JPH1161275A - Weld zone of austenitic stainless steel - Google Patents

Weld zone of austenitic stainless steel

Info

Publication number
JPH1161275A
JPH1161275A JP9225692A JP22569297A JPH1161275A JP H1161275 A JPH1161275 A JP H1161275A JP 9225692 A JP9225692 A JP 9225692A JP 22569297 A JP22569297 A JP 22569297A JP H1161275 A JPH1161275 A JP H1161275A
Authority
JP
Japan
Prior art keywords
temperature
cooling
stainless steel
ferrite
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9225692A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanezaki
宏 金崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9225692A priority Critical patent/JPH1161275A/en
Publication of JPH1161275A publication Critical patent/JPH1161275A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a weld zone of austenitic stainless steel, where the fatigue strength of the weld zone which is inferior to a base material in fatigue characteristic in a high temp. fluid including high temp. water is improved. SOLUTION: The surface part of a weld metal on the side to be brought into contact with high temp. fluid is heated up to the recrystallization temp. or above and then cooled at a cooling rate not lower than that of natural air cooling at ordinary temp., by which the amount of ferrite in the vicinity of the surface of the weld zone is reduced to improve fatigue strength. At this time, in order to lower the heating temp., a worked layer is previously formed at the surface part of the weld metal on the side to be brought into contact with high temp. fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はオーステナイト系ス
テンレス鋼の溶接部に係り、特に高温流体中に接する部
分に使用されるオーステナイト系ステンレス鋼の溶接部
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded portion of austenitic stainless steel, and more particularly to a welded portion of austenitic stainless steel used for a portion in contact with a high-temperature fluid.

【0002】[0002]

【従来の技術】従来より原子力発電設備や火力発電設備
等のボイラや配管等の高温に加熱された高温水や高温流
体と接する部分には、耐食性の観点からオーステナイト
系ステンレス鋼が広く用いられており、これらの部材の
多くは溶接により接合されている。この溶接部の金属組
織はほとんどがオーステナイトであるが、数%のフェラ
イト相が溶接時の凝固過程で発生し、オーステナイトと
フェライトの混合組織となる。
2. Description of the Related Art Conventionally, austenitic stainless steels have been widely used from the viewpoint of corrosion resistance in portions that come into contact with high-temperature water or high-temperature fluid such as boilers and pipes of nuclear power generation facilities and thermal power generation facilities. Many of these members are joined by welding. Most of the metal structure of this weld is austenite, but several percent of a ferrite phase is generated during the solidification process during welding, resulting in a mixed structure of austenite and ferrite.

【0003】[0003]

【発明が解決しようとする課題】そして前記混合組織と
なっている溶接部は、溶接止端部等の形状不連続部を有
するために、オーステナイト系ステンレス鋼で形成され
たボイラや配管等内の流体の急激な温度変化、圧力変化
等により繰返し応力が作用する場合には前記形状不連続
部である溶接部で応力が集中し疲労亀裂が発生、部材の
破壊に至る懸念があり、溶接部の疲労強度が問題とな
る。
Since the welded portion having the mixed structure has a shape discontinuity such as a weld toe, a boiler or a pipe made of austenitic stainless steel is used. When a repetitive stress is applied due to a rapid change in temperature of the fluid, a change in pressure, etc., stress is concentrated in the welded portion, which is the shape discontinuity, and fatigue cracks occur. Fatigue strength is a problem.

【0004】そこで前記混合組織中に包含されるフェラ
イト量に応じた高温水中の溶接金属部の疲労特性の状態
を検討するために、SUS316系ステンレス鋼につい
て、(1)SUS316母材(2)SUS316溶接金
属(3)316系鋳造部材の高温水中疲労試験を実施し
た。尚、鋼中のフェライト量は、(1)のSUS316
母材では0%、(2)のSUS316溶接金属では8
%、(3)の316系鋳造材では20%夫々含有されて
いる。疲労試験は軸ひずみ制御の完全両振り応力で、ひ
ずみ振幅0.6%、ひずみ速度0.0001%/se
c、325℃の脱気水中で実施した。
Therefore, in order to examine the fatigue characteristics of the weld metal in high-temperature water in accordance with the amount of ferrite contained in the mixed structure, SUS316 stainless steel (1) SUS316 base metal (2) SUS316 Weld metal (3) 316 series cast members were subjected to a high temperature underwater fatigue test. Incidentally, the amount of ferrite in the steel is SUS316 of (1).
0% for base metal, 8 for SUS316 weld metal of (2)
%, And 20% in the 316 cast material of (3). The fatigue test is a complete oscillating stress under axial strain control, with a strain amplitude of 0.6% and a strain rate of 0.0001% / sec.
c, performed in degassed water at 325 ° C.

