JPS60108529A - Suction device of engine - Google Patents

Suction device of engine

Info

Publication number
JPS60108529A
JPS60108529A JP58216849A JP21684983A JPS60108529A JP S60108529 A JPS60108529 A JP S60108529A JP 58216849 A JP58216849 A JP 58216849A JP 21684983 A JP21684983 A JP 21684983A JP S60108529 A JPS60108529 A JP S60108529A
Authority
JP
Japan
Prior art keywords
intake
throttle valve
injection
intake passage
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58216849A
Other languages
Japanese (ja)
Other versions
JPH0213130B2 (en
Inventor
Asao Tadokoro
朝雄 田所
Haruo Okimoto
沖本 晴男
Masato Iwaki
正人 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58216849A priority Critical patent/JPS60108529A/en
Publication of JPS60108529A publication Critical patent/JPS60108529A/en
Publication of JPH0213130B2 publication Critical patent/JPH0213130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/02Controlling delivery of fuel or combustion-air, not otherwise provided for of combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent overleaning of fule-air mixture during acceleration operation, by a method wherein a first expansion chamber is located down a first suction passage from the first throttle valve, and a second expansion chamber is independently located in said expansion chmaber down a second suction passage from a second throttle valve. CONSTITUTION:Suction air is fed at an entire operation range through a first suction passage 7a, and the suction air is fed at a high suction amount range through a second suction passage 7b. A first expansion chamber 7c is formed down the first suction passage 7a from a second throttle valve 10, and a second expansion chmaber 7d is located, independently from each other, down the second suction passage 7b froma second throttle valve 11. A first injection valve 12, injecting fuel in an entire operating range, is located in the first suction passage 7a, and a second injection valve 13, injecting fuel in a high suction amount range, is situated in the second suction passage 7b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an intake system for an engine.

(従来技術) エンジンの各気筒に対して2つの吸気通路を設け、各吸
気通路に絞り弁および燃料噴射弁を配設し、エンジンの
負荷等の運転状態に応じて各絞り弁の開度を制御し、第
1吸気通路からは低吸気量域を含む全運転領域で吸気を
供給し、第2吸気通路からは高吸気量域で吸気を供給す
るようにした吸気装置は、例えば特開昭51−1202
5号に見られるように公知である。
(Prior art) Two intake passages are provided for each cylinder of the engine, a throttle valve and a fuel injection valve are arranged in each intake passage, and the opening degree of each throttle valve is adjusted according to the operating conditions such as engine load. An intake system that supplies intake air from the first intake passage in the entire operating range including the low intake air volume range, and supplies intake air in the high intake air volume range from the second intake passage is disclosed, for example, in Japanese Patent Application Laid-open No. 51-1202
It is publicly known as seen in No. 5.

上記のような吸気装置では、加速運転への移行時に第1
および第2絞り弁が急激に開作動した際に、吸気量は絞
り弁の開作動に伴って急激に増大するのに対し、燃料の
供給遅れが生じ、燃料の加速増量を図っても一時的にリ
ーンな混合気が供給されることによる加速へジテーショ
ンが発生ずることになる。また、高吸気m域から低吸気
量域への減速時づ−なわち急減速時には第1および第2
絞り弁が急激に閉作動し、絞り弁下流の吸気通路の負圧
が急激に増大し、通路壁面に付着している燃料の吸引に
よりオーバーリッチな混合気が供給されるとともに、高
吸気量域内での減速すなわち半減速時には、通路壁面に
付着している燃料の吸引および燃料噴射弁からの燃料が
吸気流速の低下により一時的に気化、霧化しないまま燃
焼室に吸引されてしまうことにより、燃焼性に悪影響を
与える恐れがある。
In the above-mentioned intake system, the first
Also, when the second throttle valve opens suddenly, the intake air amount increases rapidly as the throttle valve opens, but there is a delay in fuel supply, and even if you try to accelerate and increase the amount of fuel, it will be temporary. Acceleration displacement occurs due to the lean air-fuel mixture being supplied to the engine. In addition, when decelerating from a high intake air volume region to a low intake air amount region, that is, when decelerating suddenly, the first and second
The throttle valve suddenly closes, the negative pressure in the intake passage downstream of the throttle valve rapidly increases, and the suction of fuel adhering to the passage wall supplies an over-rich air-fuel mixture. During deceleration (half deceleration), the fuel adhering to the passage wall surface and the fuel from the fuel injection valve are temporarily sucked into the combustion chamber without being vaporized or atomized due to the decrease in the intake flow velocity. May adversely affect flammability.

