JPH0618047Y2 - Fuel injection engine - Google Patents

Fuel injection engine

Info

Publication number
JPH0618047Y2
JPH0618047Y2 JP1985084480U JP8448085U JPH0618047Y2 JP H0618047 Y2 JPH0618047 Y2 JP H0618047Y2 JP 1985084480 U JP1985084480 U JP 1985084480U JP 8448085 U JP8448085 U JP 8448085U JP H0618047 Y2 JPH0618047 Y2 JP H0618047Y2
Authority
JP
Japan
Prior art keywords
fuel
injection valve
engine
fuel injection
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985084480U
Other languages
Japanese (ja)
Other versions
JPS61200436U (en
Inventor
朝雄 田所
晴男 沖本
年道 赤木
誠司 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1985084480U priority Critical patent/JPH0618047Y2/en
Publication of JPS61200436U publication Critical patent/JPS61200436U/ja
Application granted granted Critical
Publication of JPH0618047Y2 publication Critical patent/JPH0618047Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、燃料噴射式エンジンに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a fuel injection engine.

〔従来技術〕[Prior art]

車両用エンジンにおいは、燃料制御精度向上の観点等か
ら、燃料供給手段として従来の気化器に代えて燃料噴射
装置が採用されている。そしてこの燃料噴射式エンジン
には、エンジンの気筒及び吸気通路に燃料噴射弁を設
け、エンジンの運転状態に応じていずれか一方もしくは
両方の噴射弁を駆動するようにしたものがあり、その一
例として、従来、特開昭54-69607号公報に示されるもの
がある。即ち、これは、エンジンの低負荷時には気筒に
設けた燃料噴射弁から負荷に応じた量の燃料を噴射さ
せ、点火プラグ付近に混合気を集めて着火性を向上さ
せ、もって燃料が不安定になる低負荷時における運転性
の安定及び燃費を向上させ、一方エンジンの高負荷時に
は気筒及び吸気通路に設けた燃料噴射弁の各々から負荷
に応じた量の燃料を噴射させて燃焼室内に均一な混合気
を生成させ,もって高負荷時における出力向上を図るよ
うにしたものである。
In a vehicular engine, a fuel injector is used as a fuel supply means instead of a conventional carburetor from the viewpoint of improving fuel control accuracy. In this fuel injection engine, there is one in which a fuel injection valve is provided in a cylinder and an intake passage of the engine, and either or both of the injection valves are driven according to the operating state of the engine. Conventionally, there is one disclosed in JP-A-54-69607. That is, when the engine is under a low load, the fuel injection valve provided in the cylinder injects an amount of fuel according to the load, and collects the air-fuel mixture in the vicinity of the spark plug to improve the ignitability, thus making the fuel unstable. When the engine has a high load, the fuel injection valve provided in each of the cylinder and the intake passage injects a quantity of fuel corresponding to the load to uniformly distribute the fuel into the combustion chamber. It is designed to generate an air-fuel mixture and thus improve output under high load.

ここで燃料噴射弁の性能に対する燃圧の影響について考
案すると、燃料噴射量は一般に燃圧と噴射空間内圧との
差圧、及び噴射弁の開弁期間によって決まるものであ
る。そして吸気通路内噴射弁についてはその開弁期間を
比較的長くして燃料と吸気通路を流通する空気との混合
を促進させ、又噴射空間である吸気通路内圧力もそれほ
ど高くないことから、噴射量の少ない場合を考慮すると
該吸気通路内噴射弁の燃圧は低い方が望ましい。
Here, considering the influence of the fuel pressure on the performance of the fuel injection valve, the fuel injection amount is generally determined by the differential pressure between the fuel pressure and the injection space internal pressure, and the valve opening period of the injection valve. For the injection valve in the intake passage, the valve opening period is made relatively long to promote the mixing of the fuel and the air flowing in the intake passage, and the pressure in the intake passage, which is the injection space, is not so high. Considering the case where the amount is small, it is desirable that the fuel pressure of the injection valve in the intake passage is low.

