JPH01242720A - Manufacture of clad steel tube - Google Patents

Manufacture of clad steel tube

Info

Publication number
JPH01242720A
JPH01242720A JP7012888A JP7012888A JPH01242720A JP H01242720 A JPH01242720 A JP H01242720A JP 7012888 A JP7012888 A JP 7012888A JP 7012888 A JP7012888 A JP 7012888A JP H01242720 A JPH01242720 A JP H01242720A
Authority
JP
Japan
Prior art keywords
tube
clad steel
stress
corrosion cracking
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7012888A
Other languages
Japanese (ja)
Other versions
JPH0649906B2 (en
Inventor
Hiroshi Nakade
中手 博
Takashi Matsui
隆 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63070128A priority Critical patent/JPH0649906B2/en
Publication of JPH01242720A publication Critical patent/JPH01242720A/en
Publication of JPH0649906B2 publication Critical patent/JPH0649906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent stress corrosion cracking occurring to the internal surface of a tube by heating a clad steel tube consisting of an internal tube made of alloy steel excellent in corrosion resistance and an external tube made of inexpensive carbon steel to a specific temp. and then subjecting the external tube to rapid cooling by means of high-pressure water, etc. CONSTITUTION:A clad steel tube is prepared by forming an internal tube of various stainless steels and high alloy steels excellent in corrosion resistance and also forming an external tube of inexpensive carbon steel. The above clad steel tube as a whole is heated up to a solution heat treatment temp. of >=1000 deg.C and then high-pressure water is sprayed onto the external surface of the above clad steel tube to apply rapid cooling, by which the clad steel tube in which resistance to stress corrosion cracking due to tensile stress established in the internal surface of the tube as well as resistance to intergranular corrosion cracking is improved can be inexpensively manufactured.

Description

【発明の詳細な説明】 利用産業分野 この発明は、例えば管内面がステンレス鋼からなるクラ
ッド炭素鋼管の製造方法に係り、加熱後に管外面を急冷
して粒界腐食割れの改善および管内面に発生する引張応
力による応力腐食割れの改善を図ったクラッド鋼管の製
造方法に関する。
Detailed Description of the Invention Field of Application This invention relates to a method of manufacturing a clad carbon steel pipe whose inner surface is made of stainless steel, for example, in which the outer surface of the tube is rapidly cooled after heating to improve intergranular corrosion cracking and to improve the occurrence of intergranular corrosion cracks on the inner surface of the tube. The present invention relates to a method for manufacturing clad steel pipes that improves stress corrosion cracking caused by tensile stress.

背景技術 今阻例えば、高腐食性ガス、液体等を輸送する配管とし
てステンレス鋼や高合金鋼を内面側に用いたクラッド鋼
管が、経済性や機能性の面から広範囲に使用されている
BACKGROUND ART For example, clad steel pipes whose inner surfaces are made of stainless steel or high-alloy steel are widely used as pipes for transporting highly corrosive gases, liquids, etc. due to their economic efficiency and functionality.

かかるクラッド鋼管は、管内面の耐食性を考慮してステ
ンレス鋼や高合金鋼を用い、配管としての強度確保する
ため炭素鋼を外面に用いた複合鋼管である。
Such clad steel pipes are composite steel pipes in which stainless steel or high alloy steel is used for the inner surface of the pipe in consideration of corrosion resistance, and carbon steel is used for the outer surface to ensure the strength of the pipe.

一方、ステンレス鋼や高合金鋼における腐食の一つとし
て、応力腐食割れが知られている。
On the other hand, stress corrosion cracking is known as one type of corrosion in stainless steel and high alloy steel.

これは、材料に引張りの応力がかかることにより小さな
割れが伝播し、大きな割れとなるもので°あり、材料−
環境一応力の三要因がある条件を満した時に発生する現
象である。
This occurs when a small crack propagates and becomes a large crack when tensile stress is applied to the material.
This is a phenomenon that occurs when three factors, environment and stress, meet certain conditions.

耐応力腐食割れを付与するため、材料自体の改善として
、使用環境に合った材料を用いることと共に、粒界割れ
の防止として、粒界に析出した炭化物を固溶化するため
、高温に加熱後、急冷する固溶化処理を行うことにより
、腐食の発生を防止できることが知られている。
In order to provide stress corrosion cracking resistance, we improve the material itself by using a material that is suitable for the environment in which it will be used, and in order to prevent intergranular cracking, in order to dissolve the carbides precipitated at the grain boundaries, after heating to a high temperature, It is known that corrosion can be prevented by performing solution treatment that involves rapid cooling.