(発明の目的) 本発明は上記事情に鑑み、加速へジテーションおにび減
速時のオーバーリッチ化の防止を図るようにしたエンジ
ンの吸気装置を提供することを目的とするものである。
(Object of the Invention) In view of the above-mentioned circumstances, it is an object of the present invention to provide an intake system for an engine that is capable of preventing over-richness during acceleration and deceleration.

(発明の栂成) 本発明のエンジンの吸気装置は、各気筒に対して低吸気
量域を含む全運転領域で吸気を供給する第1吸気通路に
第1絞り弁および第1噴射弁を設けるとともに、高吸気
量域で吸気を供給する第2吸気通路に第2絞り弁および
第2噴躬弁を設【プたものにおいて、上記第1吸気通路
の第1絞り弁下流に第1拡張至を設【プるどともに、こ
の第1拡張室とは独立して上記第2吸気通路の第2絞り
弁下流に第2拡張室を設けたことを特徴とするものであ
る。
(Toganari of the Invention) An intake system for an engine according to the present invention is provided with a first throttle valve and a first injection valve in a first intake passage that supplies intake air to each cylinder in all operating ranges including a low intake air amount range. In addition, a second throttle valve and a second injection valve are provided in the second intake passage that supplies intake air in a high intake air amount region, and a first expansion valve is provided downstream of the first throttle valve in the first intake passage. In addition, a second expansion chamber is provided downstream of the second throttle valve in the second intake passage independently of the first expansion chamber.

(発明の効果) 本発明によれば、第1拡張室および第2拡張室の形成に
より、加速運転への移行時には拡張室は負圧状態となっ
ており、第1および第2絞り弁が開いて@激に吸気量が
増大しても、この吸気は拡張室に充満して燃焼室には急
に流入ゼず、A−バーリーン化を防止して加速へジテー
ションの発生が阻止できるとともに、減速運転移行時に
は拡張室には吸気が充満しており、第1および第2絞り
弁が閉じて@激に吸気量が減少しても、燃焼室には拡張
室内の吸気を吸入することにより壁面付着燃料の吸引に
伴うオーバーリッチ化が閉止できるものである。
(Effects of the Invention) According to the present invention, by forming the first expansion chamber and the second expansion chamber, the expansion chamber is in a negative pressure state at the time of transition to acceleration operation, and the first and second throttle valves are opened. Even if the amount of intake air increases dramatically, this intake air will not fill the expansion chamber and suddenly flow into the combustion chamber, preventing A-bar lean and preventing the occurrence of acceleration displacement. At the time of transition to deceleration operation, the expansion chamber is filled with intake air, and even if the first and second throttle valves are closed and the amount of intake air is drastically reduced, the intake air in the expansion chamber is sucked into the combustion chamber and the wall surface is reduced. This can prevent over-richness caused by suction of adhering fuel.

また、第1拡張室と第2拡張室とを互いに独立して設け
ていることにより、通常の運転状態において第1および
第2吸気通路の吸気が混流することがなく、また、拡張
室を一体化すると必要容積が大ぎくなり通常の運転域に
おける応答性が低下するが、独立形成のためこの不具合
も発生せず、それぞれ第1および第2吸気通路で加速時
および減速時の運転状態に対処して良好な吸気特性を得
ることができるものである。
In addition, by providing the first expansion chamber and the second expansion chamber independently from each other, the intake air in the first and second intake passages does not mix during normal operating conditions, and the expansion chambers are integrated. However, since the intake passages are formed independently, this problem does not occur, and the first and second intake passages handle the operating conditions during acceleration and deceleration, respectively. This makes it possible to obtain good intake characteristics.

