JPH06179093A - Welding method for steel disk part - Google Patents

Welding method for steel disk part

Info

Publication number
JPH06179093A
JPH06179093A JP33203192A JP33203192A JPH06179093A JP H06179093 A JPH06179093 A JP H06179093A JP 33203192 A JP33203192 A JP 33203192A JP 33203192 A JP33203192 A JP 33203192A JP H06179093 A JPH06179093 A JP H06179093A
Authority
JP
Japan
Prior art keywords
welding
steel
temperature
stress
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33203192A
Other languages
Japanese (ja)
Inventor
Tadahiro Umemoto
忠宏 梅本
Shunichi Kobayashi
俊一 小林
Hideo Kanda
英雄 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP33203192A priority Critical patent/JPH06179093A/en
Publication of JPH06179093A publication Critical patent/JPH06179093A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To efficiently improve stress in the range heated in the vicinity of a weld zone and to improve reliability of the weld zone by cooling rapidly the surface to be treated after the lapse of a time when the temperature difference in the thickness direction of a steel wall is reduced. CONSTITUTION:The interval between a round hole-shaped welding groove 1b provided on steel 1 and the peripheral part of a nozzle stud 2 which is fitting material fitted into this is welded by the weld zone 3. The steel 1 is maintained in a high-temperature state by heat transmission at the time of welding and the surface 7 to be treated is cooled rapidly after the lapse of a time when the temperature difference in the thickness direction of the wall 1a of the steel 1 is reduced. A cooling water supply means 4 for rapid cooling is provided with a water supply pump, etc., supplies the pressurized water in a low- temperature state to a spray nozzle 6 via a water supply pipe 5 and this is jetted in a spray shape as shown by the arrow toward the inside of a base pipe 1. Consequently, labor at the time of executing stress improvement is reduced which can be easily carried out in accordance with welding work.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材円板部の溶接方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding a steel disc portion.

【0002】[0002]

【従来技術】ステンレス鋼板や鋼管等の鋼材に明けられ
ている丸穴状の溶接開先に、円板等の取付け材をはめ込
み、溶接開先と取付け材との間を溶接した場合には、溶
接金属が熱収縮することに基づいて、溶接部及びその近
傍に引っ張りの残留応力が付与される。
2. Description of the Related Art When fitting a mounting material such as a disc into a round hole-shaped welding groove formed in a steel material such as a stainless steel plate or a steel pipe, and welding between the welding groove and the mounting material, Due to the heat shrinkage of the weld metal, a tensile residual stress is applied to the weld and its vicinity.

【0003】従来、溶接金属の収縮に基づいて生じる引
っ張り残留応力の低減や、溶接歪みの発生を抑制する目
的で、鋼材を冷却しながら溶接作業を実施することが有
効であるとされている。
[0003] Conventionally, it has been said that it is effective to carry out a welding operation while cooling a steel material for the purpose of reducing the tensile residual stress caused by the shrinkage of the weld metal and suppressing the occurrence of welding distortion.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の方法等
であると、円板等の取付け材のはめ込み溶接部について
は、残留応力を圧縮にするまでには至らず、溶接後に応
力焼鈍や残留応力改善のための特別な再処理を施す必要
がある。
However, according to the above-mentioned method and the like, the residual welded portion of the mounting material such as a disc cannot be compressed to residual stress, and stress annealing or residual stress after welding is not achieved. Special reprocessing is required to improve stress.

【0005】本発明は、かかる事情に鑑みてなされたも
ので、比較的簡単な操作によって圧縮の残留応力を導入
することを目的としている。
The present invention has been made in view of such circumstances, and an object thereof is to introduce a compressive residual stress by a relatively simple operation.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明に係る鋼材円板部の溶接方法にあっては、鋼
材に明けられた丸穴状の溶接開先と溶接開先にはめ込ま
れた取付け材の外周部との間を溶接する工程と、溶接時
の熱伝達により鋼材が高温状態を維持しかつ鋼材の壁の
厚さ方向の温度差が小さくなる時間経過後に被処理面を
急冷する工程とを有する構成を採用するようにしてい
る。
In order to achieve the above object, in the method for welding a steel disk portion according to the present invention, a circular hole-shaped welding groove and a welding groove formed in a steel material are fitted. The process of welding the outer surface of the attached mounting material, and the time to maintain the high temperature state of the steel material due to heat transfer during welding and to reduce the temperature difference in the thickness direction of the wall of the steel material A structure having a step of quenching is adopted.