これに対し、気筒内噴射弁については該噴射弁が上述の
ように混合気の層状化等を目的として使用され、その開
弁期間が比較的短く、又噴射空間である燃焼室内の圧力
変動が大きいことから、該気筒内噴射弁の燃圧は高い方
が望ましい。またこの気筒内噴射弁の開弁期間が短く、
燃料の気化霧化時間も短いことから、燃料の微粒化を促
進するためには燃圧を高くするのが望ましい。
On the other hand, regarding the in-cylinder injection valve, the injection valve is used for the purpose of stratifying the air-fuel mixture as described above, the valve opening period is relatively short, and the pressure fluctuation in the combustion chamber that is the injection space is Since it is large, it is desirable that the fuel pressure of the cylinder injection valve is high. Also, the opening period of this in-cylinder injection valve is short,
Since the vaporization and atomization time of the fuel is short, it is desirable to increase the fuel pressure in order to promote atomization of the fuel.

しかるに従来のこの種の燃料噴射式エンジンでは,かか
る点については全く考慮されておらず、気筒内噴射弁及
び吸気通路内噴射弁の両方に同じ燃圧を加えるようにし
ていたので、燃圧が低い場合には気筒内噴射弁について
燃料制御精度や燃料の微粒化を十分に確保できず、又燃
圧が高い場合には吸気通路内噴射弁について例えば低回
転低負荷時にその開弁期間を非常に短くしなければなら
ず、噴射弁の制御が難しいという問題があった。
However, in the conventional fuel injection type engine of this type, such a point is not taken into consideration at all, and the same fuel pressure is applied to both the in-cylinder injection valve and the intake passage injection valve. In this case, the fuel control accuracy and fuel atomization cannot be sufficiently secured for the in-cylinder injection valve, and when the fuel pressure is high, the valve opening period of the intake passage injection valve should be extremely shortened, for example, at low rotation and low load. There is a problem that it is difficult to control the injection valve.

〔考案の目的〕[Purpose of device]

この考案は、かかる問題点に鑑み、気筒内噴射弁につい
ては燃料制御精度や微粒化を確保でき、吸気通路内噴射
弁については制御を容易にできる燃料噴射式エンジンを
提供せんとするものである。
In view of such a problem, the present invention intends to provide a fuel injection type engine that can secure fuel control accuracy and atomization for the in-cylinder injection valve and can easily control the intake passage injection valve. .

〔考案の構成〕[Constitution of device]

そこで、この考案は、燃料噴射弁を気筒及び吸気通路に
設け、エンジンの運転状態に応じていずれか一方もしく
は両噴射弁から燃料を噴射させるようにした燃料噴射式
エンジンにおいて、気筒内噴射弁の燃圧を吸気通路内噴
射弁の燃圧より高く設定する燃圧制御手段を設け、さら
に燃料供給通路に上記気筒内噴射弁及び燃圧制御手段を
バイパスするバイパス通路を設けるようにしたものであ
る。
In view of this, the present invention proposes a fuel injection engine in which a fuel injection valve is provided in a cylinder and an intake passage to inject fuel from one or both of the injection valves according to the operating state of the engine. The fuel pressure control means for setting the fuel pressure higher than the fuel pressure of the injection valve in the intake passage is provided, and further, the bypass passage for bypassing the in-cylinder injection valve and the fuel pressure control means is provided in the fuel supply passage.

(実施例) 以下、本考案の実施例を図について説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本考案の一実施例による燃料噴射
式エンジンを示す。図において、1はエンジンで、該エ
ンジン1の吸気通路2の途中にはスロットル弁3が配設
され、吸気通路2のスロットル弁3上流側にはエアフロ
ーメータ4が設けられ、吸気通路2の上流端はエアクリ
ーナ5に至っている。またエンジン1の気筒には燃焼室
6に臨んで第1の燃料噴射弁(以下ダイレクト噴射弁と
もいう)7が設けられ、エンジン1の吸気通路2にはス
ロットル弁3下流側にて第2の燃料噴射弁(以下吸気管
噴射弁ともいう)8が設けられている。
1 to 4 show a fuel injection engine according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an engine, a throttle valve 3 is arranged in the intake passage 2 of the engine 1, an air flow meter 4 is provided upstream of the throttle valve 3 of the intake passage 2, and an upstream of the intake passage 2 is provided. The end reaches the air cleaner 5. A first fuel injection valve (hereinafter also referred to as a direct injection valve) 7 is provided in a cylinder of the engine 1 so as to face the combustion chamber 6, and an intake passage 2 of the engine 1 is provided with a second fuel injection valve downstream of the throttle valve 3. A fuel injection valve (hereinafter also referred to as an intake pipe injection valve) 8 is provided.

