にスクリーン印刷して内部電極3を形
成する。この場合、各内部電極3の一端面3aのみがセ
ラミック層2の端縁まで延び、他の端面は内側に位置す
るように形成する。
Next, an electrode paste prepared by mixing varnish with Ni powder is prepared. This electrode paste is screen-printed on the upper surface of each ceramic layer 2 to form the internal electrodes 3. In this case, only one end surface 3a of each internal electrode 3 extends to the end edge of the ceramic layer 2, and the other end surface is located inside.

【0017】そして、図2に示すように、上記セラミッ
ク層2と内部電極3とが交互に重なり、かつ該内部電極
3の一端面3aがセラミック層2の左, 右端面に交互に
位置するよう10層重ね、これの上面,下面にダミーと
してのセラミック層6,6を重ねて積層する。次いで、
これをプレスで加圧,圧着して積層体を形成する。これ
により上記内部電極3の一端面3aのみが積層体の左,
右端面に露出し、残りの部分は積層体内に封入されるこ
ととなる。
As shown in FIG. 2, the ceramic layers 2 and the internal electrodes 3 are alternately overlapped with each other, and the one end faces 3a of the internal electrodes 3 are alternately located on the left and right end faces of the ceramic layer 2. Ten layers are stacked, and ceramic layers 6 and 6 as dummy are stacked and stacked on the upper and lower surfaces thereof. Then
This is pressed and pressed by a press to form a laminate. As a result, only one end surface 3a of the internal electrode 3 is on the left side of the laminated body,
It is exposed on the right end face, and the remaining part is enclosed in the laminated body.

【0018】次に、Ni,Cu,Fe,Coの中から何
れかを主成分とした金属ペーストを作成する。この金属
ペーストを上記積層体の左, 右端面に塗布して第1外部
電極7を形成する。
Next, a metal paste containing any one of Ni, Cu, Fe and Co as a main component is prepared. This metal paste is applied to the left and right end surfaces of the above-mentioned laminated body to form the first external electrodes 7.

【0019】次いで上記積層体を大気中で加熱してバイ
ンダを燃焼させた後、H2 /N2 =3%の還元性雰囲気
中にて1350℃で2時間焼成し、焼結体4を得る。この
後、上記焼結体4の左, 右端面4a,4bの第1外部電
極7の表面にAg−Pd(70:30)ペーストを塗布して第
2外部電極5を形成した後、大気中にて800 ℃で2時間
の再酸化処理を施す。これにより本実施例の積層型半導
体磁器1が製造される。
Next, the above laminated body is heated in the atmosphere to burn the binder, and then fired in a reducing atmosphere of H 2 / N 2 = 3% at 1350 ° C. for 2 hours to obtain a sintered body 4. . After that, Ag-Pd (70:30) paste is applied to the surfaces of the first external electrodes 7 on the left and right end faces 4a and 4b of the sintered body 4 to form the second external electrodes 5, and then in the air. Reoxidize at 800 ℃ for 2 hours. As a result, the laminated semiconductor ceramic 1 of this embodiment is manufactured.

【0020】[0020]

【表1】 [Table 1]

【0021】表1は、本実施例の半導体磁器の効果を確
認するために行った試験結果を示す。この試験は、上述
の製造方法により各実施例試料No. 1〜4を作成し、各
試料No. 1〜4の第1外部電極にそれぞれNi(実施例
No. 1)、Co(実施例No.2)、Fe(実施例No.
3)、Cu(実施例No. 4)を主成分とする金属材料を
採用した。なお、実施例No. 4はCuとAgPdのペー
ストを、焼成後の焼結体に順次塗布し、この後再酸化処
理を施したものを使用した。
Table 1 shows the results of tests conducted to confirm the effects of the semiconductor ceramics of this example. In this test, the sample Nos. 1 to 4 of the respective examples were prepared by the above-described manufacturing method, and the first external electrodes of the respective sample Nos. 1 to 4 were made of Ni (Examples).
No. 1), Co (Example No. 2), Fe (Example No. 2)
3), a metal material containing Cu (Example No. 4) as a main component was adopted. In addition, in Example No. 4, the paste of Cu and AgPd was sequentially applied to the sintered body after firing, and then reoxidized.