例えば、溶体化熱処理工程において、管を加熱した後、
管内面を急冷する方法が提案(特開昭61−11071
9号)され、耐食性が改善向上するものの、耐応力腐食
割れ性の面で問題がある。
For example, in the solution heat treatment process, after heating the tube,
A method of rapidly cooling the inner surface of the tube was proposed (Japanese Patent Application Laid-Open No. 11071-1983)
No. 9), and although the corrosion resistance is improved, there is a problem in terms of stress corrosion cracking resistance.

また、耐応力腐食割れ性の改善向上として、材料のもつ
残留応力をできるだけ圧縮側の応力とし、実使用環境で
配管に内圧による引張応力がかかっても、割れ発生限界
応力以下となるよう配慮することにより、応力腐食割れ
を予防し、発生した割れの伝播を防止することができる
とされている。
In addition, to improve stress corrosion cracking resistance, the residual stress of the material should be made as compressive as possible, so that even if tensile stress is applied to the piping due to internal pressure in the actual usage environment, it will be below the critical stress for cracking. It is said that this can prevent stress corrosion cracking and prevent the propagation of cracks that have occurred.

従来技術の問題点 前記クラッド鋼管は、ステンレス鋼や高合金鋼を、炭素
鋼に金属的に接合した二重管であり、製造方法側に見て
、溶接クラッド鋼管と継目無クラッド鋼管の2種に大別
される。
Problems with the Prior Art The clad steel pipes mentioned above are double pipes made by metallically joining stainless steel or high-alloy steel to carbon steel.From the manufacturing method side, there are two types: welded clad steel pipes and seamless clad steel pipes. It is broadly divided into

溶接クラッド鋼管は、熱間圧延されたクラッド鋼板また
はクラッドコイルを用い、UOE、ロール成形等の成形
後、継目を各種溶接法にて溶接し、管に成形する方法に
て製造される。
Welded clad steel pipes are manufactured by using hot-rolled clad steel plates or clad coils, forming them by UOE, roll forming, etc., and then welding the joints using various welding methods to form a pipe.

素材となるクラッド鋼板やコイルは、熱間圧延中に金属
的接合を行っており、接合強度を確保するため高温で圧
延する必要がある。
The clad steel plates and coils used as raw materials are metallically bonded during hot rolling, and must be rolled at high temperatures to ensure bond strength.

また、材料間の圧延変形抵抗の違いにより圧延時にそり
が発生し、製造時の阻害となるため、高温での圧延を施
しこれを防止する必要がある。
In addition, warpage occurs during rolling due to differences in rolling deformation resistance between materials, which hinders manufacturing, so it is necessary to perform rolling at high temperatures to prevent this.

一方、圧延後の冷却においても、急冷を行うと材料間の
膨張係数や変態挙動の違いにより、板の平坦度が悪くな
るため、緩冷却、例えば、空冷を行っている。
On the other hand, even in cooling after rolling, if rapid cooling is performed, the flatness of the plate will deteriorate due to differences in expansion coefficients and transformation behavior between materials, so slow cooling, for example, air cooling, is performed.

このような高温圧延後の緩冷却では、粒界に炭化物が析
出し易く、粒界腐食割れが発生しやすくなる問題があっ
た。
Such slow cooling after high-temperature rolling has the problem that carbides tend to precipitate at grain boundaries and intergranular corrosion cracking tends to occur.

また、継目無クラッド鋼管は、厚肉の外管と内管を合わ
せて熱間圧延し、金属的結合を得ることにより製造され
ている。
Furthermore, seamless clad steel pipes are manufactured by hot rolling a thick-walled outer pipe and an inner pipe together to obtain a metallic bond.

かかる継目無クラッド鋼管の製造に際しても、接着強度
確保のための高温圧延をする必要があり、耐食性が低下
する問題があった。
Even when manufacturing such a seamless clad steel pipe, it is necessary to carry out high temperature rolling to ensure adhesive strength, which poses a problem of reduced corrosion resistance.