(実施例) 1ス下、図面により本発明の実施態様を詳細に説明する
(Example) Below, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は燃料噴射方式のエンジンの全体構成図で、エン
ジン1の各気筒の燃焼室2に対し、2つの第1および第
2吸気ポート3および4が開口するとともに、2つの第
1および第2排気ポート5a3よび6がそれぞれ開口し
ている。
FIG. 1 is an overall configuration diagram of a fuel injection type engine, in which two first and second intake ports 3 and 4 open to the combustion chamber 2 of each cylinder of the engine 1, and two first and second intake ports 3 and 4 open to the combustion chamber 2 of each cylinder of the engine 1. Two exhaust ports 5a3 and 6 are open, respectively.

上記吸気ボート3,4には吸入空気を供給する吸気通路
7が接続されている。この吸気通路7は上流端にエアク
リーナ8を有し1.このエアクリーナ8の下流側に吸気
量を検出する吸入空気量検出手段9(エア70−メータ
)が介装され、この吸入空気量検出手段9より下流側の
吸気通路7が一1第1吸気通路7aと第2吸気通路7b
とに分岐形成されている。第1吸気通M7aは各燃焼室
2の第1吸気ポート3にそれぞれ接続される一方、第2
吸気通路7bは各燃焼室2の第2吸気ボート4にそれぞ
れ接続されている。
An intake passage 7 for supplying intake air is connected to the intake boats 3 and 4. This intake passage 7 has an air cleaner 8 at its upstream end.1. An intake air amount detection means 9 (air 70-meter) for detecting the amount of intake air is interposed downstream of the air cleaner 8, and an intake passage 7 downstream of this intake air amount detection means 9 is a first intake passage. 7a and second intake passage 7b
It is branched into two parts. The first intake vent M7a is connected to the first intake port 3 of each combustion chamber 2, while the second
The intake passages 7b are connected to the second intake boats 4 of each combustion chamber 2, respectively.

上記第1吸気通路7aの入口部分には、この第1吸気通
路7aを流れる吸気量を制御する第1絞り弁10が介設
されるとともに、上記第2吸気通M7bの入口部分には
、このM2吸気通!87bを流れる吸気量を制御する第
2絞り弁11が介設され、両絞り弁10.11はスロッ
トル操作に連係して開閉作動される。第1絞り弁10は
低負荷時から開いて負荷の上昇に伴って全開状態となり
、第2絞り弁11は第1絞り弁10が設定開度以−トと
なったときに開き始め負荷の上譬とともに全開状態とな
るものであり、上記M1吸気通路7aは低吸気量域を含
む全運転領域で吸気を供給し、第2吸気通路7bは高吸
気ω域で吸気を供給するものである。
A first throttle valve 10 for controlling the amount of intake air flowing through the first intake passage 7a is provided at the entrance of the first intake passage 7a, and a first throttle valve 10 is provided at the entrance of the second intake passage M7b. M2 intake vent! A second throttle valve 11 is interposed to control the amount of intake air flowing through 87b, and both throttle valves 10.11 are opened and closed in conjunction with throttle operation. The first throttle valve 10 opens when the load is low and becomes fully open as the load increases, and the second throttle valve 11 starts opening when the opening of the first throttle valve 10 reaches the set opening or higher. The M1 intake passage 7a supplies intake air in the entire operating range including the low intake air amount range, and the second intake passage 7b supplies intake air in the high intake ω range.

また、上記第1吸気通路7aの第1絞り弁10より下流
に第1拡張室7Gが、第2吸気通路7bの第2絞り弁1
1より下流に第2拡張室7dがそれぞれ互いに独立して
形成され、この第1および第2拡張苗7c、7dから各
気筒2に対し各々独立した通路で接続され、吸気通路7
が構成されている。
Further, a first expansion chamber 7G is located downstream of the first throttle valve 10 of the first intake passage 7a, and a second expansion chamber 7G is located downstream of the first throttle valve 10 of the first intake passage 7a.
Second expansion chambers 7d are formed independently of each other downstream of the first and second expansion chambers 7d, and are connected to each cylinder 2 through independent passages from the first and second expansion seedlings 7c and 7d.
is configured.