【0022】また、比較するために上記製造方法により
各比較試料No. 1〜6を作成した。この比較試料No. 1
〜3は第1外部電極にそれぞれ従来のPt(比較例No.
1)、Pd(比較例No. 2)、及びAgPd=70:30(比
較例No. 3)からなる金属材料を使用した。なお、比較
例No. 3は上記Ag−Pdペーストを、焼成後の焼結体
に塗布し、この後再酸化処理を施したものを使用した。
さらに、比較試料No.4〜6は第1外部電極をNiと
し、内部電極にそれぞれ従来のPt(比較例No.4)、
Pd(比較例No. 5)、及びPdAg=80:20(比較例N
o. 6)からなる金属材料を使用した。そして、上記各
試料の室温での抵抗値(Ω)を測定するとともに、抵抗
値(ρ/ 平均値%) のばらつきを調べた。ここで、上記
各試料の第1外部電極の厚さは全て5μm とした。
For comparison, Comparative Sample Nos. 1 to 6 were prepared by the above manufacturing method. This comparative sample No. 1
Nos. 3 to 3 are conventional Pt (Comparative Example No. 1) for the first external electrodes, respectively.
1), Pd (Comparative Example No. 2), and AgPd = 70: 30 (Comparative Example No. 3). In Comparative Example No. 3, the Ag-Pd paste was applied to a sintered body after firing and then reoxidized.
Further, in Comparative Samples Nos. 4 to 6, the first external electrode was Ni, and the internal electrodes were made of conventional Pt (Comparative Example No. 4),
Pd (Comparative Example No. 5) and PdAg = 80: 20 (Comparative Example N)
The metal material consisting of o. 6) was used. Then, the resistance value (Ω) at room temperature of each of the above samples was measured, and the variation in the resistance value (ρ / average value%) was examined. Here, the thickness of the first external electrode of each of the above samples was 5 μm.

【0023】表1からも明らかなように、内部電極に従
来の金属材料を使用した比較例No.4〜6の場合、オー
ミック性接触が得られていないことから抵抗値が150 〜
200Ωと高くなっている。また、内部電極にNiを採用
し、外部電極に従来の金属材料を使用した比較例No. 1
〜3の場合、オーミック性の向上により抵抗値は0.3〜
0.5 Ωと低くなっているものの、ばらつきでは15〜35%
と大きく、両電極の組み合わせに問題が生じている。
As is apparent from Table 1, in the case of Comparative Examples Nos. 4 to 6 in which the conventional metal material was used for the internal electrodes, the ohmic contact was not obtained, and the resistance value was 150 to.
It is as high as 200Ω. In addition, Comparative Example No. 1 in which Ni is used for the internal electrode and a conventional metal material is used for the external electrode
In case of ~ 3, resistance value is 0.3 ~ due to improvement of ohmic property
Although it is as low as 0.5 Ω, it varies from 15 to 35%.
Therefore, there is a problem in the combination of both electrodes.

【0024】これに対して、内部電極にNi、第1外部
電極に本発明の金属材料を使用した実施例試料No. 1〜
4の場合は、何れの試料も抵抗値が0.21〜0.23Ωと室温
での抵抗が低く、かつ抵抗値のばらつきも5〜6%と小
さくなっている。このようにNi電極との接点にNi,
Co,Fe,Cuからなる外部電極を採用することによ
って低抵抗化を図りながら、抵抗値のばらつきを大幅に
低減できることがわかる。
On the other hand, Example Nos. 1 to 1 in which Ni was used for the internal electrodes and the metal material of the present invention was used for the first external electrodes
In the case of No. 4, all samples had low resistance values of 0.21 to 0.23 Ω at room temperature, and variations in resistance values were 5 to 6%. In this way, Ni at the contact with the Ni electrode,
It can be seen that by adopting the external electrodes made of Co, Fe, and Cu, the resistance can be reduced and the variation in the resistance value can be greatly reduced.

【0025】[0025]

【表2】 [Table 2]

【0026】表2は、上記内部電極,及び第1外部電極
にNi金属を採用し、該第1外部電極の厚さを0.01μm
〜2mmに変化させた場合の、電極の剥離の状況を観察す
るとともに、抵抗値及び抵抗値のばらつきを調べた試験
結果を示す。
Table 2 shows that Ni metal is used for the internal electrode and the first external electrode, and the thickness of the first external electrode is 0.01 μm.
The test results of observing the peeling state of the electrode and changing the resistance value and the variation in the resistance value when the thickness is changed to ˜2 mm are shown.

【0027】表2からも明らかなように、第1外部電極
の厚さを1.2mm,1.5mm にすると、電極に剥離が生じてお
り、その結果抵抗値, ばらつきの両方とも増大してい
る。これに対して厚さを1mm以下にした場合は、電極の
剥離は全く生じておらず、抵抗値が0.22〜0.25Ω、ばら
つきが5〜7%と満足できる値が得られている。
As is clear from Table 2, when the thickness of the first external electrode is 1.2 mm and 1.5 mm, peeling occurs in the electrode, and as a result, both the resistance value and the variation increase. On the other hand, when the thickness is 1 mm or less, peeling of the electrode does not occur at all, and the resistance value is 0.22 to 0.25Ω and the variation is 5 to 7%, which is a satisfactory value.