発明の目的 この発明は、前述したクラッド鋼管製造上で発生する粒
界腐食割れの改善、並びに管内面に発生する引張応力に
よる応力腐食割れの改善を目的とし、製造時に耐応力腐
食割れ性を付与できるクラッド鋼管の製造方法の提供を
目的としている。
Purpose of the Invention The present invention aims to improve the intergranular corrosion cracking that occurs during the manufacturing of clad steel pipes as described above, as well as stress corrosion cracking caused by tensile stress that occurs on the inner surface of the pipe, by imparting stress corrosion cracking resistance during manufacturing. The purpose of this research is to provide a method for manufacturing clad steel pipes that can be manufactured using the following methods.

発明の構成 この発明は、クラッド鋼管製造上の問題で発生する、粒
界腐食割れへの改善およびクラッド鋼管の内面に発生す
る引張応力による応力腐食割れへの改善を目的とし、製
造条件を種々検討した結果、加熱後に管外面を急冷する
ことにより、前記2つの問題が解決でき、すぐれた耐応
力腐蝕割れ性を付与できることを知見し、この発明を完
成したものである。
Structure of the Invention The present invention aims to improve intergranular corrosion cracking that occurs due to problems in manufacturing clad steel pipes, and to improve stress corrosion cracking due to tensile stress that occurs on the inner surface of clad steel pipes, by examining various manufacturing conditions. As a result, it was discovered that the above two problems could be solved and excellent stress corrosion cracking resistance could be imparted by rapidly cooling the outer surface of the tube after heating, and this invention was completed.

すなわち、この発明は、 管内面にステンレス鋼や高合金鋼を用い、管外面に炭素
鋼を用いたクラッド鋼管の製造方法において、 管全体を固溶化熱処理温度の1000℃以上に加熱した
後、 管外面を、例えば、水冷等による急冷を施して耐応力腐
食割れ性を付与することを特徴とするクラッド鋼管の製
造方法である。
That is, this invention provides a method for manufacturing a clad steel pipe using stainless steel or high alloy steel for the inner surface of the tube and carbon steel for the outer surface of the tube, which includes: heating the entire tube to a solution heat treatment temperature of 1000°C or higher; This method of manufacturing a clad steel pipe is characterized in that the outer surface is rapidly cooled by, for example, water cooling to impart stress corrosion cracking resistance.

詳述すると、この発明は、管全体を固溶化熱処理温度(
iooo℃以上)に加熱し、その後管外面から急冷を行
うことにより、管内面の合せ材においては粒界に析出し
た炭化物を固溶させることができ、一方、管内面に周方
向の圧縮残留応力を発生させることができ、クラッド鋼
管にすぐれた耐応力腐食割れ性を付与できる。
To be more specific, the present invention is capable of treating the entire tube at a solution heat treatment temperature (
By heating the tube to a temperature of iooo℃ or higher and then rapidly cooling it from the outside surface of the tube, carbides precipitated at grain boundaries can be dissolved in the laminate material on the inner surface of the tube, while compressive residual stress in the circumferential direction is can be generated, giving clad steel pipes excellent stress corrosion cracking resistance.

前述した内面を急冷する従来の製造方法と比較すると、
内面冷却するより外面を強制冷却した方が、外面の収縮
が大きく内面に圧縮応力が残り易く、圧縮応力により耐
応力腐食割れ性が向上し、特に、クラッド鋼管は内面に
耐応力腐食割れ性が要求されることから、この発明方法
が有利である。
Compared to the conventional manufacturing method that rapidly cools the inner surface described above,
When the outer surface is forcedly cooled than when the inner surface is cooled, the outer surface shrinks more and compressive stress tends to remain on the inner surface, and the compressive stress improves the stress corrosion cracking resistance.In particular, clad steel pipes have better stress corrosion cracking resistance on the inner surface. The method of the invention is advantageous because of the requirements.

この発明において、加熱温度、冷却速度は、管内面に用
いたステンレス鋼、高合金鋼種類、および炭素鋼の成分
により適宜選定される。
In this invention, the heating temperature and cooling rate are appropriately selected depending on the type of stainless steel, high alloy steel, and carbon steel used for the inner surface of the tube.

例えば、オーステナイト系のステンレス鋼の場合、SU
S 316Lでは、1010〜1150℃から水冷すれ
ばよく、SUS 304では、1010〜1150℃か
ら水冷すればよい。
For example, in the case of austenitic stainless steel, SU
For S316L, water cooling may be performed from 1010 to 1150°C, and for SUS 304, water cooling may be performed from 1010 to 1150°C.