上記第1吸気通路7aには第1拡張室7Cの下流に全運
転領域で燃料を噴射する第1噴射弁12が、および上記
第2吸気通路7bには第2拡張室7dの下流に高吸気量
域で燃料を噴射する第2噴射弁13が各気筒に対してそ
れぞれ配設されている。この第1および第2噴射弁12
.13にはコントロールユニット14(マイクロコンピ
ユータ)からの燃料制御信号として燃料噴射パルスが出
力され、その噴射パルス幅に応じた所定量の燃料噴射を
行う。
In the first intake passage 7a, there is a first injection valve 12 that injects fuel in the entire operating range downstream of the first expansion chamber 7C, and in the second intake passage 7b, there is a high intake valve 12 downstream of the second expansion chamber 7d. A second injection valve 13 that injects fuel in a quantity range is provided for each cylinder. This first and second injection valve 12
.. A fuel injection pulse is output to 13 as a fuel control signal from a control unit 14 (microcomputer), and a predetermined amount of fuel is injected according to the width of the injection pulse.

上記コントロールユニット1−4には前記吸入空気歯検
出手段9からの吸気量信号が入力されるとともに、回転
数センサー15からエンジン回転数信号が入力され、両
信号に対応して燃利鳴躬損および時期(噴射回数)を演
算して所定時期に所定パルス幅を有する燃料噴射パルス
を各噴射弁12゜13に出力する。
The control unit 1-4 receives an intake air amount signal from the intake air tooth detecting means 9, and also receives an engine speed signal from the rotation speed sensor 15, and detects fuel noise in response to both signals. and timing (number of injections), and outputs a fuel injection pulse having a predetermined pulse width to each injection valve 12 and 13 at a predetermined time.

また、上記第1および第2噴射弁12.13に対する燃
料の供給は、燃料タンク16の燃料が燃料ポンプ17か
らフィルター18を介して各々第1噴射弁12および第
2噴剣弁13に接続されlζ燃料供給通路19によって
供給されるものであり、噴射圧力がプレッシャレギュレ
ータ20にJ−り調整される。このプレッシャレギュレ
ータ20は負圧導入通121によって前記第1吸気通路
7aの第1拡張室7Cにおける吸気負圧を導入し、この
吸気負圧により燃料供給通路19から燃料タンク16に
戻る流量をノ々制し、吸気負圧が大ぎいどきには噴射圧
力を低くするように調整している。この負圧導入通路2
1は、全運転域で吸気が流れで吸気負圧が発生する第1
吸気通路7a側に接続し、好ましくは第1@射弁12の
設置位置に近い部分の吸気負圧を導入するようにする。
Further, fuel is supplied to the first and second injection valves 12, 13 by connecting the fuel in the fuel tank 16 from the fuel pump 17 to the first injection valve 12 and the second injection valve 13, respectively, via the filter 18. It is supplied by the lζ fuel supply passage 19, and the injection pressure is adjusted by the pressure regulator 20. This pressure regulator 20 introduces the intake negative pressure in the first expansion chamber 7C of the first intake passage 7a through a negative pressure introduction passage 121, and uses this intake negative pressure to continuously control the flow rate returned from the fuel supply passage 19 to the fuel tank 16. The injection pressure is adjusted to lower the injection pressure when the intake negative pressure is too large. This negative pressure introduction passage 2
1 is the first in which intake air flows and negative intake pressure occurs in the entire operating range.
It is connected to the intake passage 7a side, and preferably introduces the intake negative pressure from a portion near the installation position of the first injection valve 12.

第2図は上記コントロールユニット14の動作を説明す
るためのフローチャートであり、スタート後、ステップ
S1で運転状態に対応する燃料噴射量を演算するもので
あって、吸入空気母検出手段9による吸入空気ωQa、
回転数センサー15によるエンジン回転数N1定数に1
補正係数αなどから燃料噴射パルス幅τ(噴射時間)を
める。
FIG. 2 is a flowchart for explaining the operation of the control unit 14. After the start, in step S1, the fuel injection amount corresponding to the operating state is calculated, and the intake air detected by the intake air carrier detection means 9 is calculated. ωQa,
1 for the engine rotation speed N1 constant determined by the rotation speed sensor 15
Calculate the fuel injection pulse width τ (injection time) from the correction coefficient α, etc.

