JPH06177171A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH06177171A
JPH06177171A JP32636092A JP32636092A JPH06177171A JP H06177171 A JPH06177171 A JP H06177171A JP 32636092 A JP32636092 A JP 32636092A JP 32636092 A JP32636092 A JP 32636092A JP H06177171 A JPH06177171 A JP H06177171A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
film
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32636092A
Other languages
Japanese (ja)
Inventor
Arata Toyoda
新 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32636092A priority Critical patent/JPH06177171A/en
Publication of JPH06177171A publication Critical patent/JPH06177171A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a breakdown voltage between electrodes sufficiently without increasing the power consumption and to manufacture the device with high yield without damaging its characteristics even in the case of a CCD of a large number of pixels by forming a side wall consisting of insulating film or polycrystalline silicon film on side surface of a first gate electrode. CONSTITUTION:On a semiconductor substrate 1 formed on a first gate insulating film 2., first gate electrode 5 on whose upper surface an insulating film 4 is formed is formed. On a side surface of the first gate electrode 5, a side wall 6 consisting of insulating film or polycrystalline silicon film is formed. Further, after the first gate insulating film 2 except that the part right under th first gate electrode 5 is removed, a second gete insulating film 7 is formed on the semiconductor substrate 1 and a second gate electrode 8 is formed through the second insulating film 7. For example, a side wall consisting of a silicon nitride film 6 is formed, after which the second gate insulating film 7 consisting of silicon oxide film formed by a CVD method is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送装置に関し、
特に電極間絶縁耐圧が十分高い電荷転送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device,
In particular, it relates to a charge transfer device having a sufficiently high dielectric breakdown voltage between electrodes.

【0002】[0002]

【従来の技術】現在、固体撮像装置に広く用いられてい
る電荷転送装置である電荷結合素子(以下CCDとす
る)は、極めて狭い間隔で電気的に分離された多数のM
OSキャパシタを配列された構造を持っており、各々の
MOSキャパシタに次々に電圧パルスを印加し、このM
OSキャパシタの列に沿って電荷を転送する機構を持っ
ている。
2. Description of the Related Art Currently, a charge-coupled device (hereinafter referred to as CCD), which is a charge transfer device widely used in a solid-state image pickup device, has a large number of Ms electrically separated at extremely narrow intervals.
It has a structure in which OS capacitors are arranged, and a voltage pulse is applied to each MOS capacitor one after another.
It has a mechanism for transferring charges along the columns of the OS capacitors.

【0003】このようなMOSキャパシタの列を形成す
る上で最も重要な点は、各電極を数百nm程度の極めて
狭い間隔で形成しなければならないことであり、現在の
フォトリソグラフィ技術ではこれだけ狭い間隔で電極を
分離することは困難である。
The most important point in forming such a row of MOS capacitors is that each electrode must be formed with an extremely narrow interval of about several hundreds nm, which is so narrow in the current photolithography technology. It is difficult to separate the electrodes at intervals.

