JPS62211325A - Improvement of residual stress of double metallic pipe or the like - Google Patents

Improvement of residual stress of double metallic pipe or the like

Info

Publication number
JPS62211325A
JPS62211325A JP61052060A JP5206086A JPS62211325A JP S62211325 A JPS62211325 A JP S62211325A JP 61052060 A JP61052060 A JP 61052060A JP 5206086 A JP5206086 A JP 5206086A JP S62211325 A JPS62211325 A JP S62211325A
Authority
JP
Japan
Prior art keywords
base pipe
heating
cooling water
main pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052060A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Atsushi Tanaka
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61052060A priority Critical patent/JPS62211325A/en
Publication of JPS62211325A publication Critical patent/JPS62211325A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To suppress the generation and growth of a corrosion crack by subjecting the surface of a base pipe to quick heating under specific conditions while cooling water is made to exist between the base pipe and a thermal sleeve therein, then to slow cooling, thereby imparting a residual compressive stress to the surface of the base pipe. CONSTITUTION:The cooling water is fed into double pipes successively provided to a nozzle 2 of a pressure vessel 1 for a nuclear reactor and while the cooling water is made to exist in the annular hollow part between the base pipe 3 and the thermal sleeve therein, the base pipe 3 in the range of a part 9 to be treated is quickly heated from the outside surface by a heating means 7. The quantity of heat input is so set that the heating time for the surface of the base pipe 3 attains 20-50% of Fourier number, the penetration depth of heating 20-60% of the wall thickness of the base pipe 3 and the surface temp. >=450 deg.C. The part near the outside surface of the wall of the pipe 3 is thus led to the high temp. state. The thermal stress above the yield point is generated by the temp. difference from the part near the inside surface in this stage. The temp. difference of the wall of the base pipe 3 is removed by slow cooling, by which the state of imparting the residual compressive stress to the inside surface, i.e., the part 9 to be treated is attained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、金属管の残留応力改善方法に係わり、特にサ
ーマルスリーブを有して流体の停滞域が発生し易い構造
の二重金属管に用いて好適な残留応力改善方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving residual stress in metal pipes, and is particularly applicable to double metal pipes that have a thermal sleeve and have a structure where fluid stagnation areas are likely to occur. The present invention relates to a method for improving residual stress that is suitable for this purpose.

「従来の技術」 一般に、金属材料、例えば原子力や化学プラント等に多
用されているオーステナイト系ステンレス鋼等において
は、引っ張り応力と腐食因子とが共存する場合、腐食割
れが急速に進行することが知られている。
"Prior Art" Generally, it is known that corrosion cracking progresses rapidly in metallic materials such as austenitic stainless steel, which is often used in nuclear power plants, chemical plants, etc., when tensile stress and corrosion factors coexist. It is being

従来、このような金属管の応力を改善する場合、金属管
の中に冷却水を挿通させながら、金属管を誘導加熱して
、金属管の内外面に降伏点以上の熱応力が生じる温度差
を与えて、金属管の継ぎ目等の溶接部付近の内面に、残
留圧縮応力を発生させた状態とする応力改善方法が考え
られている。
Conventionally, in order to improve the stress in such metal tubes, cooling water is passed through the metal tube and induction heating is applied to the metal tube to create a temperature difference that causes thermal stress above the yield point on the inner and outer surfaces of the metal tube. A stress improvement method has been considered in which residual compressive stress is generated on the inner surface near a welded part such as a joint of a metal pipe.

「発明が解決しようとする問題点」 しかしながら、このような方法は、直管等の単純な形状
には適用可能であるが、サーマルスリーブを有する二重
管等であると、母管とサーマルスリーブとの間に冷却水
の停滞域が生じて、冷却水の対流現象が妨げられること
になるため、残留応力改善に必要な温度差を付与するこ
とが困難となるという問題点がある。
"Problems to be Solved by the Invention" However, although this method is applicable to simple shapes such as straight pipes, when it comes to double pipes with thermal sleeves, the main pipe and thermal sleeve A stagnation area of the cooling water is generated between the two and the convection phenomenon of the cooling water is hindered, so there is a problem that it becomes difficult to provide the temperature difference necessary for improving the residual stress.

本発明は、このような従来技術の問題点を有効に解決す
ることを目的とするものである。
The present invention aims to effectively solve the problems of the prior art.