なお、補正係数αは冷間時等の補正を行うためのもので
あり、加算補正値τ0は燃料噴射パルスが第1もしくは
第2噴劃弁12.13に出力されても、実際に燃料の噴
射が開始されるまでに一定時間を要することから、この
立上りの時間を補正するためのものである。また、τa
は冷間補正等を加味した基本噴射時間であり、τbは加
速増量時間である。
Note that the correction coefficient α is used to correct for cold times, etc., and the additional correction value τ0 is used to calculate the actual amount of fuel even if the fuel injection pulse is output to the first or second injection valve 12.13. Since it takes a certain amount of time to start injection, this is to correct the rise time. Also, τa
is the basic injection time taking cold correction etc. into consideration, and τb is the acceleration increase time.

続いて、第2噴射弁13の燃料噴射を開始する設定パル
ス幅τVを読出しく82>、前記ステップS1で演算し
た噴射パルス幅τa十τわがこの設定パルス幅τ■以上
かどうかを判断しくS3)、この判断がNO<低吸気を
域)のときには非同期加速スイッチがオンかどうかを判
断しくS4)、非同期加速スイッチがオン(YES)と
なっている大きな加速状態のときにはステップS5で非
同期噴射を行う一方、この非同期加速スイッチがオフ(
NO)のときには非同期噴射を行うことなく、第1噴射
弁12用の噴射パルスτpと第2噴剣弁13用の噴射パ
ルスτSとを演算する(S6)。
Next, the set pulse width τV for starting the fuel injection of the second injector 13 is read out (82), and it is determined whether the injection pulse width τa+τ calculated in step S1 is greater than or equal to the set pulse width τ■.S3 ), when this judgment is NO<low intake air), it is determined whether the asynchronous acceleration switch is on or not (S4), and when the asynchronous acceleration switch is on (YES) in a large acceleration state, asynchronous injection is performed in step S5. While doing so, this asynchronous acceleration switch is turned off (
When NO), the injection pulse τp for the first injection valve 12 and the injection pulse τS for the second injection valve 13 are calculated without performing asynchronous injection (S6).

上記低吸気量域では、第2噴劃弁13用の噴射パルスτ
Sが零に設定されており、この第211M O’l弁1
3からの燃料噴射を行うことなく、第1噴射弁12のみ
によってステップS1でめた噴射パルス幅τpの制御信
号によって第1噴剣弁12を駆動して燃料噴射を行う(
S 10)。
In the above-mentioned low intake air amount region, the injection pulse τ for the second injection valve 13
S is set to zero, and this 211M O'l valve 1
3, the first injection valve 12 is driven by the control signal of the injection pulse width τp determined in step S1 only by the first injection valve 12, and fuel injection is performed (
S10).

一方、上記ステップS3の判断がYESで高吸気量域の
ときには、同様に非同期加速スイッチがオンかどうかを
判断しくS7)、非同期加速スイッチがオン(YES)
となっている大ぎな加速状態のときにはステップS8で
非同期噴射を行う一方、非同期加速スイッチがオフ(N
o)のときには非同期@劇を行うことなく、第1噴射弁
12用の噴射パルスτpと第2噴射弁13用の噴射パル
スτSとを演算しくS9)、この制御信号によって第1
および第2噴射弁12.13を駆動して燃料jl Fi
tを行う(810)。なお、この例では、第1噴射弁1
2と第2噴射弁13とは同量(半分ずつ)の燃料を噴射
するように設定されている。
On the other hand, if the determination in step S3 is YES and the intake air amount is in the high intake air amount region, it is similarly determined whether the asynchronous acceleration switch is on (S7), and the asynchronous acceleration switch is on (YES).
When the acceleration state is large, asynchronous injection is performed in step S8, while the asynchronous acceleration switch is turned off (N
In case o), the injection pulse τp for the first injection valve 12 and the injection pulse τS for the second injection valve 13 are calculated without performing an asynchronous operation (S9).
and drives the second injection valve 12.13 to inject fuel
t (810). Note that in this example, the first injection valve 1
The second injection valve 2 and the second injection valve 13 are set to inject the same amount (half each) of fuel.