【0005】得られた結果を図2に示す。図2の横軸は
鋼中のフェライト量、縦軸はSUS316母材(1)の
疲労寿命を1とした時の疲労寿命比である。図2から明
瞭なように、疲労寿命はフェライト量の増加に従って、
低下する傾向が認められ、溶接金属を有する溶接部の疲
労強度は母材に比べて低く、材料的に溶接部で疲労亀裂
が生じやすい傾向を示している。
FIG. 2 shows the obtained results. The horizontal axis in FIG. 2 is the amount of ferrite in the steel, and the vertical axis is the fatigue life ratio when the fatigue life of the SUS316 base material (1) is set to 1. As is clear from FIG. 2, the fatigue life increases with increasing ferrite content.
There is a tendency to decrease, and the fatigue strength of the welded portion having the weld metal is lower than that of the base metal, indicating that a fatigue crack tends to occur in the welded portion due to the material.

【0006】本発明はかかる技術的課題を解決するため
に、高温水を含む高温流体中で疲労特性が母材に劣る溶
接部の疲労強度を向上させたオーステナイト系ステンレ
ス鋼の溶接部を提供する事にある。
[0006] In order to solve the above technical problems, the present invention provides a welded portion of austenitic stainless steel having improved fatigue strength of a welded portion having poorer fatigue properties than a base material in a high temperature fluid containing high temperature water. It is in the thing.

【0007】[0007]

【課題を解決するための手段】高温水中のステンレス鋼
の疲労損傷がどのように生じるかを検討するために、供
試材としてSUS304母材を用い、温度250℃の脱
気高温水中で、軸ひずみ制御の疲労試験を表面に生じた
亀裂を計測しながら実施した。その結果を図3に示す。
図3の横軸は繰返し数、縦軸は表面に認められた最大の
亀裂の全長である。図3から、高温水中では、微小な亀
裂が繰返しの早期に発生する事、その亀裂が約0.5m
mまで成長するまでの亀裂伝播寿命が全疲労寿命の大半
を占める事がわかった。すなわち、図2に示したフェラ
イト量差による疲労寿命差は亀裂が発生し、約0.5m
mまで成長する間の亀裂伝播速度差に起因するものであ
ると判断される。
Means for Solving the Problems In order to examine how fatigue damage of stainless steel occurs in high-temperature water, a SUS304 base material was used as a test material, and a shaft was formed in degassed high-temperature water at a temperature of 250 ° C. A strain control fatigue test was performed while measuring cracks generated on the surface. The result is shown in FIG.
The horizontal axis in FIG. 3 is the number of repetitions, and the vertical axis is the total length of the largest crack observed on the surface. From Fig.3, in high temperature water, small cracks occur early in the repetition, and the cracks
It has been found that the crack propagation life up to growth to m accounts for most of the total fatigue life. That is, the difference in fatigue life due to the difference in the amount of ferrite shown in FIG.
m is determined to be due to the difference in crack propagation velocity during growth to m.

【0008】そこで、溶接部の疲労強度を向上する方法
としては、腐食の影響で亀裂が発生する溶接金属表面近
傍のフェライト量を大幅に低減する事が有効である。フ
ェライト量を低減する深さとしては、図3の結果で表面
長0.5mmまで成長する間の寿命が大半を占める事及
び前記試験で亀裂深さと長さの比は約0.5mmである
事を確認しているので、約0.25mmとわずかであっ
ても充分有効であると思料される。又オーステナイト系
のステンレス鋼は約1000℃以上に加熱すると、再結
晶が生じ、この時冷却速度が速い場合にはフェライトは
ほとんど生成されないことも確認されている。
Therefore, as a method of improving the fatigue strength of the welded portion, it is effective to significantly reduce the amount of ferrite near the surface of the weld metal where cracks occur due to corrosion. As the depth at which the amount of ferrite is reduced, the life during growth to a surface length of 0.5 mm occupies most of the results in FIG. 3, and the ratio of crack depth to length in the above test is about 0.5 mm. Therefore, it is considered that even a small amount of about 0.25 mm is sufficiently effective. It has also been confirmed that when austenitic stainless steel is heated to about 1000 ° C. or higher, recrystallization occurs. At this time, when the cooling rate is high, ferrite is hardly generated.