一方、燃料タンク9には燃料供給通路10の一端が接続
され、該燃料供給通路10には第1,第2の燃料噴射弁
7,8が燃料タンク9に対して第1,第2の順で連通接
続され、又燃料供給通路10の燃料タンク9と第1の燃
料噴射弁7との間には燃料ポンプ11及び燃料フィルタ
12が介設されている。また燃料供給通路10の他端に
は燃料リターン通路13の一端が接続され、両者の接続
部及び第1の燃料噴射弁7の下流側には吸気負圧に応じ
て燃圧を制御する燃圧レギュレータ14,24が介設さ
れ、又燃料リターン通路13の他端は燃料タンク9に至
っている。ここで第1の燃料噴射弁7下流側の燃圧レギ
ュレータ24は他方の燃圧レギュレータ14に比して燃
圧を高く設定するようになっている。
On the other hand, one end of a fuel supply passage 10 is connected to the fuel tank 9, and first and second fuel injection valves 7 and 8 are provided in the fuel supply passage 10 in the first and second order with respect to the fuel tank 9. A fuel pump 11 and a fuel filter 12 are provided between the fuel tank 9 of the fuel supply passage 10 and the first fuel injection valve 7. Further, one end of a fuel return passage 13 is connected to the other end of the fuel supply passage 10, and a fuel pressure regulator 14 for controlling the fuel pressure according to the intake negative pressure is connected to the connection portion of both and the downstream side of the first fuel injection valve 7. , 24 are interposed, and the other end of the fuel return passage 13 reaches the fuel tank 9. Here, the fuel pressure regulator 24 on the downstream side of the first fuel injection valve 7 sets the fuel pressure higher than that of the other fuel pressure regulator 14.

そして燃料供給通路10の途中には第1の燃料噴射弁7
及び燃圧レギュレータ24をバイパスしてバイパス通路
15が分岐形成され、該バイパス通路15の途中にはバ
イパス弁16が介設されるとともに、該バイパス弁16
の開閉によって生じる燃料供給通路内の燃圧の変動を緩
和するチャンバ17が形成されている。
In the middle of the fuel supply passage 10, the first fuel injection valve 7
And the fuel pressure regulator 24 are bypassed to form a bypass passage 15, and a bypass valve 16 is provided in the middle of the bypass passage 15 and the bypass valve 16 is provided.
A chamber 17 is formed to mitigate fluctuations in fuel pressure in the fuel supply passage caused by opening and closing.

また図中、18はエンジンの回転角を検出するクランク
角センサ、19はスロットル弁3の開度を検出するスロ
ットル開度センサ、20はエンジンの排気通路21に設
けられたOセンサ、22はエンジンの冷却水温度を検
出する水温センサ、23は制御ユニットで、該制御ユニ
ット23はエンジンの運転状態に応じて第1,第2の燃
料噴射弁7,8のいずれか一方又は両方を駆動し、又第
2の燃料噴射弁8のみを駆動するときには燃圧レギュレ
ータバイパス弁16に開信号を出力してこれを開くとい
う制御を行なう。
Further, in the figure, 18 is a crank angle sensor for detecting the rotation angle of the engine, 19 is a throttle opening sensor for detecting the opening of the throttle valve 3, 20 is an O 2 sensor provided in an exhaust passage 21 of the engine, and 22 is A water temperature sensor for detecting an engine cooling water temperature, 23 is a control unit, and the control unit 23 drives one or both of the first and second fuel injection valves 7 and 8 in accordance with the operating state of the engine. Further, when only the second fuel injection valve 8 is driven, an open signal is output to the fuel pressure regulator bypass valve 16 to open it.