上記燃料噴射において、高吸気量域で非同期噴射を行う
場合の噴射パルスτp、τSの出力は、第3図に示すよ
うになる。
In the above fuel injection, the outputs of the injection pulses τp and τS when performing asynchronous injection in a high intake air amount region are as shown in FIG.

なお、上記実施例において、第1図に示すように第1噴
射弁12は比較的燃焼室2に近い第1吸気通路7aの下
流側部分に配設し、この第1噴射弁12から噴射された
燃料が速やかに燃焼室2に供給されるようにして、吸気
量の増減に対する燃料の応答性を良好にしているもので
あり、一方、第2噴射弁13は第1噴射弁12より上流
側の第2吸気通路7bに配設して噴射燃料と吸気との混
合、微粒化を良好にして、霧化を促進するようにしてい
るものである。
In the above embodiment, as shown in FIG. 1, the first injector 12 is disposed in the downstream portion of the first intake passage 7a relatively close to the combustion chamber 2, and the first injector 12 injects air. The second injector 13 is located upstream of the first injector 12 so that the fuel is quickly supplied to the combustion chamber 2, thereby improving the responsiveness of the fuel to increases and decreases in the amount of intake air. The injected fuel is disposed in the second intake passage 7b to improve mixing and atomization of the injected fuel and intake air, thereby promoting atomization.

また、第1吸気通路7aを流れる吸気量を制御する第1
絞り弁10は、第1図のように第1吸気通路7aの入口
部に介設する他、第2絞り弁11より上流側の吸気通路
7に介設しても同様の制御作用が得られる。
Also, a first
The throttle valve 10 may be provided at the entrance of the first intake passage 7a as shown in FIG. 1, or may be provided in the intake passage 7 upstream of the second throttle valve 11 to obtain the same control effect. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるエンジンの吸気装置
の概略構成図、 第2図はフントロールユニットのフローチャート図、 第3図は第2図によって噴射弁に出力される燃料噴射パ
ルスの一例を示す説明図である。 1・・・・・・エンジン 2・・・・・・燃焼室3.4
・・・・・・吸気ポート7・・・・・・吸気通路7a・
・・・・・第1吸気通路 7b・・・・・・第2吸気通
路7C・・・・・・第1拡張室 7d・・・・・・第2
拡張室10・・・・・・第1絞り弁 11・・・・・・
第2絞り弁12・・・・・・第1噴射弁 13・・・・
・・第2噴射弁■ 第2図
FIG. 1 is a schematic configuration diagram of an engine intake system according to an embodiment of the present invention, FIG. 2 is a flowchart diagram of a funnel unit, and FIG. 3 is an example of a fuel injection pulse outputted to an injector by FIG. 2. FIG. 1...Engine 2...Combustion chamber 3.4
...Intake port 7...Intake passage 7a.
...First intake passage 7b...Second intake passage 7C...First expansion chamber 7d...Second
Expansion chamber 10...First throttle valve 11...
Second throttle valve 12...First injection valve 13...
・・Second injection valve ■ Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒に対して低吸気量域を含む全運転領域で吸
気を供給する第1吸気通路と、高吸気量域で吸気を供給
ザる第2吸気通路と、第1吸気通路を流−れる吸気量を
制御する第1絞り弁と、第2吸気通路を流れる吸気量を
制御する第2絞り弁と、第1吸気通路に設けられた第1
噴射弁と、第2吸気通路に設けられた第2噴射弁とを備
えたエンジンの吸気装置において、上記第1吸気通路の
第1絞り弁下流に第1拡張室を設けるとともに、この第
1拡張室とは独立して上記第2吸気通路の第2絞り弁下
流に第2拡張至を設けたことを特徴とするエンジンの吸
気装置。
(1) A first intake passage that supplies intake air to each cylinder in the entire operating range including the low intake air volume range, a second intake passage that supplies intake air in the high intake air volume range, and a flow through the first intake passage. - a first throttle valve that controls the amount of intake air flowing through the second intake passage; a second throttle valve that controls the amount of intake air that flows through the second intake passage;
In an engine intake system including an injection valve and a second injection valve provided in a second intake passage, a first expansion chamber is provided downstream of the first throttle valve in the first intake passage, and the first expansion chamber is provided downstream of the first throttle valve in the first intake passage. An intake system for an engine, characterized in that a second expansion valve is provided in the second intake passage downstream of the second throttle valve independently of the chamber.
JP58216849A 1983-11-17 1983-11-17 Suction device of engine Granted JPS60108529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216849A JPS60108529A (en) 1983-11-17 1983-11-17 Suction device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216849A JPS60108529A (en) 1983-11-17 1983-11-17 Suction device of engine