【0007】[0007]

【作用】溶接開先と取付け材との間を溶接すると、溶接
熱によって鋼材等が加熱されて高温化する。溶接部の形
成直後にあっては、高温化した部分と鋼材の加熱前に近
い低温の部分との温度差が短時間の間大きくなるが、時
間の経過とともに鋼材の壁の温度が次第に平均化する。
壁の厚さ方向の温度差が小さくなったときに、被処理面
の急冷を行なうと、急冷面と壁の内部温度との温度差に
基づいて、急冷面近傍に降伏点を越える応力が生じて壁
の一部が塑性変形する。次いで、壁が冷却されることに
基づいて、壁の内外の温度差がなくなると、被処理面に
圧縮残留応力が導入された改善状態となる。
When the weld groove and the attachment material are welded, the welding material heats the steel material and the like to raise the temperature. Immediately after the weld is formed, the temperature difference between the high temperature part and the low temperature part near the steel before heating increases for a short time, but the temperature of the steel wall gradually averages over time. To do.
When the surface to be treated is rapidly cooled when the temperature difference in the wall thickness direction becomes small, stress exceeding the yield point is generated near the rapidly cooled surface based on the temperature difference between the rapidly cooled surface and the internal temperature of the wall. Part of the wall is plastically deformed. Then, when the temperature difference between the inside and the outside of the wall disappears based on the cooling of the wall, the improvement state is achieved in which the compressive residual stress is introduced into the surface to be processed.

【0008】[0008]

【実施例】以下、本発明に係る鋼材円板部の溶接方法の
一実施例について図1及び図2に基づき説明する。これ
ら図1にあって、符号1は母管(鋼材)、2は管台(取
付け材)、3は溶接部、4は冷却水供給手段、5は給水
管、6はスプレーノズル、7は被処理面である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a welding method for a steel disk portion according to the present invention will be described below with reference to FIGS. In these FIG. 1, reference numeral 1 is a mother pipe (steel material), 2 is a nozzle (mounting material), 3 is a welded portion, 4 is a cooling water supply means, 5 is a water supply pipe, 6 is a spray nozzle, and 7 is a cover. It is the processing side.

【0009】前記母管1は、例えばオースナイト系ステ
ンレス鋼管であり、その壁(管壁)1aに、管台2を取
り付けるための丸穴状の溶接開先1bが形成され、該溶
接開先1bに、はめ込み状態の管台2の基部が溶接部3
によって取り付けられる。
The mother tube 1 is, for example, an austenitic stainless steel tube, and a wall (tube wall) 1a is provided with a round hole-shaped welding groove 1b for mounting the nozzle base 2, and the welding groove 1b is formed. 1b, the base portion of the nozzle stub 2 in the fitted state is the welded portion 3
Mounted by.

【0010】前記冷却水供給手段4は、給水用のポンプ
等を備えて、低温状態の加圧水を給水管5を経由してス
プレーノズル6に供給し、母管1の内面に向けて矢印で
示すようにスプレー状に噴出させるものである。
The cooling water supply means 4 is equipped with a water supply pump or the like, supplies pressurized water in a low temperature state to the spray nozzle 6 via the water supply pipe 5, and is shown by an arrow toward the inner surface of the mother pipe 1. It is to be sprayed like this.

【0011】以下、溶接方法の実施工程例について説明
する。図1に示す母管1が、12インチスケジュール1
00(外径318.5mm肉厚21.4mm)の管であり、
該母管1に、小口径ノズル状の管台2を取り付け溶接す
る場合には、母管1に丸穴状の溶接開先1bを形成して
おいて、溶接開先1bに管台2の基部を挿入した状態
で、溶接開先1bと管台2における基部の外周部との間
を溶接することによって溶接部3を形成する。
An example of the steps of carrying out the welding method will be described below. The mother tube 1 shown in FIG. 1 is a 12-inch schedule 1
00 (outer diameter 318.5 mm, wall thickness 21.4 mm)
When the nozzle pipe 2 having a small diameter nozzle is attached to the mother pipe 1 and welded, a welding hole 1b having a round hole is formed in the mother pipe 1 and the nozzle 2 is attached to the welding groove 1b. With the base inserted, the weld groove 3 is formed by welding between the welding groove 1b and the outer periphery of the base of the nozzle 2.