そして以上のような構成において、第1の燃料噴射弁7
下流側の燃圧レギュレータ24が第1の燃料噴射弁7の
燃圧を第2の燃料噴射弁8の燃圧より高く設定する燃圧
制御手段となっており、又制御ユニット23がエンジン
の運転状態に応じて第1,第2の燃料噴射弁7,8のい
ずれか一方もしくは両方を駆動する噴射弁駆動手段とな
っている。
And in the above structure, the first fuel injection valve 7
The fuel pressure regulator 24 on the downstream side serves as fuel pressure control means for setting the fuel pressure of the first fuel injection valve 7 higher than the fuel pressure of the second fuel injection valve 8, and the control unit 23 responds to the operating state of the engine. It is an injection valve drive means for driving either or both of the first and second fuel injection valves 7, 8.

次に第2図ないし第4図を用いて動作について説明す
る。ここで第2図は制御ユニット23の処理のフローチ
ャートを、第3図はエンジン回転数とスロットル開度と
をパラメータとする吸気管噴射領域、ダイレクト噴射領
域、併用噴射領域及び燃料カット領域を、第4図は吸気
管噴射又はダイレクト噴射の開始又は停止時からの経過
時間△tn(nは1〜4)に対する切替時増量率又は切
替時減量率CCHnを決定するための関数fnを示す。
Next, the operation will be described with reference to FIGS. Here, FIG. 2 is a flow chart of the processing of the control unit 23, and FIG. 3 is a flow chart showing an intake pipe injection region, a direct injection region, a combined injection region and a fuel cut region with the engine speed and the throttle opening as parameters. FIG. 4 shows a function fn for determining the switching increase rate or the switching decrease rate CCHn with respect to the elapsed time Δtn (n is 1 to 4) from the start or stop of intake pipe injection or direct injection.

エンジンが作動すると、制御ユニット23は第2図にフ
ローチャートで示す処理を実行し、まず運転状態である
各種センサ4,18〜20,22の出力を読み込み(ス
テッパ30)、エンジン回転数とスロットル開度とによ
って決まるエンジンの運転領域が燃料カット領域境界線
a(第3図参照)以上か否かを判定し(ステップ3
1)、燃料カット領域境界線a以下の場合には上述のス
テップ30に戻り、こうしてエンジンの運転領域が燃料
カット領域の場合には噴射弁7,8は駆動されず、燃料
供給はカットされることとなる。
When the engine operates, the control unit 23 executes the process shown by the flowchart in FIG. 2, and first reads the outputs of the various sensors 4, 18 to 20, 22 which are in the operating state (stepper 30) to determine the engine speed and throttle opening. It is determined whether or not the operating region of the engine, which is determined by the degree, is equal to or greater than the fuel cut region boundary line a (see FIG. 3) (step 3
1) If the fuel cut region boundary line is less than or equal to "a", the process returns to step 30 described above. Thus, when the operating region of the engine is the fuel cut region, the injection valves 7 and 8 are not driven and the fuel supply is cut. It will be.

