JPS63160783A - Method for improving residual stress of duplex metallic pipes - Google Patents

Method for improving residual stress of duplex metallic pipes

Info

Publication number
JPS63160783A
JPS63160783A JP61313628A JP31362886A JPS63160783A JP S63160783 A JPS63160783 A JP S63160783A JP 61313628 A JP61313628 A JP 61313628A JP 31362886 A JP31362886 A JP 31362886A JP S63160783 A JPS63160783 A JP S63160783A
Authority
JP
Japan
Prior art keywords
stress
heating
base
cooling
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61313628A
Other languages
Japanese (ja)
Inventor
Tadahiro Umemoto
忠宏 梅本
Shuji Furuya
古屋 修治
Hitoshi Nakamura
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61313628A priority Critical patent/JPS63160783A/en
Publication of JPS63160783A publication Critical patent/JPS63160783A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To heighten the efficiency of the improvement processing by heating both a duplex pipe part and a simplex pipe part while cooling the duplex metallic pipe inside and then, continuing to heat only the one pipe part to generate the stress to exceed a yield point and afterward, carrying out the cooling. CONSTITUTION:A cooling nozzle 9 is provided to a cylindrical hollow part 6 in the duplex pipes first and second heating means 10 and 11 are arranged to the outside of a base pipe 4 independently respectively. Cooling water is supplied to the inside of the duplex pipes and both the heating means 10 and 11 are operated to form the necessary temperature difference on the wall surface of the base pipe 4. Next, the first heating means 10 is stopped and the heating of only the second heating means 11 is continued and the stress to exceed the yield point is generated in the neighborhood of a weld zone 8 of the base and afterward, the natural cooling is carried out thereon. In this way, the compressive stress remains in the neighborhood of the weld zone 8. The pressing is simplified by only the cooling and heating processing and the efficiency of the improvement processing of the residual stress is heightened.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、二重金属管等の残留応力改善方法に係わり、
特に母管の内面とサーマルスリーブの基部との溶接部近
傍の残留応力改善方法に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a method for improving residual stress in double metal pipes, etc.
In particular, the present invention relates to a method for improving residual stress near the weld between the inner surface of the main pipe and the base of the thermal sleeve.

「従来の技術」 一般に、金属材料、例えば原子力や化学プラント等に多
用されているオーステナイト系ステンレス鋼等において
は、引っ張り応力と腐食因子とが」(qする場合に、腐
食割°れが急速に進行することが知られている。
``Prior art'' In general, in metallic materials such as austenitic stainless steel, which is widely used in nuclear power plants, chemical plants, etc., corrosion cracking occurs rapidly when tensile stress and corrosion factors are known to progress.

従来、オーステナイト系ステンレス鋼管の残留応力を改
心する場合には、鋼管の中に冷却水を挿通さU・ながら
鋼管を誘導加熱して、母管壁の内外面に降伏点以上の熟
応力が生じる温度壬を与え、鋼管の継ぎ目等の溶接部付
近の内面に、残留圧縮応力を発生さ仕た状態とする応力
改善方法が考えられている。
Conventionally, in order to correct residual stress in austenitic stainless steel pipes, cooling water is passed through the steel pipes and the steel pipes are heated by induction, creating a stress higher than the yield point on the inner and outer surfaces of the main pipe walls. A stress improvement method has been considered in which a temperature level is given to generate residual compressive stress on the inner surface near a welded part such as a joint of a steel pipe.