【0012】この際に、通常の溶接のまま放置しておく
と、溶接部3の近傍(被処理面7)に、図2に破線の曲
線で示すように、20〜50kg/mm2 の引っ張り残留応
力が付与された状態となって、応力腐食割れ等の原因に
なる。
At this time, if the ordinary welding is left as it is, a tensile force of 20 to 50 kg / mm 2 is pulled in the vicinity of the welded portion 3 (the surface 7 to be treated) as shown by a broken line curve in FIG. The residual stress is applied, which causes stress corrosion cracking and the like.

【0013】そこで、最終層に至る前までは通常の溶接
を行ない、最終層(最上部)の溶接ビードfx,fy,
fzを形成する際のパス間温度を80〜120℃とやや
高めとし、溶接入熱もやや高めの10〜20キロジュー
ル/cmにして、溶接終了後、溶接熱を母管1にほぼ均
等に分布させるのに必要な時間(例えば1〜2分、後述
するように母管1の管壁の厚さによって設定される時
間)をおいて、冷却水供給手段4を作動させてスプレー
ノズル6から冷却水を噴出させ、残留応力の改善を実施
したい箇所、母管1の内面を冷却する。この場合の冷却
水の噴出量は、例えば10〜20リットル/秒に設定さ
れ、かつ、外面温度が室温近く(最大室温+50℃)に
なるまで冷却を続ける。
Therefore, normal welding is carried out before reaching the final layer, and the welding beads fx, fy,
When forming fz, the temperature between passes is set to 80 to 120 ° C., which is slightly higher, and the welding heat input is also set to 10 to 20 kilojoules / cm, which is slightly higher. After the time required for distribution (for example, 1 to 2 minutes, a time set by the thickness of the tube wall of the mother tube 1 as described later), the cooling water supply means 4 is operated to cause the spray nozzle 6 to operate. Cooling water is spouted to cool the inner surface of the mother pipe 1 where the residual stress is to be improved. In this case, the ejection amount of the cooling water is set to, for example, 10 to 20 liters / second, and the cooling is continued until the outer surface temperature becomes close to room temperature (maximum room temperature + 50 ° C.).

【0014】母管1の壁1aが高温状態(100〜20
0℃以上)でかつ壁1aの厚さ方向の温度差が少なくな
った時期に、被処理面(管内面)7を急冷して、壁1a
の温度を冷却水の温度近傍まで下げると、壁1aの被処
理面7の近傍に引っ張り応力が付与されて塑性変形が生
じる。次いで、壁1aが引き続き冷却されて全体が常温
等の低温状態となり、壁1aの内外の温度差がなくなる
と、被処理面7に圧縮の残留応力が導入される。
The wall 1a of the mother tube 1 is in a high temperature state (100 to 20).
(0 ° C. or higher) and when the temperature difference in the thickness direction of the wall 1a becomes small, the surface to be processed (inner surface of the pipe) 7 is rapidly cooled to cool the wall 1a.
When the temperature is decreased to near the temperature of the cooling water, tensile stress is applied to the vicinity of the surface 7 to be processed of the wall 1a and plastic deformation occurs. Next, when the wall 1a is continuously cooled to reach a low temperature state such as room temperature and the temperature difference between the inside and outside of the wall 1a disappears, a compressive residual stress is introduced into the surface 7 to be processed.

【0015】図3ないし図7に基づいてさらに詳しく説
明すると、図3に示すように、鋼材1の溶接開先1bに
円盤状の取付け材2が溶接部3によって取り付けられる
場合、複数の溶接ビードを重畳させることによって溶接
部3が形成されると、溶接入熱によって鋼材1及び取付
け材2の溶接部3の近傍が加熱される。最終溶接ビード
の形成直後における温度分布にあっては、図4の曲線
で示すように、表面側が高温で裏面側が低温となるが、
時間の経過とともに高温側から低温側への熱伝達がなさ
れて、図4に曲線で示す順に、温度分布が変化す
る温度の平均化現象が起る。
In more detail with reference to FIGS. 3 to 7, as shown in FIG. 3, when the disc-shaped attachment material 2 is attached to the weld groove 1b of the steel material 1 by the weld portion 3, a plurality of weld beads are used. When the welded portion 3 is formed by superimposing the two, the heat input for welding heats the vicinity of the welded portion 3 of the steel material 1 and the attachment material 2. In the temperature distribution immediately after the formation of the final weld bead, as shown by the curve in FIG. 4, the front side has a high temperature and the back side has a low temperature.
Heat is transferred from the high temperature side to the low temperature side with the lapse of time, and a temperature averaging phenomenon occurs in which the temperature distribution changes in the order shown by the curve in FIG.