一方、エンジンの運転領域が燃料カット領域境界線a以
上の場合には、制御ユニット23はエンジン回転数と吸
入空気量とに応じて総基本パルス幅τ0を計算し(ステ
ップ32)、ダイレクト噴射すべき領域か否か、即ち吸
気管噴射領域境界線b以下か否かを判定し(ステップ3
3)、吸気管噴射領域境界線b以下の場合にはダイレク
ト噴射開始直後か否かに応じ、切替時増量率CCH1を
ダイレクト用燃圧が確保されるまでの燃料不足分を考慮
して経過時間△t1と予め定められた関数f1(第4図
参照)とによって決まる値f1(△t1)又は零に設定
し(ステップ34,35,36)、次に吸気管噴射すべ
き領域か否か、即ち、ダイレクト噴射領域境界線c(第
4図参照)以上か否かを判定し(ステップ37)、ダイ
レクト噴射領域境界線c以上の場合には吸気管噴射開始
直後か否かに応じ、切替時増量率CCH2を吸気管壁面
付着燃料の不足分を考慮して経過時間△t2と予め定め
られた関数f2(第4図参照)とによって決まる値f2
(△t2)又は零に設定し(ステップ38,39,4
0)、上述の総基本パルス幅τ0,分配係数k1,切替
時増量率CCH1,CCH2,噴射弁7の容量補正係数
k2及び噴射弁7,8の無効噴射期間τBATM,τB
ATDを用いて吸気管噴射パルス幅TM〔=k1×τ0
×(1+CCH2)+τBATM〕,及びダイレクト噴
射パルス幅TD〔=(1−k1)×k2×τ0×(1+
CCH1)+τBATD〕を演算し(ステップ41,4
2)、該パルス幅TM,TDの燃料噴射パルスを吸気管
噴射弁8及びダイレクト噴射弁7に加えて該両噴射弁
8,7に燃料を噴射させ(ステップ43,44)、こう
してエンジンの運転領域が併用噴射領域(第3図参照)
の場合には第1,第2の両噴射弁7,8が駆動されてエ
ンジンの運転状態に応じた量の燃料が燃焼室6内及び吸
気通路2内に噴射供給されることとなる。
On the other hand, when the operating region of the engine is above the fuel cut region boundary line a, the control unit 23 calculates the total basic pulse width τ0 according to the engine speed and the intake air amount (step 32), and performs direct injection. It is determined whether or not the region is a power region, that is, whether or not it is below the intake pipe injection region boundary line b (step 3
3) In the case of the intake pipe injection region boundary line b or less, the elapsed time Δ considering the fuel shortage until the direct fuel pressure is secured by the switching increase rate CCH1 depending on whether or not the direct injection is started. A value f1 (Δt1) determined by t1 and a predetermined function f1 (see FIG. 4) is set or zero (steps 34, 35, 36), and whether or not the region is the region where the intake pipe injection should be performed next, that is, It is determined whether or not the direct injection region boundary line c (see FIG. 4) or more (step 37), and if it is the direct injection region boundary line c or more, the switching amount increase depending on whether or not immediately after the start of the intake pipe injection. The value f2 of the rate CCH2 determined by the elapsed time Δt2 and a predetermined function f2 (see FIG. 4) in consideration of the shortage of fuel adhering to the intake pipe wall surface.
(Δt2) or set to zero (steps 38, 39, 4
0), the total basic pulse width τ0, the distribution coefficient k1, the switching increase rates CCH1, CCH2, the capacity correction coefficient k2 of the injection valve 7 and the invalid injection periods τBATM, τB of the injection valves 7 and 8 described above.
Intake pipe injection pulse width TM [= k1 × τ0 using ATD
× (1 + CCH2) + τBATM], and direct injection pulse width TD [= (1-k1) × k2 × τ0 × (1+
CCH1) + τBATD] (steps 41, 4
2) Add fuel injection pulses having the pulse widths TM and TD to the intake pipe injection valve 8 and the direct injection valve 7 to inject fuel into both the injection valves 8 and 7 (steps 43 and 44), thus operating the engine. Area is combined injection area (see Fig. 3)
In this case, both the first and second injection valves 7 and 8 are driven to inject and supply the fuel in the combustion chamber 6 and the intake passage 2 in an amount corresponding to the operating state of the engine.

またダイレクト噴射領域境界線c以下の場合には、制御
ユニット23は、吸気管噴射停止直後か否かに応じ、切
替時減量率CCH3を吸気管壁面の燃料の流入を考慮し
て経過時間△t3と予め定められた関数f3(第4図参
照)とによって決まる値f3(△t3)又は零に設定し
た後(ステップ45,46,47)、吸気管噴射パルス
幅TMを零に設定するとともに、ダイレクト噴射パルス
幅TD〔=k2×τ0×(1+CCH1−CCH3)+
τBATD〕を計算して(ステップ48,49)、上述
のステップ43,44の処理を行ない、こうしてエンジ
ンの運転領域がダイレクト噴射領域(第3図参照)の場
合には第1の燃料噴射弁7のみが駆動されてエンジンの
運転状態に応じた量の燃料が燃焼室6内に噴射供給され
ることとなる。
Further, in the case of the direct injection region boundary line c or less, the control unit 23 determines the switching time reduction rate CCH3 in consideration of the inflow of fuel into the intake pipe wall surface depending on whether or not immediately after the intake pipe injection is stopped, and the elapsed time Δt3. And the value f3 (Δt3) determined by the predetermined function f3 (see FIG. 4) or zero (steps 45, 46, 47), the intake pipe injection pulse width TM is set to zero, and Direct injection pulse width TD [= k2 × τ0 × (1 + CCH1-CCH3) +
τ BATD] is calculated (steps 48 and 49) and the above-described steps 43 and 44 are performed. Thus, when the operating region of the engine is the direct injection region (see FIG. 3), the first fuel injection valve 7 Only the fuel is driven and the amount of fuel corresponding to the operating state of the engine is injected and supplied into the combustion chamber 6.