「発明が解決しようとする問題点」 しかしながら、このような方法は、オーステナイト系ス
テンレス鋼管が直管等の単純な形状である場合には適用
可能であるが%母管の内面にサーマルスリーブの基部を
溶接してなる二重金属管であると、母管の板厚とサーマ
ルスリーブの基部とを合わせた厚さ寸法が、母管自身の
厚さ寸法より著しく大きくなるため、前述したようにt
”4管を誘導加熱した場合に、母管壁の温度分布が不均
一になる現象や、温度差によって発生する応力の大きさ
や向きか、1」的とする績から外れる現染が発生ずると
考えられろ。
``Problems to be Solved by the Invention'' However, although this method is applicable when the austenitic stainless steel pipe has a simple shape such as a straight pipe, If it is a double metal pipe made by welding, the combined thickness of the main pipe and the base of the thermal sleeve will be significantly larger than the thickness of the main pipe itself.
``When 4 tubes are induction heated, the temperature distribution on the main tube wall becomes uneven, or the magnitude and direction of the stress generated due to the temperature difference, or the actual dyeing that deviates from the target 1'' occurs. Be able to think.

また、サーマルスリーブの基部の溶接部近傍には、溶接
熱によって組織の一部が鋭敏化した状態となっていると
考えられるので、前述した残留応力改り処理をサーマル
スリーブのJI(部の近傍で実施ずろと、悪影響を及ぼ
してしまうおそれらある。
In addition, it is thought that near the welded part at the base of the thermal sleeve, a part of the structure has become sensitized due to welding heat. If it is not implemented, there is a risk that it will have a negative impact.

本発明は、このような従来技術の問題点を解決すること
を目的とするものであり、母管内面に残留応力改善処理
を施4°場合に、同時に、サーマルスリーブの基部にお
ける必要箇所の残留応力改善を行なうようにしているも
のである。
The purpose of the present invention is to solve the problems of the prior art, and when the inner surface of the main pipe is treated to improve residual stress by 4 degrees, it simultaneously reduces the residual stress at necessary points at the base of the thermal sleeve. This is intended to improve stress.

[問題点を解決するための手段」 本発明における二重金属管等の残留応力改善方法は、母
管の内面にサーマルスリーブの基部を溶接してなる二重
金属管の内部に冷却水を存在させた状態として、前記基
部の両側に位置する二重管部と単管部との両方を同時に
加熱し、該加熱工程の後に一方の加熱のみを続行して加
熱側のy&部表面に降伏点を越える応力を発生させ、次
いで、全部の加熱を停止して冷却するようにしているも
のである。
[Means for Solving the Problems] The method of improving residual stress in double metal pipes, etc. in the present invention involves making cooling water exist inside the double metal pipe formed by welding the base of the thermal sleeve to the inner surface of the main pipe. As a state, both the double pipe part and the single pipe part located on both sides of the base are heated at the same time, and after the heating process, heating of only one is continued so that the surface of the Y& part on the heating side exceeds the yield point. It is designed to generate stress, then stop all heating and cool down.

「作用 」 冷却水を存在さUた状態で母管を加熱すると、加熱され
た部分と冷却状態にある部分との温度差によって、二重
管部と単管部との母管壁に降伏点を越える応力が発生し
て塑性変形を生じる。その後、一方の加熱のみを続行す
ると、非加熱部分の低温状態と加熱部分の高温状態とで
寸法が相異することに基づいて、サーマルスリーブの基
部近傍に曲げモーメントか作用する。この曲げモーメン
トは、サーマルスリーブの基部の内表面に引っ張り応力
を発生させる。この応力が降伏点を越えるようにした後
に、全部の加熱を停i1=して冷却状態とすると、母管
の内面に対しては圧縮の残留応力を付与した状態、また
、サーマルスリーブの基部における前記加熱側の表面に
も、圧縮の残留応力を付与した状態することができる。
``Function'' When the main tube is heated in the presence of cooling water, the temperature difference between the heated part and the cooled part causes the yield point on the main pipe wall of the double pipe part and the single pipe part. Stress exceeding After that, if only one side is heated, a bending moment will act on the vicinity of the base of the thermal sleeve due to the difference in dimensions between the low temperature state of the unheated part and the high temperature state of the heated part. This bending moment creates tensile stresses on the inner surface of the base of the thermal sleeve. After this stress exceeds the yield point, if all heating is stopped i1= and cooled, compressive residual stress will be applied to the inner surface of the main pipe, and the base of the thermal sleeve will be Compressive residual stress can also be applied to the heating side surface.

「実施例」 以下、本発明に係る二重金属管等の残留応力改遵方法の
実施例について、図面に基づき説明する。
"Example" Hereinafter, an example of the residual stress compliance method for double metal pipes, etc. according to the present invention will be described based on the drawings.

該実施例では、第1図に示すように、二重金属管が、原
子炉圧力容器1におけるノズル2とセイフェンド3とを
含む母管4の内部に、サーマルスリーブ5が設けられる
とともに、11上管4とサーマルスリーブ5との間に筒
状中空部6が形成されたものとされている。
In this embodiment, as shown in FIG. 1, a double metal pipe is provided with a thermal sleeve 5 inside a main pipe 4 including a nozzle 2 and a safety pipe 3 in a reactor pressure vessel 1, and an upper pipe 11. A cylindrical hollow portion 6 is formed between the thermal sleeve 5 and the thermal sleeve 5 .

また、母管4は突き合わせ溶接部(溶接継手)7によっ
て長さ方向に連結され、サーマルスリーブ5の基部は、
母管4の内面に、基部溶接部8によって取り付けられて
いる構造であり、さらに、この二重金属管は、オーステ
ナイト系ステンレスj14(SUS304  )によっ
て構成されているものとずろ。
Further, the main pipe 4 is connected in the length direction by a butt weld (welded joint) 7, and the base of the thermal sleeve 5 is
It has a structure in which it is attached to the inner surface of the main tube 4 by a base weld 8, and furthermore, this double metal tube is made of austenitic stainless steel J14 (SUS304).

そして、残留応力改善方法の実施に使用される機器は、
前記筒状中空部6の中に冷却水を噴出させて流水状態と
するための冷却ノズル9と、高周波電流をコイルに流4
°ことによってl:上管4の必要とする部分を表面側か
ら誘導加熱するための第1の加熱手段IOと第2の加熱
手段11とで構成されており、二つの加熱手段10・1
!は、母管4の外表面を長さ方向に間隔を明けて、必要
長さを覆うように配設されているとと乙に、時間差を空
けて独立状態で作動さUられるらのである。
And the equipment used to implement the residual stress improvement method is:
A cooling nozzle 9 for spouting cooling water into the cylindrical hollow part 6 to form a flowing water state;
° By this I: It is composed of a first heating means IO and a second heating means 11 for inductively heating the required portion of the upper tube 4 from the surface side, and is composed of two heating means 10 and 1.
! They are arranged so as to cover the required length of the outer surface of the main pipe 4 at intervals in the longitudinal direction, and are operated independently at a time difference.

[残留応力改許二E程例] 以下、母管4の突き合わせ溶接部(溶接継手)7とサー
マルスリーブ5の基部とを含む母管4の内面(第1図に
おいて、サーマルスリーブ5の基部を中心として、第1
図の左右に第1及び第2の加熱手段10・11を配設し
た範囲)に、残留応力改心を行なう場合について説明す
る。
[Example of Residual Stress Amendment 2E] Hereinafter, the inner surface of the main pipe 4 including the butt weld part (welded joint) 7 of the main pipe 4 and the base of the thermal sleeve 5 (in Fig. 1, the base of the thermal sleeve 5 is As the center, the first
A case will be described in which residual stress reforming is performed in the range in which the first and second heating means 10 and 11 are arranged on the left and right sides of the figure.

[母管部への冷却水の供給] 二重金属管の内部に冷却水を充満さU・、母管4とサー
マルスリーブ5との間に形成される筒状空間部6に6、
冷却水を満たず。そして、母管4の加熱に先立って、第
1図の矢印で示すように、冷却水に流れを生じさせてお
くことが望ましい。この場合、筒状空間部6が小さな間
隙によって形成されていると、筒状空間部6の中に存在
している冷却水は、サーマルスリーブ5の中に生じる水
流によってほとんど干渉されないので、滞留状態のまま
維持されてしよう場合があると考えられる。
[Supplying cooling water to the main pipe] Fill the inside of the double metal pipe with cooling water, and fill the cylindrical space 6 formed between the main pipe 4 and the thermal sleeve 5 with 6.
Not filled with cooling water. Prior to heating the main tube 4, it is desirable to cause the cooling water to flow as indicated by the arrows in FIG. In this case, if the cylindrical space 6 is formed by a small gap, the cooling water existing in the cylindrical space 6 will hardly be interfered with by the water flow generated in the thermal sleeve 5, so that the cooling water will remain in the stagnation state. It is thought that there may be cases where it is maintained as is.

[部分水流の発生] そこで、筒状空間部6に細い給水ノズル9の先端を挿入
して、サーマルスリーブ5の基部、セイフェンド3に向
けて、筒状空間部Gに満たされている冷却水の中に、第
1図の矢印で示すように、部分水流を噴出させる。この
部分水流は、サーマルスリーブ5の基部に当たって広が
るため、円周方向に沿う流水が形成される。
[Generation of partial water flow] Therefore, the tip of the thin water supply nozzle 9 is inserted into the cylindrical space 6, and the cooling water filled in the cylindrical space G is directed toward the base of the thermal sleeve 5 and the safe end 3. A partial stream of water is ejected inside, as shown by the arrow in FIG. Since this partial water flow hits the base of the thermal sleeve 5 and spreads, a flow of water along the circumferential direction is formed.

このように、母管壁の内面に流水状態の冷却水を存在さ
せ、山崩熱手段菫0・11を作動させることにより、母
管壁に例えば200℃以上の温度差を与えるようにする
と6、前述したように母管壁の内面については、応力改
善処理を行なうことができろ。
In this way, by providing cooling water in a flowing state on the inner surface of the main pipe wall and operating the mountain collapse heating means 0.11, a temperature difference of, for example, 200°C or more is applied to the main pipe wall6. As mentioned above, stress improvement treatment can be applied to the inner surface of the main pipe wall.

しかし、これらの母管壁の応力改善処理が、サーマルス
リーブ5の基部溶接部8に悪い影響を及ぼさないように
、次のような工程によって、母管壁の応力改善処理を行
なう。
However, in order to prevent these stress improvement treatments on the main pipe wall from having a negative effect on the base welded portion 8 of the thermal sleeve 5, the stress improvement treatment on the main pipe wall is performed through the following steps.

[基部溶接部近傍のモデル] 第2図(a)ないし第2図(C)は、サーマルスリーブ
5の基部溶接部8の近傍に、内面におけるA点、筒状空
間部6に接した外面におけるB点をモデルとしてそれぞ
れ設定し、各工程におけろモデル点近傍の形状変化を示
すものである。。
[Model near the base welded portion] FIGS. 2(a) to 2(C) show a point A on the inner surface and a point A on the outer surface in contact with the cylindrical space 6 near the base welded portion 8 of the thermal sleeve 5. Point B is set as a model, and changes in shape near the model point in each process are shown. .

E山崩熱手段による母管の加熱] サーマルスリーブ5と、筒状空間部Gの中とに冷却水が
流れている状態としておいて、誘導加熱コイルに高周波
電流を流す等により、加熱手段!0−11を同時に作動
さUoる。第1図において、11(部溶接部8の左側位
置となっている二重管部を囲む彫型の加熱手段10と、
基部溶接部8の右側1:1.置となっている単管部を囲
、む第2の加熱手段Ilとによって、母管壁を誘導加熱
する。、この両側加熱によって加熱される部分は、主と
して母管壁であり、サーマルスリーブ5の大部分及び基
部溶接部8の近傍は、冷却水に接触して温度上昇が抑制
されているため、母管壁の熱膨張を妨げる方向に働く。
Heating of the main pipe by means of E mountain heat disintegration] With cooling water flowing in the thermal sleeve 5 and the cylindrical space G, heating means! 0-11 are activated simultaneously. In FIG. 1, 11 (section 11) includes a carved heating means 10 surrounding the double pipe section located on the left side of the weld section 8;
Right side of base weld 8 1:1. The main pipe wall is heated by induction by the second heating means Il that surrounds the single pipe section where the main pipe is located. The part that is heated by this double-sided heating is mainly the main pipe wall, and most of the thermal sleeve 5 and the vicinity of the base welding part 8 are in contact with cooling water and the temperature rise is suppressed, so that the main pipe wall is heated. Works to prevent thermal expansion of the wall.