【0028】[0028]

【発明の効果】以上のように本発明に係る正の抵抗温度
特性を有する半導体磁器によれば、内部電極にNi,あ
るいはNi合金を採用するとともに、該内部電極に接続
される外部電極の少なくとも内部電極に接する部分にN
i,Co,Fe,Cuからなる金属材料を採用したの
で、オーミック接触を向上して抵抗値を低くできるとと
もに、抵抗値のばらつきを小さくできる効果があり、品
質に対する信頼性を向上できる効果が得られる。
As described above, according to the semiconductor porcelain having the positive resistance temperature characteristic according to the present invention, Ni or Ni alloy is adopted for the internal electrode, and at least the external electrode connected to the internal electrode is used. N on the part that contacts the internal electrode
Since a metal material composed of i, Co, Fe, and Cu is adopted, the ohmic contact can be improved to reduce the resistance value, and the variation in the resistance value can be reduced, so that the reliability of the quality can be improved. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による正の抵抗温度特性を有
する半導体磁器を説明するための断面図である。
FIG. 1 is a cross-sectional view illustrating a semiconductor ceramic having a positive resistance temperature characteristic according to an embodiment of the present invention.

【図2】上記実施例の半導体磁器の分解斜視図である。FIG. 2 is an exploded perspective view of the semiconductor porcelain of the above embodiment.

【符号の説明】[Explanation of symbols]

1 積層型半導体磁器 2 半導体セラミック層 3 内部電極 4 焼結体 7 第1外部電極(内部電極に接続される外部電極) 1 Laminated Semiconductor Porcelain 2 Semiconductor Ceramic Layer 3 Internal Electrode 4 Sintered Body 7 First External Electrode (External Electrode Connected to Internal Electrode)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体セラミック層と内部電極とを交互
に積層して一体焼結し、該焼結体の端面に上記内部電極
が接続される外部電極を形成してなる正の抵抗温度特性
を有する半導体磁器において、上記内部電極が、Ni,
あるはNi合金からなり、かつ上記外部電極の少なくと
も内部電極に接する部分が、Ni,Cu,Fe,Coの
うち何れかを主成分とする金属材料で構成されているこ
とを特徴とする正の抵抗温度特性を有する半導体磁器。
1. A positive resistance-temperature characteristic is obtained by alternately stacking semiconductor ceramic layers and internal electrodes and integrally sintering them, and forming external electrodes to which the internal electrodes are connected at the end faces of the sintered body. In the semiconductor porcelain having the above-mentioned internal electrodes, Ni,
Or a positive electrode characterized by being made of a Ni alloy, and at least a portion of the outer electrode in contact with the inner electrode is made of a metal material containing any one of Ni, Cu, Fe and Co as a main component. Semiconductor porcelain having resistance temperature characteristics.
【請求項2】 請求項1において、上記外部電極の厚さ
が1mm以下であることを特徴とする正の抵抗温度特性
を有する半導体磁器。
2. The semiconductor porcelain according to claim 1, wherein the external electrode has a thickness of 1 mm or less.
JP33176392A 1992-12-11 1992-12-11 Semiconductor ceramic having positive resistance-temperature characteristic Pending JPH06181101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33176392A JPH06181101A (en) 1992-12-11 1992-12-11 Semiconductor ceramic having positive resistance-temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33176392A JPH06181101A (en) 1992-12-11 1992-12-11 Semiconductor ceramic having positive resistance-temperature characteristic

Publications (1)

Publication Number Publication Date
JPH06181101A true JPH06181101A (en) 1994-06-28

Family

ID=18247349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33176392A Pending JPH06181101A (en) 1992-12-11 1992-12-11 Semiconductor ceramic having positive resistance-temperature characteristic

Country Status (1)

Country Link
JP (1) JPH06181101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295421B2 (en) 2003-02-21 2007-11-13 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic components and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295421B2 (en) 2003-02-21 2007-11-13 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic components and method for manufacturing the same
DE112004000186B4 (en) * 2003-02-21 2009-10-15 Murata Mfg. Co., Ltd., Nagaokakyo-shi Multilayer ceramic electronic components and methods of making the same

Similar Documents

Publication Publication Date Title
TWI409836B (en) Cog dielectric composition for use with copper electrodes
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JP2018137298A (en) Multilayer ceramic capacitor
JP4200765B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH06302403A (en) Lamination type semiconductor ceramic element
JP3438736B2 (en) Manufacturing method of laminated semiconductor porcelain
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP4780306B2 (en) Multilayer thermistor and manufacturing method thereof
JPH0684608A (en) Ceramic element
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP7310543B2 (en) Dielectric compositions and electronic components
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2001278659A (en) Dielectric ceramics composition and manufacturing method for ceramic capacitor using it
JP3924898B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH06181101A (en) Semiconductor ceramic having positive resistance-temperature characteristic
JP2001278664A (en) Dielectric ceramic composition and ceramic capacitor using it
JPH0714702A (en) Multilayer semiconductor ceramic having positive temperature-resistance characteristics
JP2893703B2 (en) Multilayer ceramic capacitors
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
JP4144080B2 (en) Multilayer semiconductor ceramic element
JP3240689B2 (en) Laminated semiconductor porcelain composition
JP2803227B2 (en) Multilayer electronic components
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JP3289354B2 (en) Laminated semiconductor porcelain with positive resistance temperature characteristics
CN112408975B (en) Ceramic composition, ceramic sintered body, multilayer ceramic electronic component and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730