二相ステンレス鋼では950〜1100℃から水冷すれ
ばよく、フェライト系ステンレス鋼の5US410Lで
は、700〜820℃から水冷すればよい。
Duplex stainless steel may be water-cooled from 950 to 1100°C, and ferritic stainless steel 5US410L may be water-cooled from 700 to 820°C.

ステンレス鋼以外、例えば、高Ni合金NCF600で
は、800〜1150℃から水冷すればよい。
For materials other than stainless steel, for example, high Ni alloy NCF600, water cooling may be performed from 800 to 1150°C.

冷却速度としては、通常の水冷による速度でよく、管外
面に高圧水を噴射して冷却するのが最適である。
The cooling rate may be a normal water cooling rate, and it is optimal to cool the tube by injecting high-pressure water onto the outer surface of the tube.

実施例 実施例1 外面に炭素鋼、内面にステンレス鋼を用いた、下記性状
、寸法の溶接クラッド鋼管をUOEにより製造した。
Examples Example 1 A welded clad steel pipe with the following properties and dimensions, using carbon steel for the outer surface and stainless steel for the inner surface, was manufactured by UOE.

次に、誘導加熱炉を用い、管全体を1050℃に加熱し
た後、高圧水を出すノズルをリング状に配置した冷却装
置内に、前記クラッド鋼管を挿入して連続的に移動させ
、管外面を急冷しこの発明による溶接クラッド鋼管を得
た。
Next, after heating the entire tube to 1050°C using an induction heating furnace, the clad steel tube is inserted into a cooling device in which nozzles that emit high-pressure water are arranged in a ring shape, and the tube is continuously moved. was quenched to obtain a welded clad steel pipe according to the present invention.

また、前記熱処理を施さない従来法による溶接クラッド
鋼管を得た。
In addition, a welded clad steel pipe was obtained by a conventional method without the heat treatment.

得られた2種の鋼管の管周方向残留応力、を測定した。The circumferential residual stress of the two types of steel pipes obtained was measured.

その結果を第1図A図に示す。The results are shown in FIG. 1A.

残留応力の測定は、管周4頭部の4ケ所について測定し
、かつ測定方法はひずみゲージを用い、まず、管内面に
ひずみケージを貼り付け、3cm角に切り出した時のひ
ずみ量の変化より、管周方向の残留応力を求めた。なお
、図のA位置が溶接部である。
Residual stress was measured at 4 locations on the 4 heads of the tube circumference, using a strain gauge. First, a strain cage was pasted on the inner surface of the tube, and the change in strain amount when cut into 3 cm square pieces was measured. , the residual stress in the tube circumferential direction was determined. Note that position A in the figure is the welded part.

また、内面の5US316材の耐食性を粒界腐食試験(
JIS GO573)にて調べた。その結果を第2図に
示す。
In addition, the corrosion resistance of the 5US316 material on the inner surface was tested by intergranular corrosion test (
JIS GO573). The results are shown in FIG.

炭素鋼; API 5LX−60 ステンレス鋼・SUS 316 外径; 609.6mm。Carbon steel; API 5LX-60 Stainless steel/SUS 316 Outer diameter: 609.6mm.

炭素鋼肉厚; 16mm、 ステンレス鋼肉厚;3mfn1 実施例2 外面に炭素鋼、内面にステンレス鋼を用いた、下記性状
、寸法の継目無クラッド鋼管をプラグミルにより製造し
た。
Carbon steel wall thickness: 16 mm Stainless steel wall thickness: 3 mfn1 Example 2 A seamless clad steel pipe with the following properties and dimensions using carbon steel on the outer surface and stainless steel on the inner surface was manufactured using a plug mill.

次に、ウオーキングビーム炉を用い、管全体を1050
℃に加熱した後、高圧水を出すノズルをリング状に配置
した冷却装置内に、前記クラッド鋼管を挿入して連続的
に移動させ、管外面を急冷しこの発明による溶接クラッ
ド鋼管を得た。
Next, using a walking beam furnace, the entire tube was
After heating to °C, the clad steel pipe was inserted into a cooling device in which nozzles for discharging high-pressure water were arranged in a ring shape and moved continuously to rapidly cool the outer surface of the pipe to obtain a welded clad steel pipe according to the present invention.

また、前記熱処理を施さない従来法による溶接クラッド
鋼管を得た。
In addition, a welded clad steel pipe was obtained by a conventional method without the heat treatment.