またエンジンの運転領域が吸気管噴射領域境界線b以上
の場合には、制御ユニット23は吸気管噴射開始直後か
否かに応じ、切替時増量率CCH4を吸気管壁面付着燃
料の不足分を考慮して経過時間△t4と予め定められた
関数f4(第4図参照)とに応じた値f4(△t4)又
は零に設定した後(ステップ50,51,52)、ダイ
レクト噴射パルス幅TDを零にするとともに、吸気管噴
射パルス幅TM〔=τ0×(1+CCH4)+τBAT
M〕を演算し(ステップ53,54)さらに燃圧レギュ
レータバイパス弁16に開信号を出力してこれを開放さ
せ(ステップ55)、上述のステップ43,44の処理
を行ない、こうしてエンジンの運転領域が吸気管噴射領
域(第3図参照)の場合には第2の燃料噴射弁8のみが
駆動されてエンジンの運転状態に応じた量の燃料が吸気
通路2内に噴射供給され、又その際燃圧レギュレータバ
イパス弁16が開放されることとなる。
Further, when the operating region of the engine is equal to or higher than the intake pipe injection region boundary line b, the control unit 23 considers the shortage of the fuel adhering to the intake pipe wall surface as the switching increase rate CCH4 according to whether or not immediately after the start of the intake pipe injection. Then, after setting the value f4 (Δt4) according to the elapsed time Δt4 and the predetermined function f4 (see FIG. 4) or zero (steps 50, 51, 52), the direct injection pulse width TD is set. In addition to zero, the intake pipe injection pulse width TM [= τ0 × (1 + CCH4) + τBAT
M] is calculated (steps 53 and 54), an open signal is further output to the fuel pressure regulator bypass valve 16 to open it (step 55), and the above-mentioned steps 43 and 44 are performed. In the case of the intake pipe injection region (see FIG. 3), only the second fuel injection valve 8 is driven to inject and supply an amount of fuel corresponding to the operating state of the engine into the intake passage 2, and at that time, the fuel pressure is increased. The regulator bypass valve 16 will be opened.

以上のような本実施例の装置では、気筒に設けた第1の
燃料噴射弁及び吸気通路に設けた第2の燃料噴射弁に各
々燃圧レギュレータを設け、第1の燃料噴射弁の燃圧を
第2の燃料噴射弁のそれより高く設定するようにしたの
で、第1の燃料噴射弁についてはその燃圧を高めて燃料
制御精度及び微粒化を確保でき、又第2の燃料噴射弁に
ついてはその燃圧を適度に設定し、開弁期間が極端に短
くなる等、噴射弁の制御が困難になるのを防止できる。
In the device of the present embodiment as described above, the fuel pressure regulator is provided for each of the first fuel injection valve provided in the cylinder and the second fuel injection valve provided in the intake passage, and the fuel pressure of the first fuel injection valve is adjusted to the first value. Since the fuel injection pressure is set higher than that of the second fuel injection valve, the fuel pressure of the first fuel injection valve can be increased to ensure fuel control accuracy and atomization, and the fuel pressure of the second fuel injection valve can be ensured. Can be appropriately set to prevent the injection valve from becoming difficult to control, such as the valve opening period becoming extremely short.

また上記装置では、第2の燃料噴射弁のみを駆動する場
合には第1の燃料噴射弁及びその燃圧レギュレータをバ
イパスして燃料を流すようにしたので、燃料ポンプに作
用する負荷を低減できる。
Further, in the above device, when only the second fuel injection valve is driven, the first fuel injection valve and its fuel pressure regulator are bypassed so that the fuel flows, so that the load acting on the fuel pump can be reduced.