即ち、加熱工程前において、第2図(a)の状態となっ
ていた母管壁は、サーマルスリーブ5の基部によって熱
膨張が妨げられるため、第2図(b)に破線で示すよう
な変形状態となる。円筒体■及び円筒体■を同時加熱す
ることにより、板厚内の平均温度が上昇するため、第2
図(b)に破線で示すように、両回筒体■■は全体的に
半径方向外側に移動しようとする。
That is, the main tube wall, which was in the state shown in FIG. 2(a) before the heating process, is deformed as shown by the broken line in FIG. 2(b) because its thermal expansion is hindered by the base of the thermal sleeve 5. state. By simultaneously heating the cylinder body ■ and the cylinder body ■, the average temperature within the plate thickness increases, so the second
As shown by the broken line in Figure (b), the two rotating cylinders as a whole tend to move outward in the radial direction.

また、この際において、円筒体■と円筒体■との板厚を
それぞれhI” htとするとともに、hl>h2とす
ると、円筒体■で生じる熱心、カモーメントの方が円筒
体■に生じるそれより大きくなり、第2図(b)に破線
で示すように、時計目りの回転モーメントMを生じる。
In addition, in this case, if the plate thicknesses of the cylindrical body ■ and the cylindrical body becomes larger, producing a clockwise rotational moment M as shown by the broken line in FIG. 2(b).

したがって、A点の近傍は凹となる曲げ変形を受けるの
で、圧縮の軸方向応力を発生ずる。ここまでのA点の応
カー歪み履歴を示すと、加熱前において、第3v4(a
)に示すように、0点の位置にあった応カー歪みは、第
3図(b)に太い実線で示すように、S、。の位置に達
して降伏点を越え、応力の上昇が少なく歪みが多くなる
ために、S、の位置となる。
Therefore, the vicinity of point A undergoes concave bending deformation, which generates compressive axial stress. The stress strain history of point A up to this point shows that before heating, the 3rd v4 (a
), the stress strain at the zero point is S, as shown by the thick solid line in FIG. 3(b). When it reaches the position of S, the yield point is exceeded, and the increase in stress is small and the strain increases, so it becomes the position of S.

[第2の加熱手段による母管壁の加熱1次いで、第2の
加熱手段Ifによる母管壁の加熱を続けるとともに、第
1の加熱手段IOを停止4゛ると、単管部の熱膨張のみ
が維持されて、他の部分が冷却により当初の状態に戻ろ
うとずろため、母管壁の変形状態は、第2図(C)のよ
うになる。
[Heating of the main pipe wall by the second heating means 1 Next, when the second heating means If continues to heat the main pipe wall and the first heating means IO is stopped, the thermal expansion of the single pipe section The deformed state of the main pipe wall becomes as shown in FIG. 2(C) because only the main pipe wall is maintained and the other parts shift to return to their original state by cooling.

このような現象によって、A点の近傍は、内方に突出し
て、引っ張り応力を生じることになる。ここまでのA点
の応カー歪み履歴は、第3図(C)及び第3図(d)に
太い実線で示°4゛ように、S、からS、、に変化して
引っ張り応力となるとともに、降伏点を越えることによ
って、杢らにSi2へと変化4′る。
Due to this phenomenon, the vicinity of point A protrudes inward, producing tensile stress. The stress strain history at point A up to this point changes from S, to S, and becomes tensile stress, as shown by the thick solid line in Figures 3(C) and 3(d). At the same time, when the yield point is exceeded, it changes into Si2.

[冷却工程] 次いで、第2の加熱手段t’ tの作動を停止させ、以
下、自然放置により常温に戻す。また、冷却時間の経過
とともに、母管壁は、はぼ均一な温度、例えば冷却水の
温度(常温)に戻る。このように常温に戻すことにより
、?5部の歪みがおおよそ零となるところまで変形が戻
るので、3部の応力及び歪みは、第3図(e)に示すよ
うに、S 1+からS14へと移り、最終的に小さな応
力値となる。
[Cooling Step] Next, the operation of the second heating means t' t is stopped, and the temperature is returned to normal temperature by being left to stand naturally. Further, as the cooling time passes, the temperature of the main tube wall returns to a more or less uniform temperature, for example, the temperature of the cooling water (room temperature). By returning it to room temperature like this? As the deformation returns to the point where the strain in the 5th part becomes approximately zero, the stress and strain in the 3rd part move from S1+ to S14, as shown in Figure 3(e), and finally reach a small stress value. Become.

[?5部の応力改善効果の検討] 母管壁の内面における残留応力改善効果は、第2図(a
) 、 (b)に示すように、加熱手段10−11の両
方または一方の作動時に、母管壁の内面が冷却水に接触
して冷却され続けるので、内外面に必要な温度差(例え
ばオーステナイト系ステンレス馴の場合、200℃以上
)が生じるように、加熱条件を設定すると、前述したよ
うに母管壁に降伏点以上の熱応力を発生させ、内面に圧
縮残留応力を付与した状態とするこ、とができる。
[? Examination of stress improvement effect in Part 5] The residual stress improvement effect on the inner surface of the main pipe wall is shown in Figure 2 (a
), (b), when both or one of the heating means 10-11 is activated, the inner surface of the main pipe wall comes into contact with the cooling water and continues to be cooled, so that the necessary temperature difference between the inner and outer surfaces (for example, austenite If the heating conditions are set to produce a temperature of 200°C or higher in the case of stainless steel, as mentioned above, thermal stress exceeding the yield point will be generated on the main pipe wall, and compressive residual stress will be applied to the inner surface. be able to.

また、A点は、最終的には第3図(e)にS 14で示
すように、圧縮の残留応力となり、第3図(a)の状態
と比較して応力改善効果が生じたものとなる。
In addition, the point A eventually becomes a compressive residual stress, as shown by S14 in Figure 3(e), and the stress improvement effect has occurred compared to the state in Figure 3(a). Become.

一方、13点については、説明を省略したが、Δ点と表
裏の関係にあるため、反対の応カー歪み履歴をたどり、
最終的な状態において、第3図(e)にSbの位置で示
すように、若干の引っ張り応力が付与された状態となる
。この場合の応力は、応力腐食割れ等の不具合現象を生
じない程度の大きさく例えば応力腐食割れが生じろしき
い応力Cより小さな(P’i )に設定される。
On the other hand, although the explanation for point 13 has been omitted, since it has a reverse relationship with the Δ point, the opposite stress distortion history can be traced.
In the final state, a slight tensile stress is applied as shown at the position of Sb in FIG. 3(e). The stress in this case is set to a level (P'i) that is large enough not to cause problems such as stress corrosion cracking, and is smaller than the threshold stress C at which stress corrosion cracking occurs.

[加熱条件についての補足説明] 前述したように、母管壁の内面における応力改身を実施
するためには、通常の残留応力改心方法と同様の要求温
度及び加熱時間を満足さ仕ろように行なえばよい。
[Supplementary explanation regarding heating conditions] As mentioned above, in order to carry out stress modification on the inner surface of the main pipe wall, it is necessary to satisfy the required temperature and heating time similar to the normal residual stress reforming method. Just do it.

また、第1の加熱手段IOによる加熱を停止して、第2
の加熱手段11のみで延長加熱を行なう程度は、次式で
与えられた時間以上継続することが必要である。
Further, the heating by the first heating means IO is stopped, and the heating by the second heating means IO is stopped.
It is necessary to perform extended heating using only the heating means 11 for a time longer than the time given by the following equation.

τ= 0 、 71++”/ a・・・・・・・・・・
・・(i)ただし、 τ:コイル2の延長加熱の継続時間 111:ノズルとサーマルスリーブの溶接部厚さa:温
度拡散係数 である。
τ=0, 71++”/a・・・・・・・・・・
...(i) However, τ: Duration of extended heating of the coil 2 111: Thickness of the welded part of the nozzle and thermal sleeve a: Temperature diffusion coefficient.

なお、117I述した実施例に代えて、二重管がオース
テナイト系ステンレス鋼以外の金属管である場合に適用
ずろことらできる。
Note that, instead of the embodiment described in 117I, the present invention can be applied when the double pipe is a metal pipe other than austenitic stainless steel.

「発明の効果」 以」ユ説明したように、本発明に係る二重金属管等の残
留応力改心方法は、母管の内面にサーマルスリーブの基
部を溶接してなる二重金属管の内部に冷却水を存在させ
た状態として、前記J1(部の両側に位置する二重管部
と単管部との両方を同時に加熱し、該加熱工程の後に一
方の、加熱のみを続行して加熱側の基部表面に降伏点を
越える応力を発生さU・、次いで、全部の加熱を停止し
て冷却するようにしているものであるから、次のような
優れた効果を奏する。
``Effects of the Invention'' As explained hereinafter, the residual stress reforming method for double metal pipes, etc. according to the present invention is such that cooling water is injected into the inside of the double metal pipe, which is formed by welding the base of the thermal sleeve to the inner surface of the main pipe. Both the double pipe part and the single pipe part located on both sides of the J1 (part) are heated at the same time, and after the heating process, only one of the bases on the heated side is heated. Since stress exceeding the yield point is generated on the surface, all heating is then stopped and the device is cooled, resulting in the following excellent effects.

■サーマルスリーブの基部溶接部の近傍に、圧縮残留応
力を積極的に付与する等の残留応力改善を行なうことが
できる。
■Residual stress can be improved by actively applying compressive residual stress to the vicinity of the base weld of the thermal sleeve.

■母管壁内面の残留応力改善を実施することによって、
基部溶接部への悪影響が生じた場合でも、その影響を少
なくすることができる。
■By improving the residual stress on the inner surface of the main pipe wall,
Even if an adverse effect occurs on the base weld, the effect can be reduced.

■加熱手段の切り替えによってなし得るので、母管壁の
残留応力改善と同時に、サーマルスリーブの基部溶接部
における残留応力改善を実施することができる。
(2) This can be achieved by switching the heating means, so it is possible to improve the residual stress in the base welded part of the thermal sleeve at the same time as improving the residual stress in the main pipe wall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る二重金属管等の残留応力改心方法
を原子炉圧力容器におけろノズル部分に適用した場合の
一実施例を示す縦断面図、第2図(a)ないし第2図(
C)は二重金属管の一部をモデル化して示す残留応力改
n工程の説明図、第3図(a)ないし第3図(0)はモ
デル化した部分における応力と歪みとの関係を示す曲線
図である。 1・・・・・・原子炉圧力容器、 2・・・・・・ノズル、 3・・・・・・セーフエンド、 4・・・・・;母管、 5・・・・・・サーマルスリーブ、 G・・・・・・筒状中空部、  − 7・・・・・・溶接部(溶接継手)、 8・・・・・・基部溶接部、 9・・・・・・冷却ノズル、 NO・・・・・・第1の加熱手段、 11・・・・・・第2の加熱手段。 出願人  石川島播磨重工業株式会社 第1図
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the residual stress reforming method for double metal pipes, etc. according to the present invention applied to a nozzle portion in a reactor pressure vessel, and FIGS. figure(
C) is an explanatory diagram of the residual stress modification process showing a modeled part of the double metal pipe, and Figures 3(a) to 3(0) show the relationship between stress and strain in the modeled part. It is a curve diagram. 1... Reactor pressure vessel, 2... Nozzle, 3... Safe end, 4... Main tube, 5... Thermal sleeve , G... Cylindrical hollow part, -7... Welded part (welded joint), 8... Base welded part, 9... Cooling nozzle, NO ...First heating means, 11...Second heating means. Applicant Ishikawajima Harima Heavy Industries Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 母管の内面にサーマルスリーブの基部を溶接してなる二
重金属管の内部に冷却水を存在させた状態とする工程と
、前記基部の両側に位置する二重管部と単管部との両方
を同時に加熱する工程と、該工程の後に一方の加熱のみ
を続行して加熱側の基部表面に降伏点を越える応力を発
生させる工程と、全部の加熱を停止して冷却する工程と
を有することを特徴とする二重金属管等の残留応力改善
方法。
A step in which cooling water is present inside a double metal tube formed by welding the base of the thermal sleeve to the inner surface of the main tube, and both the double tube section and the single tube section located on both sides of the base. and a step of continuing heating only one side after the step to generate stress exceeding the yield point on the base surface of the heated side, and a step of stopping all heating and cooling. A method for improving residual stress in double metal pipes, etc., characterized by:
JP61313628A 1986-12-24 1986-12-24 Method for improving residual stress of duplex metallic pipes Pending JPS63160783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313628A JPS63160783A (en) 1986-12-24 1986-12-24 Method for improving residual stress of duplex metallic pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313628A JPS63160783A (en) 1986-12-24 1986-12-24 Method for improving residual stress of duplex metallic pipes

Publications (1)

Publication Number Publication Date
JPS63160783A true JPS63160783A (en) 1988-07-04

Family

ID=18043607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313628A Pending JPS63160783A (en) 1986-12-24 1986-12-24 Method for improving residual stress of duplex metallic pipes

Country Status (1)

Country Link
JP (1) JPS63160783A (en)

Similar Documents

Publication Publication Date Title
US4608101A (en) Method for heat treating pipe with double-pipe section
JPS63160783A (en) Method for improving residual stress of duplex metallic pipes
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
US4807801A (en) Method of ameliorating the residual stresses in metallic duplex tubes and the like and apparatus therefor
JP2624649B2 (en) Method for improving residual stress in double metal tubes, etc.
JPS58210123A (en) Heat treatment of clad steel pipe
US4772336A (en) Method of improving residual stress in circumferential weld zone
JPS63199075A (en) Method for welding metallic pipe
JPH0699754B2 (en) Heat treatment method for metal tubes
JPH0699755B2 (en) Heat treatment method for metal tubes
JPS61136432A (en) Removal of residual air in metal pipe
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPS62222029A (en) Method for improving residual stress in double metal tube and the like
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
JPH0246654B2 (en) CHUKUTAINOZANRYUORYOKUKAIZENHOHO
JPS62211325A (en) Improvement of residual stress of double metallic pipe or the like
JPH0366491A (en) Welding method for metallic pipe
JPS5852428A (en) Heat treatment for improving stress of shaft
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
JPH01242720A (en) Manufacture of clad steel tube
JP2808825B2 (en) Cladding treatment method for steel pipe inner surface
JPS63160782A (en) Method for improving residual stress of duplex metallic pipes
JPH02282428A (en) Method for improving residual stress in double metal tube or the like
JPS63143221A (en) Improvement of residual stress in double metal tube or the like
JPS61104029A (en) Heat treatment of pipeline