得られた2種の鋼管の管周方向残留応力を測定した。そ
の結果を第1図B図に示す。
The circumferential residual stress of the two types of steel pipes obtained was measured. The results are shown in FIG. 1B.

残留応力の測定は、管周4頭部の4ケ所について測定し
、かつ測定方法はひずみゲージを用い、まず、管内面に
ひずみケージを貼り付け、3cm角に切り出した時のひ
ずみ量の変化より、管周方向の残留応力を求めた。
Residual stress was measured at 4 locations on the 4 heads of the tube circumference, using a strain gauge. First, a strain cage was pasted on the inner surface of the tube, and the change in strain amount when cut into 3 cm square pieces was measured. , the residual stress in the tube circumferential direction was determined.

また、内面のSUS 316材の耐食性を粒界腐食試験
(JIS GO573)にて調べた。その結果を第2図
に示す。
In addition, the corrosion resistance of the SUS 316 material on the inner surface was examined using a grain boundary corrosion test (JIS GO573). The results are shown in FIG.

炭素鋼; API 5LX−60 ステンレス鋼; SUS 316 外径; 273.1mm1 炭素鋼肉厚; 13mm、 ステンレス鋼肉厚:3皿亀 発明の効果 実施例及び第1図に明らかな如く、この発明の製造方法
により得られたクラッド鋼管は、管内面に圧縮の残留応
力を持ち、使用環境で内圧による′引張応力が掛った場
合であっても、応力腐友割れの発生する限界応力までに
管内面の応力状態がなるとは考えられない。
Carbon steel; API 5LX-60 Stainless steel; SUS 316 Outer diameter: 273.1 mm1 Carbon steel wall thickness: 13 mm Stainless steel wall thickness: 3 plate turtle effect of the invention As is clear from the embodiments and FIG. Clad steel pipes obtained by this manufacturing method have compressive residual stress on the inner surface of the tube, and even when tensile stress is applied due to internal pressure in the usage environment, the inner surface of the tube will reach the critical stress that causes stress cracking. It is inconceivable that a stress state of

実施例及び第2図に明らかな如く、この発明の製造、方
法により得られたクラッド鋼管は、粒界の炭化物が固溶
されたため耐食性は改善されていることが分る。
As is clear from the examples and FIG. 2, it can be seen that the clad steel pipe obtained by the manufacturing method of the present invention has improved corrosion resistance because the carbides in the grain boundaries are dissolved in solid solution.

詳述した如く、この発明によるクラッド鋼管は、内面の
合せ材の粒界割れ防止による割れ起点の発生の防止、お
よび管内面を圧縮の応力状態にすることにより、割れ伝
播の防止を図ることができ、応力腐食割れを防止するこ
とができる。
As described in detail, the clad steel pipe according to the present invention can prevent crack initiation by preventing intergranular cracking of the inner surface laminate, and prevent crack propagation by placing the inner surface of the pipe in a compressive stress state. This can prevent stress corrosion cracking.

また、この発明の製造方法を適用することにより、従来
、材料自体や応力状態の要因のため、より高価な材料を
用いて耐食性を確保する必要があったが、実環境に見合
った材料を用いることが°でき、安価なりラッド鋼管を
提供できる。
In addition, by applying the manufacturing method of this invention, it is possible to use materials that are suitable for the actual environment, whereas conventionally it was necessary to use more expensive materials to ensure corrosion resistance due to factors such as the material itself and the stress state. We can provide rad steel pipes that are both cost-effective and inexpensive.

また、この発明は、管外面を急冷することにより、必然
的に内面も急冷されるため、溶体化処理後の急冷も同時
に行なえる利点がある。
Further, this invention has the advantage that by rapidly cooling the outer surface of the tube, the inner surface is also rapidly cooled, so that the tube can be rapidly cooled after solution treatment at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、Bはパイプ周方向位置と管周方向残留応力と
の関係を示すグラフである。A図は溶接クラッド鋼管、
B図は継目無クラッド鋼管の場合を示す。 第2図は腐食減量を示すグラフである。
FIGS. 1A and 1B are graphs showing the relationship between the pipe circumferential position and the pipe circumferential residual stress. Figure A is a welded clad steel pipe.
Figure B shows the case of seamless clad steel pipe. FIG. 2 is a graph showing corrosion loss.