〔考案の効果〕[Effect of device]

以上のように本考案によれば、燃料噴射弁を気筒及び吸
気通路に設け、エンジンの運転状態に応じていずれか一
方もしくは両噴射弁から燃料を噴射させるようにした燃
料噴射式エンジンにおいて、気筒内噴射弁の燃圧を吸気
通路内噴射弁の燃圧より高く設定する燃圧制御手段を設
けるようにしたので、気筒の噴射弁について燃料制御精
度及び微粒化を確保でき、又吸気通路の噴射弁について
噴射制御が困難になるのを防止できる効果がある。
As described above, according to the present invention, in the fuel injection engine in which the fuel injection valve is provided in the cylinder and the intake passage, and the fuel is injected from one or both of the injection valves according to the operating state of the engine, Since the fuel pressure control means for setting the fuel pressure of the internal injection valve higher than that of the intake passage internal injection valve is provided, it is possible to ensure fuel control accuracy and atomization for the injection valve of the cylinder, and to inject fuel for the injection valve of the intake passage. This has the effect of preventing difficulty in control.

また、燃料供給通路に気筒内噴射弁及び燃圧制御手段を
バイパスするバイパス通路を設け、吸気通路内噴射弁の
みを駆動させる際に、上記バイパス通路を開き、気筒内
噴射弁へ向かう燃料をバイパスさせるようにしたので、
燃料供給系の駆動負荷を低減することができるという効
果がある。
Further, a bypass passage that bypasses the in-cylinder injection valve and the fuel pressure control means is provided in the fuel supply passage, and when only the intake passage injection valve is driven, the bypass passage is opened to bypass the fuel going to the in-cylinder injection valve. I did so,
There is an effect that the driving load of the fuel supply system can be reduced.

【図面の簡単な説明】 第1図は本考案の一実施例による燃料噴射式エンジンの
概略構成図、第2図は上記エンジンにおける制御ユニッ
トの演算処理のフローチャートを示す図、第3図はエン
ジン回転数とスロットル弁開度とをパラメータとする吸
気管噴射領域、ダイレクト噴射領域、併用噴射領域及び
燃料カット領域を示す図、第4図は吸気管噴射又はダイ
レクト噴射の開始又は停止時からの経過時間△tnに対
する切替時増量率又は切替時減量率CCHnを決定する
ための関数fnを示す図である。 1……エンジン、2……吸気通路、7……第1の燃料噴
射弁、8……第2の燃料噴射弁、15……バイパス通
路、16……バイパス弁、23……制御ユニット(噴射
駆動手段)、24……燃圧レギュレータ(燃圧制御手
段)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a fuel injection engine according to an embodiment of the present invention, FIG. 2 is a diagram showing a flow chart of arithmetic processing of a control unit in the engine, and FIG. 3 is an engine. FIG. 4 is a diagram showing an intake pipe injection region, a direct injection region, a combined injection region, and a fuel cut region in which the rotational speed and the throttle valve opening are parameters, and FIG. 4 shows the progress from the start or stop of the intake pipe injection or the direct injection. It is a figure which shows the function fn for determining the switching increase rate or switching decrease rate CCHn with respect to time (DELTA) tn. 1 ... Engine, 2 ... Intake passage, 7 ... First fuel injection valve, 8 ... Second fuel injection valve, 15 ... Bypass passage, 16 ... Bypass valve, 23 ... Control unit (injection Drive means), 24 ... Fuel pressure regulator (fuel pressure control means).