Publications (2)

Publication Number Publication Date
JPS60108529A true JPS60108529A (en) 1985-06-14
JPH0213130B2 JPH0213130B2 (en) 1990-04-03

Family

ID=16694864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216849A Granted JPS60108529A (en) 1983-11-17 1983-11-17 Suction device of engine

Country Status (1)

Country Link
JP (1) JPS60108529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707805A1 (en) * 1986-03-20 1987-09-24 Volkswagen Ag Intake pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
EP0444018B1 (en) * 1990-02-23 1994-08-10 AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List Internal combustion engine comprising at least two inlet valves per cylinder
FR2916245A3 (en) * 2007-05-16 2008-11-21 Renault Sas Internal combustion engine e.g. diesel engine, for motor vehicle i.e. diesel type motor vehicle, has manifolds supplying exhaust gas and fresh air mixture to cylinders, such that each of two adjacent cylinders are supplied by one manifold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154826U (en) * 1982-04-09 1983-10-17 トヨタ自動車株式会社 Internal combustion engine intake system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154826U (en) * 1982-04-09 1983-10-17 トヨタ自動車株式会社 Internal combustion engine intake system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707805A1 (en) * 1986-03-20 1987-09-24 Volkswagen Ag Intake pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
EP0444018B1 (en) * 1990-02-23 1994-08-10 AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List Internal combustion engine comprising at least two inlet valves per cylinder
FR2916245A3 (en) * 2007-05-16 2008-11-21 Renault Sas Internal combustion engine e.g. diesel engine, for motor vehicle i.e. diesel type motor vehicle, has manifolds supplying exhaust gas and fresh air mixture to cylinders, such that each of two adjacent cylinders are supplied by one manifold

Also Published As

Publication number Publication date
JPH0213130B2 (en) 1990-04-03

Similar Documents

Publication Publication Date Title
JPS6411814B2 (en)
US4610236A (en) Fuel supply control for a dual induction type engine intake system
US4981122A (en) Fuel injection control device of an engine
JPS60108529A (en) Suction device of engine
JPS6319693B2 (en)
JPH0618047Y2 (en) Fuel injection engine
JP2651202B2 (en) Engine fuel injection device
JPS6296776A (en) Fuel feeder for itnernal combustion engine
JPS60108543A (en) Fuel injection device of engine
JPH0137585B2 (en)
JPS60201042A (en) Method of controlling air-fuel ratio of engine
JPS5827827A (en) Fuel supplier of internal combustion engine
JPS59153932A (en) Electronic control fuel injector
JP2960941B2 (en) Engine fuel control device
JPH0713492B2 (en) Air-fuel ratio controller for electronically controlled fuel injection internal combustion engine
JP2566803B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0660584B2 (en) Fuel injector for multi-cylinder engine
JPH0137584B2 (en)
JPH029094Y2 (en)
JPH033941A (en) Fuel injection device of engine
JPH02119656A (en) Fuel supply device for engine
JPH05288095A (en) Fuel injection timing controller of internal combustion engine
JP2811702B2 (en) Engine intake system
JPS60108545A (en) Fuel injection device of engine
JPH04232353A (en) Suction device of engine