【0016】曲線の状態となったときには、図5に示
すように、溶接部3よりも外側までほぼ一様に加熱され
たような半径方向の温度分布となる。この状態における
高温部に付与される熱応力(σ1 )は、平均温度をTav
とすると、近似的に、 σ1 =−(1/2)Εα(Tav−To ) ……式(1) となる。ただし、 E:縦弾性係数(kg/mm2 ) α:線膨張係数(℃-1) To :低温部の温度(℃) である。この状態で、鋼材1の一方の面(内面)を冷却
水のスプレー噴射によって急冷すると、図6に曲線か
ら曲線で示すような温度分布に変化する。即ち、曲線
の温度分布状態から、一方の面のみが急冷されること
によって、曲線の温度分布状態となる。
When the state of the curve is reached, as shown in FIG. 5, the temperature distribution in the radial direction is such that the outer side of the welded portion 3 is heated almost uniformly. The thermal stress (σ1) applied to the high temperature part in this state is the average temperature Tav
Then, approximately, σ1 =-(1/2) Εα (Tav-To) (Equation 1). However, E: modulus of longitudinal elasticity (kg / mm 2 ) α: coefficient of linear expansion (° C. −1 ) To: temperature of low temperature part (° C.) In this state, when one surface (inner surface) of the steel material 1 is rapidly cooled by spray injection of cooling water, the temperature distribution changes from a curve to a curve in FIG. That is, the temperature distribution state of the curve is obtained by rapidly cooling only one surface from the temperature distribution state of the curve.

【0017】曲線の温度分布状態での熱応力(σ2
は、 σ2 =Εα(Tav−To )/(1−ν) ……式(2) となる。ただし、 ν:ポアソン比 である。したがって、両者の合成応力は、 σ=σ1 +σ2 =(1/2)Εα(Tav−To ){−1+2/(1−ν)} =(1+ν)Εα(Tav−To )/{2(1−ν)} である。オーステナイト系ステンレス鋼の場合である
と、 E=1.98×104 kg/mm2 α=1.68×10-5/℃ ν=0.3 である。
Thermal stress (σ 2 ) in the temperature distribution state of the curve
Becomes σ 2 = Εα (Tav-To) / (1-ν) ... Equation (2). However, ν: Poisson's ratio. Therefore, the combined stress of both is σ = σ 1 + σ 2 = (1/2) Εα (Tav-To) {-1 + 2 / (1-ν)} = (1 + ν) Εα (Tav-To) / {2 ( 1-ν)}. In the case of austenitic stainless steel, E = 1.98 × 10 4 kg / mm 2 α = 1.68 × 10 −5 / ° C. ν = 0.3.

【0018】壁の内外層間の温度差を100℃とした場
合のTavは、150℃程度となる。冷却水の温度To を
20℃とすると、 σ=(1+0.3)×1.98×104 ×1.68×10-5×(150−20)/{2(1−0.3)} =40.2kg/mm2 である。この応力値は、ステンレス鋼の降伏応力σy =
24kg/mm2 を大きく超えており、内面に圧縮の残留応
力が発生する。
When the temperature difference between the inner and outer layers of the wall is 100 ° C., Tav is about 150 ° C. When the temperature To of the cooling water is 20 ° C., σ = (1 + 0.3) × 1.98 × 10 4 × 1.68 × 10 −5 × (150−20) / {2 (1−0.3)} = 40.2 kg / mm 2 Is. This stress value is the yield stress of stainless steel σ y =
It greatly exceeds 24 kg / mm 2 , and compressive residual stress occurs on the inner surface.

【0019】図7に基づいて、温度変化によって生じる
歪みと応力との関係を説明すると、図6にTavで示すよ
うに板厚方向に一様な温度分布のときには、圧縮の応力
を受けてa点に位置する応力−歪みの関係となるが、裏
面が急冷されると、冷却面に、降伏応力を超える引っ張
り熱歪みが発生し、図6に示す曲線の温度分布に相当
する応力−歪み分布となって、b点からc点に移行す
る。その後、板全体が冷却されるにつれて、c点からd
点に移行し、完全冷却後の状態にあっては、図6に示す
曲線の状態(マクロなひずみが零の状態)となり、圧
縮の残留応力を発生させる。
The relationship between strain and stress caused by temperature change will be described with reference to FIG. 7. When the temperature distribution is uniform in the plate thickness direction as shown by Tav in FIG. Although there is a stress-strain relationship located at a point, when the back surface is rapidly cooled, tensile thermal strain exceeding the yield stress occurs on the cooling surface, and the stress-strain distribution corresponding to the temperature distribution of the curve shown in FIG. Then, the point b shifts to the point c. After that, as the whole plate is cooled, from point c to d
In the state after the transition to the point and complete cooling, the state of the curve shown in FIG. 6 (the state where the macroscopic strain is zero) is reached, and a compressive residual stress is generated.

【0020】図8は、本発明に係る鋼材円板部の溶接方
法の他の適用例を示すもので、溶接部3における各溶接
ビード層が、母管1の管軸方向に重畳されている。この
場合にあっても、被処理面(管内面)7,8について、
一実施例と同様に、局部的に水スプレイ等を行なって急
冷却することにより、所望の箇所の残留応力改善処理を
実施することができる。
FIG. 8 shows another application example of the welding method for the steel disc portion according to the present invention, in which the weld bead layers in the welded portion 3 are superposed in the pipe axial direction of the mother pipe 1. . Even in this case, with respect to the treated surface (inner surface of the pipe) 7, 8,
Similar to the one embodiment, the residual stress can be improved at a desired location by locally performing water spray or the like and rapidly cooling.

【0021】〔他の実施態様〕なお、本発明にあって
は、実施例に代えて、溶接部3が概略丸穴状の溶接開先
1bに沿って形成される構造である溶接継手に対して適
用することができる。
[Other Embodiments] In the present invention, instead of the embodiment, a welded joint having a structure in which the welded portion 3 is formed along the weld groove 1b having a substantially round hole shape is used. Can be applied.

【0022】[0022]

【発明の効果】本発明に係る鋼材円板部の溶接方法にあ
っては、鋼材に明けられた穴に鋼材を溶接する場合に、
溶接時の熱伝達により壁が高温状態となることを利用
し、鋼材の壁の厚さ方向の温度差が小さくなる時間経過
後に被処理面を急冷することによって、圧縮の残留応力
を導入するものであるから、以下のような効果を奏す
る。 (1) 溶接入熱の利用によって、溶接部近傍の加熱さ
れた範囲のみを、少ない工数及び工期で効率良く応力改
善することができる。 (2) 溶接入熱を利用することにより、応力改善実施
時の労力を低減し、溶接作業に付随して容易に実施する
ことができる。
EFFECT OF THE INVENTION In the welding method of the steel disk portion according to the present invention, when the steel material is welded in the hole formed in the steel material,
By utilizing the fact that the wall becomes hot due to heat transfer during welding, the residual stress of compression is introduced by rapidly cooling the surface to be treated after the time when the temperature difference in the thickness direction of the steel material becomes small Therefore, the following effects are achieved. (1) By utilizing the heat input of welding, it is possible to efficiently improve the stress only in the heated area in the vicinity of the welded portion with a small number of man-hours and construction period. (2) By utilizing the heat input for welding, it is possible to reduce the labor required for improving the stress and easily perform the operation accompanying the welding work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る管溶接継手の応力改善方法の実施
状況例を示す一部の記載を省略した正断面図である。
FIG. 1 is a front cross-sectional view showing an example of a state of implementation of a stress improving method for a pipe welded joint according to the present invention, in which a part of the description is omitted.

【図2】図1に示す方法によって溶接部近傍に付与され
る応力曲線図である。
FIG. 2 is a stress curve diagram applied in the vicinity of a welded portion by the method shown in FIG.

【図3】本発明に係る管溶接継手の応力改善方法によっ
て圧縮の残留応力を導入しようとする溶接部モデルの一
部を切欠した斜視図である。
FIG. 3 is a perspective view in which a part of a welded portion model in which a compressive residual stress is to be introduced is cut away by the stress improving method for a pipe welded joint according to the present invention.

【図4】図3のモデルの温度変化時の温度分布曲線図で
ある。
FIG. 4 is a temperature distribution curve diagram of the model of FIG. 3 when the temperature changes.

【図5】図3のモデルの高温部分の温度分布曲線図であ
る。
5 is a temperature distribution curve diagram of a high temperature portion of the model of FIG.

【図6】図3のモデルの急冷時の温度分布曲線図であ
る。
FIG. 6 is a temperature distribution curve diagram of the model of FIG. 3 during rapid cooling.

【図7】図3のモデルの応力−歪み曲線図である。FIG. 7 is a stress-strain curve diagram of the model of FIG.

【図8】本発明に係る管溶接継手の応力改善方法の他の
適用例を示す一部の記載を省略した正断面図である。
FIG. 8 is a front sectional view in which a part of the description is omitted, showing another application example of the stress improving method for a pipe welded joint according to the present invention.

【符号の説明】[Explanation of symbols]

1 母管(鋼材) 1a 壁(管壁) 1b 溶接開先 2 管台(取付け材) 3 溶接部 4 冷却水供給手段 5 給水管 6 スプレーノズル 7 被処理面(管内面) 8 被処理面(管内面) 1 mother pipe (steel material) 1a wall (pipe wall) 1b welding groove 2 nozzle base (mounting material) 3 welded portion 4 cooling water supply means 5 water supply pipe 6 spray nozzle 7 treated surface (pipe inner surface) 8 treated surface ( Inner surface of pipe)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼材に明けられた丸穴状の溶接開先と溶
接開先にはめ込まれた取付け材の外周部との間を溶接す
る工程と、溶接時の熱伝達により鋼材が高温状態を維持
しかつ鋼材の壁の厚さ方向の温度差が小さくなる時間経
過後に被処理面を急冷する工程とを有することを特徴と
する鋼材円板部の溶接方法。
1. A step of welding between a round groove-shaped welding groove formed in a steel material and an outer peripheral portion of a mounting material fitted in the welding groove, and a high temperature state of the steel material due to heat transfer during welding. And a step of rapidly cooling the surface to be treated after a time period during which the temperature difference in the thickness direction of the wall of the steel material becomes small while maintaining the temperature difference.
JP33203192A 1992-12-11 1992-12-11 Welding method for steel disk part Withdrawn JPH06179093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33203192A JPH06179093A (en) 1992-12-11 1992-12-11 Welding method for steel disk part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33203192A JPH06179093A (en) 1992-12-11 1992-12-11 Welding method for steel disk part

Publications (1)

Publication Number Publication Date
JPH06179093A true JPH06179093A (en) 1994-06-28

Family

ID=18250366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33203192A Withdrawn JPH06179093A (en) 1992-12-11 1992-12-11 Welding method for steel disk part

Country Status (1)

Country Link
JP (1) JPH06179093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909496A (en) * 2011-08-02 2013-02-06 苏州勃朗科技有限公司 Welding deformation preventing heat conducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909496A (en) * 2011-08-02 2013-02-06 苏州勃朗科技有限公司 Welding deformation preventing heat conducting device

Similar Documents

Publication Publication Date Title
JP4969221B2 (en) Deterioration part reproduction method, degradation part reproduction device
JP2554107B2 (en) Pilger equipment die
US20150027601A1 (en) Cooling element with spacer
JPH06179093A (en) Welding method for steel disk part
WO2009096004A1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JP3555353B2 (en) Straightening method for metal tubular parts
US20130168439A1 (en) Thermal Processing Method for Welding Area on Branched Pipes
JPS62214887A (en) Production of clad steel plate
JPS58387A (en) Production of composite roll
JPS5950414B2 (en) Method and device for removing distortion from thin plate structures such as outer panels of railway vehicles
JPS5852428A (en) Heat treatment for improving stress of shaft
JPS6263620A (en) Method for improving residual stress of hollow body
JPS6018292A (en) Treatment of residual stress of welded joint part
JP3845722B2 (en) Superplastic stainless steel manufacturing method and stainless steel superplastic working method
KR20180041311A (en) Heat treatment method after dissimilar welding PWSCC reduction in order to improve the material microstructure
JPH0747296B2 (en) Lining method for pipe with flange
JPH08141691A (en) Method for upsetting pipe
JPS6012244A (en) Working method for increasing wall thickness of cylindrical body
JPS62185830A (en) Method for preventing longitudinal bend of small-diameter pipe material
JPH0452181B2 (en)
JP2001150050A (en) Hydroform process for metallic pipe
JPS5964119A (en) Method of lineally heating stress relief of sheet
JPH01242720A (en) Manufacture of clad steel tube
JPH0249180B2 (en)
JPS6230248B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307