「問題点を解決するだめの手段」 本発明における二重金属管等の残留応力改善方法は、母
管とその内部のサーマルスリーブとの間に、冷却水を存
在させた状態で、母管表面を加熱時間がフーリエ数の2
0%ないし50%、加熱浸透深さが母管壁厚さの20%
ないし60%、表面温度が450℃以上となる範囲で急
速加熱した後、徐冷するようにしているものであり、加
熱による温度上昇時間と母管内壁への熱伝達時間との間
に差が生じることを利用して、母管壁の外面近傍を高温
状態に導き、このときの内面近傍との温度差によって、
降伏点以上の熱応力を発生させ、次いで冷却して母管壁
の温度差を除去することにより、処理対象部分である内
面に圧縮残留応力を付与した状態を形成するものである
"Means to Solve the Problem" The method of improving residual stress in double metal pipes, etc. in the present invention is to remove the surface of the main pipe with cooling water present between the main pipe and the thermal sleeve inside the main pipe. Heating time is 2 of Fourier number
0% to 50%, heating penetration depth is 20% of main pipe wall thickness
After rapid heating to a surface temperature of 450°C or higher, the temperature is slowly cooled, and there is a difference between the time for temperature rise due to heating and the time for heat transfer to the inner wall of the main pipe. Taking advantage of this phenomenon, the area near the outer surface of the main pipe wall is brought to a high temperature state, and the temperature difference between the area near the inner surface and the inner surface at this time causes
By generating thermal stress above the yield point and then cooling to remove the temperature difference on the main pipe wall, a state is created in which compressive residual stress is applied to the inner surface, which is the part to be treated.

「実施例」 以下、本発明における二重金属管等の残留応力改善方法
の一実施例を第1図ないし第3図に基づいて説明する。
"Example" Hereinafter, an example of the method for improving residual stress in a double metal pipe or the like according to the present invention will be described with reference to FIGS. 1 to 3.

該−実施例においては、オーステナイト系ステンレスM
C8US304)からなる管壁厚さ19mmの二重管を
処理対象としており、第1図に示す二重管は、原子炉圧
力容器lのノズル2に連設されるととらに、母管3の中
にサーマルスリーブ4が配設された構造で、水平(二敷
設されているものとする。なお、図中符号5はセーフエ
ンド、符号6はリング状中空部、符号7は誘導加熱コイ
ル等の加熱手段、符号8は溶接継手、符号9は処理対象
部分である。
In this example, austenitic stainless steel M
The target of treatment is a double pipe made of C8US304) with a wall thickness of 19 mm.The double pipe shown in FIG. It has a structure in which a thermal sleeve 4 is disposed inside, and it is assumed that the thermal sleeve 4 is installed horizontally. The heating means, reference numeral 8 is a welded joint, and reference numeral 9 is a part to be treated.

[冷却水挿通工程コ このような構造の二重管に、第1図矢印で示すように冷
却水を送り込むと、サーマルスリーブ4を経由して、原
子炉圧力容器lの中に冷却水が流れ込むが、母管3とサ
ーマルスリーブ4の間のリング状中空部6には、冷却水
が満たされるものの流れが生じない部分、つまり、停滞
域が残される。
[Cooling water insertion process] When cooling water is sent into the double pipe with this structure as shown by the arrow in Figure 1, the cooling water flows into the reactor pressure vessel l via the thermal sleeve 4. However, in the ring-shaped hollow portion 6 between the main pipe 3 and the thermal sleeve 4, a portion where cooling water is filled but no flow occurs, that is, a stagnation region remains.

しかし、冷却水の挿通と冷却水及び母管等の熱伝達によ
り、二重管の各部等は、はぼ均一な温度、例えば冷却水
の温度(常温)となる。
However, due to the insertion of the cooling water and the heat transfer between the cooling water and the main pipe, each part of the double pipe has a fairly uniform temperature, for example, the temperature of the cooling water (normal temperature).

[急速加熱工程コ 次いで、加熱手段7を作動させて、処理対象部分9にお
ける範囲の母管3を外表面から高周波誘導加熱する。こ
のとき、母管表面を加熱時間がフーリエ数の20%ない
し50%、加熱浸透深さが母管壁厚さの20%ないし6
0%となるように設定するとともに、母管3の表面温度
が450℃以上の範囲となるように入熱量を設定する。
[Rapid heating step] Next, the heating means 7 is operated to perform high-frequency induction heating of the main pipe 3 in the area to be treated 9 from the outer surface. At this time, the heating time for the main pipe surface is 20% to 50% of the Fourier number, and the heating penetration depth is 20% to 6% of the main pipe wall thickness.
0%, and the amount of heat input is set so that the surface temperature of the main pipe 3 is in the range of 450° C. or higher.