───────────────────────────────────────────────────── フロントページの続き (72)考案者 田島 誠司 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (56)参考文献 特開 昭58−91367(JP,A) 実開 昭60−28243(JP,U) 実公 平4−22061(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Tajima 3-3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. 28243 (JP, U) Actual Kohei 4-22061 (JP, Y2)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エンジンの気筒に設けられた第1の燃料噴
射弁と、 エンジンの吸気通路に設けられた第2の燃料噴射弁と、 エンジンの運転状態に応じて上記第1,第2の燃料噴射
弁のいずれか一方もしくは両方を駆動する噴射弁駆動手
段と、 上記第1の燃料噴射弁の燃圧を上記第2の燃料噴射弁の
燃圧より高く設定する燃圧制御手段とを備え、 燃料供給通路上流から上記第1の燃料噴射弁,燃圧制御
手段,第2の燃料噴射弁を順次配置するとともに、 上記燃料供給通路に上記第1の燃料噴射弁及び燃圧制御
手段をバイパスし、かつバイパス弁を有するバイパス通
路を設け、 上記第2の燃料噴射弁単独動作時に上記バイパス弁を開
とするようにしたことを特徴とする燃料噴射式エンジ
ン。
1. A first fuel injection valve provided in a cylinder of an engine, a second fuel injection valve provided in an intake passage of the engine, and the first and second fuel injection valves according to an operating state of the engine. An injection valve drive means for driving either one or both of the fuel injection valves; and a fuel pressure control means for setting the fuel pressure of the first fuel injection valve higher than the fuel pressure of the second fuel injection valve. The first fuel injection valve, the fuel pressure control means, and the second fuel injection valve are sequentially arranged from the upstream of the passage, and the first fuel injection valve and the fuel pressure control means are bypassed to the fuel supply passage, and the bypass valve A fuel injection engine, characterized in that a bypass passage having an opening is provided, and the bypass valve is opened when the second fuel injection valve operates independently.
JP1985084480U 1985-06-04 1985-06-04 Fuel injection engine Expired - Lifetime JPH0618047Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985084480U JPH0618047Y2 (en) 1985-06-04 1985-06-04 Fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985084480U JPH0618047Y2 (en) 1985-06-04 1985-06-04 Fuel injection engine

Publications (2)

Publication Number Publication Date
JPS61200436U JPS61200436U (en) 1986-12-15
JPH0618047Y2 true JPH0618047Y2 (en) 1994-05-11

Family

ID=30634033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985084480U Expired - Lifetime JPH0618047Y2 (en) 1985-06-04 1985-06-04 Fuel injection engine

Country Status (1)

Country Link
JP (1) JPH0618047Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170048A (en) * 2004-12-15 2006-06-29 Toyota Motor Corp Fuel injection device for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024989A (en) * 2008-07-18 2010-02-04 Mitsubishi Motors Corp Fuel supply device for vehicle
JP2009030615A (en) * 2008-11-10 2009-02-12 Toyota Motor Corp Method of controlling learning of air-fuel ratio of dual-injection internal combustion engine on vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891367A (en) * 1981-11-25 1983-05-31 Nissan Motor Co Ltd Fuel injection device for internal-combustion engine
JPS6028243U (en) * 1983-08-01 1985-02-26 日産自動車株式会社 Direct cylinder injection engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170048A (en) * 2004-12-15 2006-06-29 Toyota Motor Corp Fuel injection device for vehicle

Also Published As

Publication number Publication date
JPS61200436U (en) 1986-12-15

Similar Documents

Publication Publication Date Title
JPH01247729A (en) Electronic control fuel injection device for alcohol internal combustion engine
JPH0618047Y2 (en) Fuel injection engine
JPH0550586B2 (en)
JPH0385349A (en) Fuel injection device of internal combustion engine
JPH0430358Y2 (en)
JP2001152942A (en) Control device for internal combustion engine
JP2932183B2 (en) Engine fuel supply
JPS60108529A (en) Suction device of engine
JP2881606B2 (en) Engine fuel injection timing control device
JPH0660592B2 (en) Fuel injection engine
JPS5879642A (en) Air-fuel ratio controller of engine
JPS61279737A (en) Fuel-injection type engine
JPH0631156Y2 (en) Air-fuel ratio controller for internal combustion engine
JP2519817Y2 (en) Engine protector
JPH06129281A (en) Fuel feeding device of engine
JPH0526284Y2 (en)
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPH04128525A (en) Fuel controller of alcohol engine
JPH03121227A (en) Fuel supply device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS60108546A (en) Fuel injection device of engine
JPH0249940A (en) Fuel supply control device of internal combustion engine
JPH0672562B2 (en) Engine fuel injector
JPH0137584B2 (en)
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine