JP3845722B2 - Superplastic stainless steel manufacturing method and stainless steel superplastic working method - Google Patents

Superplastic stainless steel manufacturing method and stainless steel superplastic working method Download PDF

Info

Publication number
JP3845722B2
JP3845722B2 JP2002069408A JP2002069408A JP3845722B2 JP 3845722 B2 JP3845722 B2 JP 3845722B2 JP 2002069408 A JP2002069408 A JP 2002069408A JP 2002069408 A JP2002069408 A JP 2002069408A JP 3845722 B2 JP3845722 B2 JP 3845722B2
Authority
JP
Japan
Prior art keywords
stainless steel
superplastic
point
temperature
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002069408A
Other languages
Japanese (ja)
Other versions
JP2003266105A (en
Inventor
正仁 加藤
泰憲 鳥阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002069408A priority Critical patent/JP3845722B2/en
Publication of JP2003266105A publication Critical patent/JP2003266105A/en
Application granted granted Critical
Publication of JP3845722B2 publication Critical patent/JP3845722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超塑性加工用ステンレス鋼材の製造法に関し、特に小さな荷重で加工することができ、割れの発生しにくいステンレス鋼材の超塑性加工方法及びステンレス鋼材の超塑性加工方法に関する。
【0002】
【従来の技術】
本発明者らは例えば図3にその概要を示すように、オーステナイト系ステンレス鋼にその温度以下で塑性加工を加えるとマルテンサイト変態する温度(以下Md点という)以下で85%以上の塑性加工を加え、ほぼ全量をマルテンサイト(以下α’という)とし、これを直接、その温度以上ではα’がオーステナイト(以下γという)に逆変態する温度(以下As点という)以上で変形させる方法を提案している(特許 第2916619号)。
【0003】
また、As点以上での焼なましの後にAs点以上で変形させると、超塑性挙動を発現することを明らかにした(社団法人日本鉄鋼協会発行「鉄と鋼」Vol80(1994),No.3、第67〜71頁参照)。
【0004】
【発明が解決しようとする課題】
従来の技術においては超塑性ステンレス鋼の製造過程において冷間強加工が必要であり、その製造には大きな荷重を素材に加える必要があるため大型の部材の製造が困難である(課題1)。
【0005】
さらに、比較的脆性の高いマルテンサイトに強加工を加えるために割れが発生し、材料歩留まりが悪いという問題もある(課題2)。
【0006】
したがって本発明はこれら問題点を解決し、効率の良い超塑性オーステナイト系ステンレス鋼材の製造法及びステンレス鋼材の超塑性加工方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
オーステナイト系ステンレス鋼が超塑性挙動を示すようにするには、従来はオーステナイト系ステンレス鋼にMd点以下の温度で約90%以上の強加工を加える必要があった。これは、Md点以下での加工によりα’を生成させ、しかも大きなひずみを与えることで、これをAs点以上に保持したときにα’からγへの逆変態挙動を伴う再結晶によって、結晶粒径約1μm 以下の非常に微細な結晶粒組織を生成させるためには、加工とα’生成が同時進行することが不可欠と考えられていたからである。
【0008】
しかしながら本発明者らはα’生成と加工を別々に行っても、α’の含有率と加えられる加工率の総量が等しければ、逆変態を伴う再結晶挙動は等しいであろうと予想し、それを実験により確認した。
【0009】
この事実と、一般に金属材料は温度が高いほど変形加重が低くなるということから、必要最小限の冷間加工によりマルテンサイトを生成させ、その後As点以下の温度に加熱してひずみを加える方法を発明した。これにより前記課題1を解決することができたものである。
【0010】
さらに、α’よりはγの方が延性が高いことに注目し、Md点以上再結晶温度以下でオーステナイト系ステンレス鋼に加工の大部分を加え、その後、必要最小限の冷間加工あるいは深冷処理によりマルテンサイトを生成させ、従来の超塑性加工用ステンレス鋼の製造法である約90%の冷間加工に代用する方法を発明した。これにより前記課題2を解決することができたものである。
【0011】
本発明についてより具体的には、請求項1に係る発明は、オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMs点以上As点以下の温度に加熱して塑性加工を加えることを特徴とする超塑性ステンレス鋼材の製造方法としたものである。
【0012】
また、請求項2に係る発明は、オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMd点以上As点以下の温度に加熱して塑性加工を加え、その後As点以上で焼なますことを特徴とする超塑性ステンレス鋼材の製造方法としたものである。
【0013】
また、請求項3に係る発明は、オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMd点以上As点以下の温度に加熱して塑性加工を加え、これをAs点以上の温度で超塑性加工する事を特徴とするステンレス鋼材の超塑性加工方法としたものである。
【0014】
また、請求項4に係る発明は、オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させることを特徴とする超塑性ステンレス鋼材の製造方法としたものである。
【0015】
また、請求項5に係る発明は、オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させ、その後As点以上で焼なますことを特徴とする超塑性ステンレス鋼材の製造方法としたものである。
【0016】
また、請求項6に係る発明は、オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させ、これをAs点以上の温度で超塑性加工する事を特徴とするステンレス鋼材の超塑性加工方法としたものである。
【0017】
【発明の実施の形態】
図1はその本発明によるステンレス鋼材の超塑性加工方法を適用した製造工程の概略を示したものであり、その温度以下で塑性加工を加えるとマルテンサイト変態する温度(Md)以下で冷間加工し、マルテンサイトを生成させる(工程1)。次いでこれを加熱し、温間において強加工を施す(工程2)。その際には小さな荷重で強加工を行うことができる。その後、その温度以上ではマルテンサイトがオーステナイトに逆変態する温度(As)以上で焼きなまし或いは加工を行う(工程3)。
【0018】
図2は更に本発明によるステンレス鋼材の超塑性加工方法を適用した他の製造工程の概略を示したものであり、その温度以下で塑性加工を加えるとマルテンサイト変態する温度(Md)以上で温間加工する(工程1)。このときの加工においては、割れは発生しない。これを前記Md点以下の温度で最小限の冷間加工を行う(工程2)。この加工においては、割れの発生は最小限に押さえられる。その後、その温度以上ではマルテンサイトがオーステナイトに逆変態する温度(As)以上で焼きなまし或いは加工を行う(工程3)。
(実施例)
【0019】
以下に、本発明により、オーステナイト系ステンレス鋼SUS304を超塑性加工用ステンレス鋼材に調整し、従来法と同様の超塑性挙動を示すことを確認した例を示す。
【0020】
使用した素材は溶体化処理済みの市販SUS304板材(板圧12mm)であり、これより、厚さ10mmの圧延用小片を切り出して、比較実験を行った。
【0021】
従来法の超塑性ステンレス鋼の製造は、この圧延用小片を氷水で冷却しながら、厚さ1mmまで圧延(圧下率=90%)した(以下、従来材という)。
【0022】
本発明のうち、図1によるものは、、圧延用小片を氷水で冷却しながら厚さ2.5mmまで圧延(圧下率=75%)し、次に、素材を300℃に加熱しながら厚さ1mmまで圧延(積算圧下率=90%)した(以下、実施例1という)。
【0023】
本発明のうち図2によるものは、圧延用小片を300℃まで加熱しながら厚さ4mmまで圧延し、次に、素材を氷水で冷却しながらしながら厚さ1mmまで圧延(冷間圧延の圧下率=75%、積算圧下率=90%)した(以下、実施例2という)。
【0024】
さらに比較材として厚さ4mmの圧延用小片を切り出して氷水で冷却しながら厚さ1mmまで圧延(圧下率=75%)したもの(以下、比較材という)も使用した。
【0025】
圧延後の材料の外観を観察したところ、従来材では、比較的多くの耳割れが発生していたが、本発明では少なかった。
【0026】
これら4つの材料に700℃×3600秒の焼なましを加え、これらより引張試験片を切り出してJIS7号試験片を使用して700℃で毎秒1/10000のひずみ速度で引張試験を行った。
【0027】
この結果、従来材は312%の伸びを示し、超塑性挙動を示していると考えられる。
【0028】
そして実施例1は383%の伸びを示し、実施例2は364%の伸びを示した。これより実施例1も実施例2も超塑性ステンレス鋼材となっていることが確認できる。
【0029】
さらに比較材は228%しか伸びを示さないことから、実施例1や実施例2で実行した温間加工は、超塑性ステンレス鋼材を製造するのに効果を示したことも証明できる。
【0030】
これにより、製造に必要な加工の荷重を低くし、また、製造途中での割れが少なく、材料歩留まりの高い超塑性ステンレス鋼材の製造法が提供できたことが確認できる。
【0031】
なお、実施例1と実施例2はマルテンサイト変態させる前あるいは、後のいずれかのみに、温間の塑性加工を加えているが、その両方に温間加工を加えたものも本発明の範囲に含まれることはもちろんである。
【0032】
また、この方法は超塑性加工前の焼なましを施さずに、前記のように本発明者らが提案した特許第2916619号の超塑性加工法に準用してAs点以上で直接加工することが可能であることは言うまでもない。
【0033】
【発明の効果】
本発明は上記のように構成したので、小さな荷重で加工することができ、割れの発生しにくい超塑性オーステナイト系ステンレス鋼材の製造方法及びステンレス鋼材の超塑性加工方法とすることができる。
【図面の簡単な説明】
【図1】本発明による超塑性ステンレス鋼材の製造方法における第1の製造工程の態様を示す図である。
【図2】本発明による超塑性ステンレス鋼材の製造方法における第2の製造工程の態様を示す図である。
【図3】従来方法の製造工程の態様を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a stainless steel material for superplastic processing, and more particularly to a superplastic processing method for a stainless steel material that can be processed with a small load and is unlikely to crack, and a superplastic processing method for a stainless steel material.
[0002]
[Prior art]
For example, as shown in FIG. 3, the present inventors perform 85% or more plastic working below the temperature (hereinafter referred to as Md point) at which martensitic transformation occurs when plastic working is applied to austenitic stainless steel below that temperature. In addition, almost all the amount is martensite (hereinafter referred to as α '), and a method is proposed in which this is directly deformed above the temperature at which α' reversely transforms to austenite (hereinafter referred to as γ) above that temperature (hereinafter referred to as the As point). (Patent No. 2916619).
[0003]
In addition, it has been clarified that superplastic behavior is manifested when it is deformed above the As point after annealing at the As point or higher (Iron & Steel, Vol. (1994), No. 3, see pages 67-71).
[0004]
[Problems to be solved by the invention]
In the conventional technology, cold strong working is required in the manufacturing process of superplastic stainless steel, and it is difficult to manufacture a large member because a large load needs to be applied to the material (Problem 1).
[0005]
Furthermore, there is a problem that cracking occurs due to the strong processing of martensite, which is relatively brittle, and the material yield is poor (Problem 2).
[0006]
Accordingly, an object of the present invention is to solve these problems and to provide an efficient method for producing a superplastic austenitic stainless steel material and a superplastic working method for a stainless steel material.
[0007]
[Means for Solving the Problems]
In order for an austenitic stainless steel to exhibit superplastic behavior, conventionally, it has been necessary to add about 90% or more of strong work to the austenitic stainless steel at a temperature below the Md point. This is because α ′ is generated by processing below the Md point and a large strain is applied, and when this is held above the As point, recrystallization accompanied by reverse transformation behavior from α ′ to γ This is because in order to generate a very fine crystal grain structure having a grain size of about 1 μm or less, it is considered that processing and α ′ generation proceed simultaneously.
[0008]
However, the present inventors anticipate that even if α ′ generation and processing are performed separately, the recrystallization behavior with reverse transformation will be equal if the content of α ′ is equal to the total amount of processing rate added. Was confirmed by experiments.
[0009]
Because of this fact and the fact that metal materials generally have higher deformation loads, the deformation load decreases, so there is a method in which martensite is generated by the minimum necessary cold working and then heated to a temperature below the As point to apply strain. Invented. Thereby, the said subject 1 was able to be solved.
[0010]
Furthermore, paying attention to the fact that γ is more ductile than α ′, the majority of the processing is added to the austenitic stainless steel at the Md point and below the recrystallization temperature, and then the minimum required cold working or deep cooling is performed. We have invented a method of generating martensite by treatment and substituting for the cold working of about 90%, which is a conventional method for producing stainless steel for superplastic working. Thereby, the said subject 2 was able to be solved.
[0011]
More specifically, the invention according to claim 1 is characterized in that the austenitic stainless steel is martensitic transformed and then heated to a temperature not lower than the Ms point and not higher than the As point to perform plastic working. This is a method for producing a plastic stainless steel material.
[0012]
The invention according to claim 2 is characterized in that the austenitic stainless steel is martensitic transformed, then heated to a temperature not lower than the Md point and not higher than the As point, subjected to plastic working, and then annealed not lower than the As point. This is a method for producing a superplastic stainless steel material.
[0013]
In the invention according to claim 3, the austenitic stainless steel is subjected to martensitic transformation, then heated to a temperature not lower than the Md point and not higher than the As point, and subjected to plastic working, and this is superplastically processed at a temperature not lower than the As point. This is a superplastic processing method for stainless steel materials.
[0014]
The invention according to claim 4 is a method for producing a superplastic stainless steel material, characterized in that austenitic stainless steel is subjected to plastic working at a temperature not lower than the Md point and not higher than the recrystallization temperature, and is subsequently subjected to martensitic transformation. It is.
[0015]
Further, the invention according to claim 5 is characterized in that austenitic stainless steel is subjected to plastic working at a temperature not lower than the Md point and not higher than the recrystallization temperature, then subjected to martensitic transformation, and then annealed at the As point or higher. This is a method for producing a plastic stainless steel material.
[0016]
In addition, the invention according to claim 6 is that plastic processing is applied to austenitic stainless steel at a temperature not lower than the Md point and not higher than the recrystallization temperature, and then martensitic transformation is performed, and this is superplastically processed at a temperature higher than the As point. This is a characteristic superplastic processing method for stainless steel.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an outline of a manufacturing process to which the superplastic working method for stainless steel material according to the present invention is applied. Cold working is performed at a temperature (Md) or less at which the martensitic transformation occurs when plastic working is performed at or below the temperature. Then, martensite is generated (step 1). Next, this is heated and subjected to strong processing in the warm (step 2). In that case, strong processing can be performed with a small load. Thereafter, annealing or processing is performed at a temperature (As) above which the martensite is transformed back to austenite above that temperature (step 3).
[0018]
FIG. 2 further shows an outline of another manufacturing process to which the superplastic working method of the stainless steel material according to the present invention is applied. When plastic working is applied below that temperature, the temperature is higher than the temperature (Md) above which the martensitic transformation is applied. Inter-process (step 1). In the processing at this time, cracks do not occur. This is subjected to minimum cold working at a temperature below the Md point (step 2). In this processing, the occurrence of cracks is minimized. Thereafter, annealing or processing is performed at a temperature (As) above which the martensite is transformed back to austenite above that temperature (step 3).
(Example)
[0019]
The following shows an example in which the austenitic stainless steel SUS304 is adjusted to a superplastic working stainless steel material according to the present invention and confirmed to exhibit superplastic behavior similar to the conventional method.
[0020]
The material used was a commercially available SUS304 plate (plate pressure 12 mm) that had been subjected to solution treatment. From this, a 10 mm-thick rolling piece was cut out and subjected to a comparative experiment.
[0021]
The conventional superplastic stainless steel was manufactured by rolling the small pieces for rolling to 1 mm thickness (cooling rate = 90%) while cooling with ice water (hereinafter referred to as conventional material).
[0022]
Among the present inventions, the one according to FIG. 1 is rolled to a thickness of 2.5 mm (rolling rate = 75%) while cooling the rolling pieces with ice water, and then heated to 300 ° C. to a thickness of 1 mm. (Integrated rolling reduction = 90%) (hereinafter referred to as Example 1).
[0023]
In the present invention, the one according to FIG. 2 is rolled to a thickness of 4 mm while heating the rolling pieces to 300 ° C., and then rolled to a thickness of 1 mm while cooling the material with ice water (cold rolling reduction) Rate = 75%, integrated reduction rate = 90%) (hereinafter referred to as Example 2).
[0024]
Further, as a comparative material, a rolling piece having a thickness of 4 mm was cut out and cooled to 1 mm in thickness (cooling rate = 75%) while cooling with ice water (hereinafter referred to as a comparative material).
[0025]
When the appearance of the material after rolling was observed, a relatively large number of ear cracks were generated in the conventional material, but there were few in the present invention.
[0026]
These four materials were annealed at 700 ° C. × 3600 seconds, and tensile test pieces were cut out from these materials and subjected to a tensile test at a strain rate of 1/10000 per second at 700 ° C. using JIS No. 7 test pieces.
[0027]
As a result, it is considered that the conventional material exhibits 312% elongation and exhibits superplastic behavior.
[0028]
Example 1 showed an elongation of 383%, and Example 2 showed an elongation of 364%. From this, it can be confirmed that both Example 1 and Example 2 are superplastic stainless steel materials.
[0029]
Furthermore, since the comparative material shows only 228% elongation, it can be proved that the warm working performed in Example 1 and Example 2 showed an effect in producing the superplastic stainless steel material.
[0030]
Thereby, it can be confirmed that the processing load required for the production can be reduced, and a method for producing a superplastic stainless steel material having a high material yield can be provided with less cracking during the production.
[0031]
In Examples 1 and 2, warm plastic working was added only before or after martensitic transformation, but both were also subjected to warm working within the scope of the present invention. Of course it is included.
[0032]
In addition, this method can be applied directly to the superplastic working method of the patent No. 2916619 proposed by the present inventors as described above, without performing annealing before superplastic working, and directly working above the As point. It goes without saying that is possible.
[0033]
【The invention's effect】
Since this invention was comprised as mentioned above, it can be processed with a small load, and it can be set as the manufacturing method of the superplastic austenitic stainless steel material which is hard to generate | occur | produce a crack, and the superplastic processing method of stainless steel material.
[Brief description of the drawings]
FIG. 1 is a diagram showing an aspect of a first manufacturing process in a method for manufacturing a superplastic stainless steel material according to the present invention.
FIG. 2 is a diagram showing an aspect of a second manufacturing step in the method for manufacturing a superplastic stainless steel material according to the present invention.
FIG. 3 is a diagram showing an embodiment of a manufacturing process of a conventional method.

Claims (6)

オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMs点以上As点以下の温度に加熱して塑性加工を加えることを特徴とする超塑性ステンレス鋼材の製造方法。A method for producing a superplastic stainless steel material, characterized in that austenitic stainless steel is subjected to martensitic transformation, and then subjected to plastic working by heating to a temperature not lower than Ms and not higher than As. オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMd点以上As点以下の温度に加熱して塑性加工を加え、その後As点以上で焼なますことを特徴とする超塑性ステンレス鋼材の製造方法。A method of producing a superplastic stainless steel material, characterized in that austenitic stainless steel is transformed into martensite, heated to a temperature not lower than the Md point and not higher than the As point, subjected to plastic working, and then annealed above the As point. オーステナイト系ステンレス鋼をマルテンサイト変態させ、次いでMd点以上As点以下の温度に加熱して塑性加工を加え、これをAs点以上の温度で超塑性加工する事を特徴とするステンレス鋼材の超塑性加工方法。Austenitic stainless steel is martensitic transformed, then heated to a temperature above the Md point and below the As point, and then subjected to plastic working, which is then superplastically processed at a temperature above the As point. Processing method. オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させることを特徴とする超塑性ステンレス鋼材の製造方法。A method for producing a superplastic stainless steel material, characterized by subjecting austenitic stainless steel to plastic working at a temperature not lower than the Md point and not higher than the recrystallization temperature, and subsequently to martensitic transformation. オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させ、その後As点以上で焼なますことを特徴とする超塑性ステンレス鋼材の製造方法。A method for producing a superplastic stainless steel material, characterized in that austenitic stainless steel is subjected to plastic working at a temperature not lower than the Md point and not higher than the recrystallization temperature, then transformed into a martensite, and then annealed at the As point or higher. オーステナイト系ステンレス鋼にMd点以上再結晶温度以下の温度で塑性加工を加え、次いでマルテンサイト変態させ、これをAs点以上の温度で超塑性加工する事を特徴とするステンレス鋼材の超塑性加工方法。A superplastic working method for stainless steel, characterized in that austenitic stainless steel is subjected to plastic working at a temperature not lower than the Md point and not higher than the recrystallization temperature, followed by martensitic transformation and superplastic working at a temperature higher than the As point. .
JP2002069408A 2002-03-14 2002-03-14 Superplastic stainless steel manufacturing method and stainless steel superplastic working method Expired - Lifetime JP3845722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069408A JP3845722B2 (en) 2002-03-14 2002-03-14 Superplastic stainless steel manufacturing method and stainless steel superplastic working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069408A JP3845722B2 (en) 2002-03-14 2002-03-14 Superplastic stainless steel manufacturing method and stainless steel superplastic working method

Publications (2)

Publication Number Publication Date
JP2003266105A JP2003266105A (en) 2003-09-24
JP3845722B2 true JP3845722B2 (en) 2006-11-15

Family

ID=29200245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069408A Expired - Lifetime JP3845722B2 (en) 2002-03-14 2002-03-14 Superplastic stainless steel manufacturing method and stainless steel superplastic working method

Country Status (1)

Country Link
JP (1) JP3845722B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464511B2 (en) * 2009-05-14 2014-04-09 独立行政法人物質・材料研究機構 Manufacturing method of orifice plate for liquid injection
CN113174544B (en) * 2021-04-21 2022-11-08 中国科学院金属研究所 Superplastic forming nanocrystalline antibacterial martensitic stainless steel and preparation method thereof
CN113981192B (en) * 2021-10-27 2023-02-03 广东海洋大学 Method for improving yield strength of 304 type metastable austenitic stainless steel

Also Published As

Publication number Publication date
JP2003266105A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP2988246B2 (en) Method for producing (α + β) type titanium alloy superplastic formed member
JP2010070806A (en) Steel sheet member and production method therefor
JP2009161851A (en) Aluminum alloy sheet for cold press forming, method for manufacturing the same, and cold press forming method for aluminum alloy sheet
TW201303042A (en) Hot stamped product, method for manufacturing the hot stamped product, energy absorption member, and method for manufacturing the energy absorption member
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP2021181625A5 (en)
WO1998041669A1 (en) Ni-plated target diffusion bonded to a backing plate and method of making same
JP2004124151A (en) Heat treatment method for aluminum alloy
JP5379471B2 (en) Method for producing aluminum alloy plate for cold press forming and cold press forming method
JP5644093B2 (en) Manufacturing method of high strength members
JP3845722B2 (en) Superplastic stainless steel manufacturing method and stainless steel superplastic working method
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP2010144229A (en) Method for manufacturing high-strength member and operation method therefor
JP2016078119A (en) Warm molding method of super high tensile steel plate
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
CN103397288A (en) Machining process of zinc-copper with mechanical properties controlled by machining rate
JP4179080B2 (en) Hot working method of high Nb alloy
JP4215760B2 (en) Manufacturing method for medium and high carbon steel sheet
JP2916619B1 (en) Superplastic processing of stainless steel and method of manufacturing stainless steel for superplastic processing
Merklein et al. Enhanced formability of ultrafine-grained aluminum blanks by local heat treatments
KR101612180B1 (en) Manufacturing method of low manganese twip steel
JPH11319970A (en) Ferritic stainless steel/aluminum clad plate excellent in deep drawability
JPS5925963A (en) Manufacture of hot rolled ti alloy plate
JP3747982B2 (en) Manufacturing method of medium and high carbon steel sheet
JP2009024187A (en) Method for producing plastic-worked member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Ref document number: 3845722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term