Claims (1)

【特許請求の範囲】 1 管内面にステンレス鋼や高合金鋼を用い、管外面に炭素
鋼を用いたクラッド鋼管の製造方法において、 管全体を1000℃以上に加熱した後、 管外面を急冷して耐応力腐食割れ性を付与することを特
徴とするクラッド鋼管の製造方法。
[Claims] 1. A method for manufacturing a clad steel pipe using stainless steel or high alloy steel for the inner surface of the tube and carbon steel for the outer surface of the tube, including heating the entire tube to 1000°C or higher, and then rapidly cooling the outer surface of the tube. A method for producing a clad steel pipe characterized by imparting stress corrosion cracking resistance.
JP63070128A 1988-03-23 1988-03-23 Clad steel pipe manufacturing method Expired - Lifetime JPH0649906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070128A JPH0649906B2 (en) 1988-03-23 1988-03-23 Clad steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070128A JPH0649906B2 (en) 1988-03-23 1988-03-23 Clad steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPH01242720A true JPH01242720A (en) 1989-09-27
JPH0649906B2 JPH0649906B2 (en) 1994-06-29

Family

ID=13422608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070128A Expired - Lifetime JPH0649906B2 (en) 1988-03-23 1988-03-23 Clad steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JPH0649906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598351A (en) * 1991-10-07 1993-04-20 Nippon Steel Corp Production of welded steel tube excellent in wear resistance
JPH05302123A (en) * 1992-02-14 1993-11-16 Kubota Corp Method for heat-treating clad pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943822A (en) * 1982-09-07 1984-03-12 Mitsubishi Heavy Ind Ltd Heat treatment of pipes
JPS61110719A (en) * 1984-11-01 1986-05-29 Nippon Kokan Kk <Nkk> Stainless steel clad steel pipe having stress corrosion cracking resistance, and its manufacture
JPS61262484A (en) * 1985-05-15 1986-11-20 Nippon Kokan Kk <Nkk> Production of stainless clad steel pipe having excellent corrosion resistance and toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943822A (en) * 1982-09-07 1984-03-12 Mitsubishi Heavy Ind Ltd Heat treatment of pipes
JPS61110719A (en) * 1984-11-01 1986-05-29 Nippon Kokan Kk <Nkk> Stainless steel clad steel pipe having stress corrosion cracking resistance, and its manufacture
JPS61262484A (en) * 1985-05-15 1986-11-20 Nippon Kokan Kk <Nkk> Production of stainless clad steel pipe having excellent corrosion resistance and toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598351A (en) * 1991-10-07 1993-04-20 Nippon Steel Corp Production of welded steel tube excellent in wear resistance
JPH05302123A (en) * 1992-02-14 1993-11-16 Kubota Corp Method for heat-treating clad pipe

Also Published As

Publication number Publication date
JPH0649906B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JPH11129078A (en) Welding two phase stainless steel
KR101423863B1 (en) Double-walled pipe with a gap, and manufacturing method therefor
US4683014A (en) Mechanical stress improvement process
JPH01242720A (en) Manufacture of clad steel tube
CN111589857B (en) Manufacturing method of hot-rolled composite steel and hot-rolled composite steel
JP4015780B2 (en) Heat-resistant steel welding method and post-heat treatment method
JP2003253337A (en) Process and apparatus for regenerating creep deteriorated part
JPS5817807B2 (en) Heat treatment method for piping
JPS58210123A (en) Heat treatment of clad steel pipe
JPH0246654B2 (en) CHUKUTAINOZANRYUORYOKUKAIZENHOHO
JP3872742B2 (en) UOE steel pipe manufacturing method with excellent formability
JPH0576379B2 (en)
JPH0576383B2 (en)
JPS6018293A (en) Method for relieving residual stress of welded joint part
CN117961447A (en) Bimetal composite tee joint and preparation method thereof
JPS61119619A (en) Heat treatment of metallic pipe
Kovac et al. Residual-stress measurement in SS304 seamless tube
JPS59150674A (en) Joining method of steel pipe
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JP3501922B2 (en) Prevention of peeling crack of pressure vessel
Zhang et al. Failure Analysis of Dissimilar Steel Weld Cracking on High and Medium Pressure Guide Pipe
JPH1161275A (en) Weld zone of austenitic stainless steel
JPS6263620A (en) Method for improving residual stress of hollow body
JPS63160783A (en) Method for improving residual stress of duplex metallic pipes
BR102019003246B1 (en) HOMOGENIZATION PROCESS FOR SPIRAL PIPE