第2図は、金属管がオーステナイト系ステンレス鋼から
なる二重管であり、母管3の管壁の厚さが19mm、加
熱浸透深さが9111ffi(管壁厚さのほぼ50%)
、加熱時間が23秒(フーリエ数の50%)、加熱時の
最高温度が450℃の条件で加熱した場合の加熱終了直
後と外面からの距離との関係を示している。
In Fig. 2, the metal tube is a double tube made of austenitic stainless steel, the tube wall thickness of the main tube 3 is 19 mm, and the heating penetration depth is 9111ffi (approximately 50% of the tube wall thickness).
, shows the relationship between the time immediately after heating and the distance from the outer surface when heating is performed under the conditions that the heating time is 23 seconds (50% of the Fourier number) and the maximum temperature during heating is 450°C.

この第2図の結果より、母管壁の厚さ方向に大きな温度
差が発生していることが明らかである。
From the results shown in FIG. 2, it is clear that a large temperature difference occurs in the thickness direction of the main tube wall.

この急速加熱工程中において、高温部分から低温部分へ
と熱伝達が行なわれるために、次第に、母管壁の温度も
高くなる傾向を示すが、指定され+、 & 1lI−/
rXg 浦−y+ IJ  + b l f 1wt 
kmnNMF; n411!I (前例では20%秒)
であることの理由により、急速加熱中における熱伝達に
よって、内面の温度が上昇する程度は、実用上許容でき
る範囲である。
During this rapid heating process, heat transfer takes place from the high-temperature part to the low-temperature part, so the temperature of the main tube wall gradually tends to increase, but as specified by +, & 1lI-/
rXg ura-y+ IJ + b l f 1wt
kmnNMF; n411! I (20% seconds in the example)
For this reason, the extent to which the temperature of the inner surface increases due to heat transfer during rapid heating is within a practically acceptable range.

また、加熱直後における母管壁の状態は、加熱浸透深さ
で代表される高温部分と、熱伝達の遅れによる低温部分
との間に、大きな温度差が生じるため、第3図の曲線A
で示すように、外面に近い加熱部分には、熱膨張を妨げ
ることによる圧縮応力が、低温部分には、熱膨張による
引っ張り応力が発生し、特に、加熱部分は圧縮応力が高
温状態によって低下した降伏点を越えるために、塑性変
形を伴うようになる。
In addition, in the state of the main pipe wall immediately after heating, there is a large temperature difference between the high temperature part represented by the heating penetration depth and the low temperature part due to delay in heat transfer, so curve A in Fig. 3
As shown in , compressive stress occurs in the heated part near the outer surface due to hindering thermal expansion, and tensile stress occurs in the low temperature part due to thermal expansion.In particular, in the heated part, compressive stress is reduced due to the high temperature state In order to exceed the yield point, plastic deformation occurs.

[徐冷工程コ 一方、急速加熱工程後において、第1図の矢印で示す冷
却水の送り込みを続行するか、または、自然放置状態の
徐冷がなされると、その冷却の過程で高温部分の熱の伝
達により、一度は母管の内面温度が上昇して、場合によ
っては核沸騰あるいは膜沸騰現象が伴って、リング状中
空部6における冷却水の入れ換えが生じる等により、冷
却が促進されて、母管壁の温度が次第に均一化し、最終
的には冷却水の温度となる。そして、母管壁内の温度が
均一化された状態にあっては、第3図の曲線Bで示すよ
うに、外面から離間した内面には、前記塑性変形による
寸法の収縮分に対応して、圧縮残留応力が発生した状態
、つまり、処理対象部分に圧縮残留応力を付与した状態
とすることができる。
[Slow cooling process] On the other hand, after the rapid heating process, if cooling water is continued to be fed as shown by the arrow in Figure 1, or if slow cooling is performed in a natural state, the high temperature part will be cooled during the cooling process. Due to the transfer of heat, the inner surface temperature of the main pipe increases, and depending on the case, nucleate boiling or film boiling occurs, and cooling water is replaced in the ring-shaped hollow part 6, thereby promoting cooling. , the temperature of the main pipe wall gradually becomes uniform and eventually reaches the temperature of the cooling water. When the temperature inside the main pipe wall is equalized, as shown by curve B in Figure 3, the inner surface spaced apart from the outer surface has a dimensional shrinkage caused by the plastic deformation. , a state in which compressive residual stress is generated, that is, a state in which compressive residual stress is applied to the portion to be processed can be achieved.

[圧縮残留応力付与条件の説明] 前記した急速加熱工程と徐冷工程とを組み合わせた場合
における処理条件について補足説明すると、オーステナ
イト系ステンレス鋼においては、本発明者等の研究によ
れば、次の条件下で目的を達成することができる。
[Explanation of conditions for imparting compressive residual stress] To provide a supplementary explanation of the processing conditions when the rapid heating step and slow cooling step described above are combined, in austenitic stainless steel, according to research by the present inventors, the following Objectives can be achieved under certain conditions.

即ち、母管壁の内外に大きな温度差を付与するためには
、加熱時間(to)について、次の式を満足させること
が必要である。
That is, in order to provide a large temperature difference between the inside and outside of the main pipe wall, it is necessary for the heating time (to) to satisfy the following equation.

0 、 2 <a−to/ L″< 0 、 5−−−
−−−Ci )ただし、a:温度伝達率(m/h) L:母管壁の厚さ これをフーリエ数(F)を用いて整理すると、次式で表
される。
0, 2 <a-to/L″< 0, 5---
---Ci) However, a: Temperature transfer rate (m/h) L: Thickness of main pipe wall When this is rearranged using the Fourier number (F), it is expressed by the following formula.

0.2F<t。<0.6F・・・・・・(11)ただし
、F = a−to/ L ’ さらに、同時に加熱浸透深さくS)が母管壁の厚さく[
7)との関係において、次式を満足させることが必要で
ある。
0.2F<t. <0.6F...(11) However, F = a-to/L' Furthermore, at the same time, the heating penetration depth S) is the thickness of the main pipe wall [
7), it is necessary to satisfy the following equation.

0.2L<S<0.6L・・・・・・(iii)ここで
、加熱浸透深さくS)は、高周波誘導加熱時の母管壁の
厚さ方向の発熱分布を決定する寸法である。一般に高周
波誘導加熱時の発熱密度(W)は、次式により表される
0.2L<S<0.6L (iii) Here, the heating penetration depth S) is a dimension that determines the heat generation distribution in the thickness direction of the main tube wall during high-frequency induction heating. . Generally, the heat generation density (W) during high-frequency induction heating is expressed by the following formula.

W = W o e−j−−(iv )ただし、Wo=
表面での加熱密度 j=2X/S X:外表面からの距離 なお、加熱浸透深さ(S (cm) )は、S = (
1/ (2π)) Cp / (μrx to″″’)
)’・’−・・・−(V )ただし、ρ:比抵抗(Ω・
cm) μ:比透磁率 r:周波数(H2) で表され、周波数を変化させることにより、加熱深さく
S)を制御することができる。
W = Wo e−j−−(iv) However, Wo=
Heating density at the surface j=2X/S X: distance from the outer surface The heating penetration depth (S (cm)) is S = (
1/ (2π)) Cp / (μrx to″″’)
)'・'−・・・−(V) However, ρ: Specific resistance (Ω・
cm) μ: relative magnetic permeability r: frequency (H2) By changing the frequency, the heating depth S) can be controlled.

前述の(ii)、(iii)の条件下で外面の温度が4
50℃以上となる範囲で加熱を行なえば、目的の処理対
象部分に圧縮残留応力を付与するための有効な温度分布
を得ろことができる。
Under the conditions (ii) and (iii) above, the temperature of the outer surface is 4
By heating in a range of 50° C. or higher, it is possible to obtain an effective temperature distribution for applying compressive residual stress to the target portion to be treated.

この条件よりも、加熱時間が長時間であるか、加熱浸透
深さくS)が大きい状態で加熱を行なった場合、内面の
温度は相当上昇し、母管壁の内外に大きな温度差が得ら
れなくなる。また、逆に加熱時間が短いか加熱浸透深さ
が小さい場合、表面のみが温度上昇し、外面付近のごく
浅い部分のみが塑性変形を生じることになり、内面に充
分な圧縮残留応力を得ることが難しくなる。
If the heating time is longer or the heating penetration depth S) is larger than this condition, the inner surface temperature will rise considerably and a large temperature difference will be obtained between the inside and outside of the main pipe wall. It disappears. On the other hand, if the heating time is short or the heating penetration depth is small, only the surface temperature will rise and only a very shallow part near the outer surface will undergo plastic deformation, making it difficult to obtain sufficient compressive residual stress on the inner surface. becomes difficult.