【0009】そこで、本発明は、高温流体に接する側の
溶接金属表面部を、再結晶化可能な温度以上に加熱した
後、常温下での自然放冷以上の冷却速度で冷却して、該
溶接部表面近傍のフェライト量を低減させて疲労強度を
向上させたことを第1の特徴とする。この場合、常温下
での自然放冷以上の冷却速度とは、例えば常温エア噴射
等で強制空冷若しくは冷却水噴射等で強制水冷を行なう
冷却条件が好ましい。
Accordingly, the present invention provides a method of heating a surface of a weld metal in contact with a high-temperature fluid to a temperature higher than a recrystallizable temperature and then cooling at a cooling rate higher than natural cooling at room temperature. A first feature is that the amount of ferrite near the surface of the weld is reduced to improve the fatigue strength. In this case, the cooling rate higher than the natural cooling at room temperature is preferably a cooling condition in which forced air cooling is performed by air injection at room temperature or forced water cooling is performed by injection of cooling water.

【0010】かかる発明によれば、溶接部で高温水に接
する箇所を表面のみ局所的に加熱し、再結晶する事によ
り、表面近傍のみフェライト量が低減され、図2に示す
如く、疲労強度の向上が計れる。
According to this invention, only the surface of the welded portion in contact with the high-temperature water is locally heated and recrystallized to reduce the amount of ferrite only in the vicinity of the surface. As shown in FIG. Improvement can be measured.

【0011】請求項2記載の発明は、高温流体に接する
側の溶接金属表面部に加工層を生成した後、該表面部を
再結晶化可能な温度以上に加熱し、該加熱後、常温下で
の自然放冷以上の冷却速度で冷却して、溶接部表面近傍
のフェライト量を低減させて疲労強度を向上させたこと
を特徴とする。かかる発明によれば、溶接部の表面にロ
ール加工等の強加工、若しくはショットピーニング等の
表面加工により表面加工層を生じさせた後、加熱する事
により再結晶温度は低くなり、フェライトの消失度が大
きくなる。尚、この加工層の生成は、表面層加熱前の常
温下で行なうのがよい。又再結晶温度は低くなる、とは
加工層の生成状態にもよるが、例えばショットピーニン
グで加工層を生成した場合は約850℃以上の加熱温度
で足りる。
[0011] The invention according to claim 2 is that, after forming a work layer on the surface of the weld metal in contact with the high-temperature fluid, the surface is heated to a temperature at which recrystallization can be performed, and after the heating, at room temperature. It is characterized by cooling at a cooling rate higher than the natural cooling in the above, reducing the amount of ferrite near the surface of the welded part, and improving the fatigue strength. According to this invention, the surface of the welded portion is subjected to a strong working such as a roll working, or a surface worked layer such as a shot peening to form a surface worked layer, and then heated to lower the recrystallization temperature, thereby reducing the ferrite disappearance. Becomes larger. The formation of the processed layer is preferably performed at room temperature before heating the surface layer. The lower recrystallization temperature depends on the state of formation of the processed layer. For example, when the processed layer is formed by shot peening, a heating temperature of about 850 ° C. or more is sufficient.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。図1に本発明の実施例にかかる突合せ
溶接部の加熱処理例を示す。1は、下面の初層側が接液
面としたV字状の突合せ溶接部であり、該溶接部下部の
初層側をガスバーナ2を用いて約1000℃以上の加熱
温度で約10分間加熱した後、常温エア噴射等で強制空
冷して常温まで冷却する。次にこの効果を確認するため
に、SUS316配管(外径約100mm、板厚約13
mm)溶接継手部を供試材として、そこから図4に示す
寸法形状の試験片を採取し、325℃の脱気中水で疲労
試験を荷重制御両振り応力、母材部での公称応力振幅2
50MPa、周波数0.001Hzで実施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. FIG. 1 shows an example of a heat treatment of a butt weld according to an embodiment of the present invention. Reference numeral 1 denotes a V-shaped butt-welded portion in which the lower layer has a wetted surface on the first layer side. The lower layer of the first layer was heated at a heating temperature of about 1000 ° C. or more using a gas burner 2 for about 10 minutes. Then, it is cooled to room temperature by forced air cooling with room temperature air injection or the like. Next, in order to confirm this effect, SUS316 pipe (outer diameter about 100 mm, plate thickness about 13
mm) Using the welded joint as a test material, a test piece having the dimensions and shapes shown in FIG. 4 was taken therefrom, and subjected to a fatigue test with deaerated water at 325 ° C. under load control oscillating stress and nominal stress at the base material. Amplitude 2
The test was performed at 50 MPa and a frequency of 0.001 Hz.

【0013】試験結果を図5に示す。図5は、図1に示
す処理を施さない場合の疲労亀裂発生寿命を1にして、
処理がある等の疲労亀裂発生寿命比を示している。前記
加熱/冷却処理により、疲労寿命は約2倍長寿命とな
り、効果が認められた。
FIG. 5 shows the test results. FIG. 5 shows that the fatigue crack initiation life when the treatment shown in FIG.
It shows the fatigue crack initiation life ratio when there is a treatment. By the heating / cooling treatment, the fatigue life was about twice as long, and the effect was recognized.

【0014】次に本発明の他の実施例として、前記溶接
部の下面の初層側にショットピーニング処理を施した
後、該強制加工処理した初層側をガスバーナ2の炎を絞
って約850℃以上の加熱温度で約10分間加熱した
後、常温エア噴射等で強制空冷して常温まで冷却して前
記と同様な試験を行なったところ、前記強制加工/加熱
/冷却処理により、疲労寿命は約2倍長寿命となり、同
様な効果が認められた。
Next, as another embodiment of the present invention, after the shot peening process is performed on the first layer side of the lower surface of the welded portion, the flame of the gas burner 2 is squeezed to reduce the flame of the gas burner 2 to about 850. After heating at a heating temperature of not less than 10 ° C. for about 10 minutes, the same test was performed by forcibly air-cooling with room temperature air injection or the like and cooling to room temperature, and the fatigue life was reduced by the forced processing / heating / cooling treatment. The service life was about twice as long, and the same effect was observed.

【0015】[0015]

【発明の効果】以上記載のごとく本発明によれば、溶接
部の表面層を約1000℃以上の再結晶温度まで局所的
に加熱/冷却することにより、表面層のフェライト量が
低減される。この結果、高温水中の疲労発生に対する抵
抗が増し、結果として溶接部の疲労寿命は向上する。
又、請求項2記載のように前もって表面層をショットピ
ーニングや強制加工を行なうことにより加熱温度を低減
する事が出来、一層安全且つ効果的な処理が可能とな
る。
As described above, according to the present invention, the amount of ferrite in the surface layer is reduced by locally heating / cooling the surface layer of the weld to a recrystallization temperature of about 1000 ° C. or higher. As a result, the resistance to the occurrence of fatigue in high-temperature water increases, and as a result, the fatigue life of the welded portion is improved.
Further, the heating temperature can be reduced by performing shot peening or forcible processing on the surface layer in advance as described in claim 2, and safer and more effective treatment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る表面加熱方法を示す概略
図である。
FIG. 1 is a schematic view showing a surface heating method according to an embodiment of the present invention.

【図2】疲労寿命に及ぼすフェライト量の影響を示すグ
ラフ図である。
FIG. 2 is a graph showing the effect of the amount of ferrite on fatigue life.

【図3】応力の繰返し数と亀裂長さを示すグラフ図であ
る。
FIG. 3 is a graph showing the number of stress repetitions and the crack length.

【図4】効果確認のために用いた試験片形状の寸法を示
す図である。
FIG. 4 is a diagram showing dimensions of a test piece shape used for confirming effects.

【図5】加熱/冷却処理を施さない従来技術と本発明と
の疲労亀裂発生寿命を効果確認結果を示すグラフ図であ
る。
FIG. 5 is a graph showing the results of confirming the effect of the fatigue crack initiation life of a conventional technique without heating / cooling treatment and the present invention.

【符号の説明】[Explanation of symbols]

1 突合せ溶接部 2 ガスバーナ 1 butt weld 2 gas burner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 302 C22C 38/00 302Z // B23K 103:04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 302 C22C 38/00 302Z // B23K 103: 04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温流体に接する側の溶接金属表面部
を、再結晶化可能な温度以上に加熱した後、常温下での
自然放冷以上の冷却速度で冷却して、該溶接部表面近傍
のフェライト量を低減させて疲労強度を向上させたこと
を特徴とするオーステナイト系ステンレス鋼の溶接部。
1. A welding metal surface portion on a side in contact with a high-temperature fluid is heated to a temperature at which recrystallization is possible or more, and then cooled at a cooling rate equal to or higher than natural cooling at room temperature, and the vicinity of the surface of the welding portion is cooled. Austenitic stainless steel welds characterized by reducing the amount of ferrite and improving fatigue strength.
【請求項2】 高温流体に接する側の溶接金属表面部に
加工層を生成した後、該表面部を再結晶化可能な温度以
上に加熱し、該加熱後、常温下での自然放冷以上の冷却
速度で冷却して、溶接部表面近傍のフェライト量を低減
させて疲労強度を向上させたことを特徴とするオーステ
ナイト系ステンレス鋼の溶接部。
2. After forming a working layer on the surface of the weld metal in contact with the high-temperature fluid, the surface is heated to a temperature at which recrystallization is possible, and after the heating, natural cooling at room temperature or higher is performed. Austenitic stainless steel welds characterized by cooling at a cooling rate of less, reducing the amount of ferrite near the weld surface and improving fatigue strength.
JP9225692A 1997-08-07 1997-08-07 Weld zone of austenitic stainless steel Withdrawn JPH1161275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225692A JPH1161275A (en) 1997-08-07 1997-08-07 Weld zone of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9225692A JPH1161275A (en) 1997-08-07 1997-08-07 Weld zone of austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH1161275A true JPH1161275A (en) 1999-03-05

Family

ID=16833306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225692A Withdrawn JPH1161275A (en) 1997-08-07 1997-08-07 Weld zone of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH1161275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025385A (en) * 2015-09-08 2018-05-11 日新制钢株式会社 The welding method of austenite stainless steel plate
CN109175621A (en) * 2018-09-25 2019-01-11 唐山师范学院 A kind of welding method of austenitic stainless steel
WO2019035490A1 (en) * 2017-08-18 2019-02-21 新日鐵住金株式会社 Lap fillet arc welding joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025385A (en) * 2015-09-08 2018-05-11 日新制钢株式会社 The welding method of austenite stainless steel plate
WO2019035490A1 (en) * 2017-08-18 2019-02-21 新日鐵住金株式会社 Lap fillet arc welding joint
JP6515401B1 (en) * 2017-08-18 2019-05-22 日本製鉄株式会社 Stacked fillet arc welded joint
CN112203792A (en) * 2017-08-18 2021-01-08 日本制铁株式会社 Electric arc lap fillet weld joint
CN112203792B (en) * 2017-08-18 2022-03-18 日本制铁株式会社 Electric arc lap fillet weld joint
US11592045B2 (en) 2017-08-18 2023-02-28 Nippon Steel Corporation Lap fillet arc welded joint
CN109175621A (en) * 2018-09-25 2019-01-11 唐山师范学院 A kind of welding method of austenitic stainless steel

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
JPH0772530B2 (en) Water turbine runner manufacturing method
JPH1161275A (en) Weld zone of austenitic stainless steel
JP4176412B2 (en) Method and apparatus for regenerating creep degraded part
US11060156B2 (en) Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
JP2003311321A (en) Method for manufacturing high-strength uoe steel tube
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2865749B2 (en) Piping reforming method
JP4929096B2 (en) Overlay welding method for piping
JP4026554B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2007044698A (en) Welded structure, and welding method of structure
JP4391992B2 (en) Reactor structure and manufacturing method and repair method thereof
Ren et al. Failure analysis of a water wall tube
CN112719539A (en) Welding process for submerged-arc welding of 304 stainless steel
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
CN106735777B (en) The welding method for preventing SA335-T/P92 steel weld heat-affected zone granular ferrite from generating
Payares-Asprino et al. Residual stress in machined duplex stainless steel welds developed through automatic process
Timofeev et al. Corrosion and mechanical strength of welded joints of downcomers for RBMK reactors
JP3840172B2 (en) UOE steel pipe manufacturing method with excellent HAZ toughness
JPS6142492A (en) Welded structure of main steam pipe and casing of steam turbine
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
JP3608422B2 (en) High corrosion resistance steel pipe coil with excellent low cycle fatigue strength and method for producing the same
JPH01202390A (en) Welding method for austenitic stainless steel welding structure
JPS623210B2 (en)
JP2000254795A (en) Method for welding heat resistant steel and after heat treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102