なお、外面温度の上限は、母管壁の組織に悪影響を及ぼ
さないように設定する必要がある。例えばオーステナイ
ト系ステンレス鋼の場合、組織中に鋭敏化域を生じさせ
ないためには、上限を550℃に制限すべきである。
Note that the upper limit of the outer surface temperature needs to be set so as not to adversely affect the structure of the main tube wall. For example, in the case of austenitic stainless steel, the upper limit should be limited to 550° C. in order to avoid creating sensitized zones in the structure.

[萌処理工程についてコ このように、3条件を包含する一実施例の処理工程を施
す場合、限定された範囲の処理となるため、残留応力改
善効果が少なくなることも有り得るが、このような場合
は、前記急速加熱工程に先立って、予め、処理対象部分
を前述の上限温度以下の温度で加熱することにより、従
来の技術で説明した残留応力改善方法を適用して、残留
応力の改善を図っておく等により、その後の本発明の方
法の実施効果と相乗させて、残留応力改善効果を向上さ
仕ることができる。
[About the Moe treatment process] When performing the treatment process of one example that includes the three conditions, the treatment range is limited, so the residual stress improvement effect may be reduced, but such In this case, prior to the rapid heating step, the residual stress can be improved by heating the part to be treated at a temperature below the above-mentioned upper limit temperature and applying the residual stress improvement method described in the conventional technology. By taking such measures in advance, the effect of improving residual stress can be improved by combining the effects of the subsequent implementation of the method of the present invention.

なお、ここまでは、第1図例の二重管について説明した
が、冷却水が停滞する類似する他の管体、あるいは、冷
却水が停滞しない条件の管体においても、急速加熱時間
内の冷却を無視できる範囲では、同様な残留応力改善方
法により実施し得ることは勿論である。
Up to this point, we have explained the double pipe in the example in Figure 1, but other similar pipes in which the cooling water stagnates, or pipes in which the cooling water does not stagnate, can also be used within the rapid heating time. Of course, similar residual stress improvement methods can be used as long as cooling is negligible.

1−発明の効果」 以上説明したように本発明の二重金属管等の残留応力改
心方法は、急速加熱による温度上昇時間と母管内壁への
熱伝達時間の差により、母管壁の外面近傍が高温状態に
導かれ、母管壁内の他の部分との間に温度差が生じて、
母管壁内に降伏点以上の熱応力が発生して塑性変形が起
こり、次いで徐冷により母管壁の温度差がなくなると、
塑性変形部分の収縮作用によって、処理対象部分である
内面に圧縮残留応力を付与した状態とするようにしてい
るものであるから、母管の中にサーマルスリーブが存在
して、リング状中空部が形成される場合でも、その付近
の母管内面に圧縮残留応力を付与して、腐食割れの発生
、成長を抑制することができる等の優れた効果を奏する
1-Effects of the Invention As explained above, the residual stress reforming method for double metal pipes, etc. of the present invention is effective because of the difference between the temperature rise time due to rapid heating and the heat transfer time to the inner wall of the main pipe. is brought to a high temperature state, creating a temperature difference between it and other parts of the main pipe wall,
Thermal stress above the yield point occurs in the main pipe wall, causing plastic deformation, and then, when the temperature difference in the main pipe wall disappears due to slow cooling,
Because the compressive residual stress is applied to the inner surface, which is the part to be treated, due to the contraction of the plastically deformed part, a thermal sleeve exists inside the main pipe, and the ring-shaped hollow part Even when such a structure is formed, compressive residual stress can be applied to the inner surface of the main tube in the vicinity, thereby producing excellent effects such as suppressing the occurrence and growth of corrosion cracks.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明における二重金属管の残留応力改善方法を
オーステナイト系ステンレス鋼管に適用した場合の一実
施例を示し、第1図は二重管の処理状態の縦断面図、第
2図は加熱時間が23秒及び加熱浸透深さが9n+n+
である場合における加熱終了直後の温度と外面からの距
離との関係曲線図、第3図は加熱時間23秒及び加熱浸
透深さ9mmである場合における外面からの距離と発生
応力との関係を示す曲線図である。 l・・・・・・原子炉圧力容器、2・・・・・・ノズル
、3・・・・・・母管、4・・・・サーマルスリーブ、
5・・・・・・セーフエンド、6・・・・・リング状中
空部、7・・・・・・加熱手段、8・・・・・・溶接継
手、9・・・・・処理対象部分。
The drawings show an example in which the method of improving residual stress in a double metal pipe according to the present invention is applied to an austenitic stainless steel pipe. Figure 1 is a longitudinal cross-sectional view of the treated state of the double pipe, and Figure 2 shows the heating time. is 23 seconds and heating penetration depth is 9n+n+
Figure 3 shows the relationship between the distance from the outer surface and the generated stress when the heating time is 23 seconds and the heating penetration depth is 9 mm. It is a curve diagram. l... Reactor pressure vessel, 2... Nozzle, 3... Main tube, 4... Thermal sleeve,
5... Safe end, 6... Ring-shaped hollow part, 7... Heating means, 8... Welded joint, 9... Part to be treated. .

Claims (1)

【特許請求の範囲】[Claims] 母管とその内部のサーマルスリーブとの間に、冷却水を
存在させた状態で、母管表面を加熱時間がフーリエ数の
20%ないし50%、加熱浸透深さが母管壁厚さの20
%ないし60%、表面温度が450℃以上となる範囲で
急速加熱した後、徐冷することを特徴とする二重金属管
の残留応力改善方法。
With cooling water present between the main pipe and the thermal sleeve inside it, the heating time for the main pipe surface is 20% to 50% of the Fourier number, and the heating penetration depth is 20% of the main pipe wall thickness.
% to 60% and a surface temperature of 450° C. or higher, followed by slow cooling.
JP61052060A 1986-03-10 1986-03-10 Improvement of residual stress of double metallic pipe or the like Pending JPS62211325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052060A JPS62211325A (en) 1986-03-10 1986-03-10 Improvement of residual stress of double metallic pipe or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052060A JPS62211325A (en) 1986-03-10 1986-03-10 Improvement of residual stress of double metallic pipe or the like

Publications (1)

Publication Number Publication Date
JPS62211325A true JPS62211325A (en) 1987-09-17

Family

ID=12904268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052060A Pending JPS62211325A (en) 1986-03-10 1986-03-10 Improvement of residual stress of double metallic pipe or the like

Country Status (1)

Country Link
JP (1) JPS62211325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084855A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Residual stress improving method of pipeline
WO2008136068A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Heavy Industries, Ltd. Method and device for improving residual stress in pipe body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141825A (en) * 1983-12-27 1985-07-26 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment of pipe body having double-pipe part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141825A (en) * 1983-12-27 1985-07-26 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment of pipe body having double-pipe part

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084855A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Residual stress improving method of pipeline
JP2008169444A (en) * 2007-01-12 2008-07-24 Mitsubishi Heavy Ind Ltd Method for improving residual stress in tubular body
US8637784B2 (en) 2007-01-12 2014-01-28 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body
WO2008136068A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Heavy Industries, Ltd. Method and device for improving residual stress in pipe body
US8362393B2 (en) 2007-04-20 2013-01-29 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body

Similar Documents

Publication Publication Date Title
US4229235A (en) Heat-treating method for pipes
US4608101A (en) Method for heat treating pipe with double-pipe section
JPS62211325A (en) Improvement of residual stress of double metallic pipe or the like
CN109317787A (en) A kind of steel conduit all positon narrow gap TIG automatic welding process
CN108941521A (en) A kind of riser cutting method of large size two phase stainless steel steel-casting
JP2624649B2 (en) Method for improving residual stress in double metal tubes, etc.
JPH0699754B2 (en) Heat treatment method for metal tubes
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPH0699755B2 (en) Heat treatment method for metal tubes
JPS62222029A (en) Method for improving residual stress in double metal tube and the like
JPS58210123A (en) Heat treatment of clad steel pipe
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
JPS63160783A (en) Method for improving residual stress of duplex metallic pipes
JP2808825B2 (en) Cladding treatment method for steel pipe inner surface
JPS62247024A (en) Heat treatment of nozzle part for pressure vessel
RU2263015C1 (en) Method for making tubular adapters of zirconium and steel sleeves
JPS6018293A (en) Method for relieving residual stress of welded joint part
RU2034050C1 (en) Straight seam electric welded pipes thermal treatment method
JPS5943822A (en) Heat treatment of pipes
JPS61104029A (en) Heat treatment of pipeline
JPH01242720A (en) Manufacture of clad steel tube
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe
JPH01165724A (en) Improvement of residual stress on surface of weld zone of metallic pipe joint
JPS61245090A (en) Method of thermally treating piping system
JPS5929085B2 (en) Quenching method for steel pipes that does not cause quench cracking