【0004】従来、このような構造の電極列を形成する
ために次のような方法が用いられていた。すなわち、図
4に示すように半導体基板9上にゲート絶縁膜10を介
して多結晶シリコンの第1ゲート電極11をCVD法と
フォトリソグラフィ法によって形成した後、第1ゲート
電極11の表面に熱酸化によって200nm程度のシリ
コン酸化膜12を形成し、次にこの上にCVD法とフォ
トリソグラフィ法によって多結晶シリコンの第2ゲート
電極13を形成する。このように複数の層の電極を薄い
絶縁膜を介して重ね合わせる構造とすることにより、現
在フォトリソグラフィ技術によって余裕をもって数百n
m程度の間隔でゲート電極の列を形成できる。また第1
ゲート電極11には導電性不純物が高濃度に添加されて
いるため熱酸化速度が高く、厚さのスケールの異なるゲ
ート酸化膜と層間絶縁膜を1回の熱酸化で同時に形成す
ることもできる。
Conventionally, the following method has been used to form an electrode array having such a structure. That is, as shown in FIG. 4, after the first gate electrode 11 of polycrystalline silicon is formed on the semiconductor substrate 9 via the gate insulating film 10 by the CVD method and the photolithography method, the surface of the first gate electrode 11 is heated. A silicon oxide film 12 of about 200 nm is formed by oxidation, and then a second gate electrode 13 of polycrystalline silicon is formed on the silicon oxide film 12 by CVD and photolithography. With the structure in which the electrodes of a plurality of layers are overlapped with each other with the thin insulating film interposed therebetween, several hundreds of nanometers can be provided by the photolithography technique at present.
Rows of gate electrodes can be formed at intervals of about m. Also the first
Since the conductive impurities are added to the gate electrode 11 at a high concentration, the thermal oxidation rate is high, and the gate oxide film and the interlayer insulating film having different thickness scales can be simultaneously formed by one thermal oxidation.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のCCD
の製造方法は、第1ゲート電極および第2ゲート電極を
形成している多結晶シリコン層の層間絶縁膜として多結
晶シリコンを熱酸化して形成したシリコン酸化膜を用い
ている。しかしながら、このシリコン酸化膜は単結晶シ
リコンを熱酸化して形成したシリコン酸化膜に比べて未
酸化シリコンや導電性不純物として高濃度に添加された
リン等を多く含み、膜質は著しく劣り絶縁耐圧が低いと
いう問題を有する。また熱酸化は多結晶の粒界に沿って
進行することから、酸化後の電極の表面は凹凸が極めて
大きくなり、これが層間の絶縁耐圧の低い1つの原因と
もなっている。したがって、特に画素数の多い大面積の
CCDの場合、電極間の絶縁不良が発生する確立が高く
CCDの製造歩留りを大幅に低下させるという問題点が
あった。
SUMMARY OF THE INVENTION The conventional CCD described above.
The method of manufacturing uses a silicon oxide film formed by thermally oxidizing polycrystalline silicon as an interlayer insulating film of the polycrystalline silicon layer forming the first gate electrode and the second gate electrode. However, compared with a silicon oxide film formed by thermally oxidizing single crystal silicon, this silicon oxide film contains a large amount of unoxidized silicon and phosphorus added as a conductive impurity at a high concentration, and thus the film quality is extremely poor and the withstand voltage is low. It has the problem of being low. Further, since the thermal oxidation proceeds along the grain boundaries of the polycrystal, the unevenness of the surface of the electrode after oxidation becomes extremely large, which is one of the causes of the low dielectric strength between layers. Therefore, particularly in the case of a large-area CCD having a large number of pixels, there is a problem that insulation failure between electrodes is highly likely to occur and the manufacturing yield of the CCD is significantly reduced.

【0006】上述した従来技術の問題点を解決するため
の技術としては、これまで特開平2−292834にお
いて、図5(a)に示すように上面に絶縁膜14が積層
された第1のゲート電極15の側面にCVD法とエッチ
ング法により絶縁膜の側壁16を形成し、その後図5
(b)に示すように第2のゲート電極17を形成するこ
とによって電極間耐圧を向上させる方法が提案されてい
る。また、特開平3−30439において、図6に示す
ように第1のゲート電極21上に形成したシリコン酸化
膜22上にさらにCVD法によりシリコン窒化膜23を
積層し、その表面を熱酸化して薄いシリコン酸化膜24
を形成し、その後第2のゲート電極25を形成すること
により電極間耐圧を向上させる方法が提案されている。
As a technique for solving the above-mentioned problems of the prior art, the first gate in which the insulating film 14 is laminated on the upper surface as shown in FIG. 5 (a) is disclosed in JP-A-2-292834. The side wall 16 of the insulating film is formed on the side surface of the electrode 15 by the CVD method and the etching method.
As shown in (b), there has been proposed a method of improving the inter-electrode breakdown voltage by forming the second gate electrode 17. Further, in JP-A-3-30439, as shown in FIG. 6, a silicon nitride film 23 is further laminated on the silicon oxide film 22 formed on the first gate electrode 21 by the CVD method, and the surface thereof is thermally oxidized. Thin silicon oxide film 24
There is proposed a method of improving the inter-electrode breakdown voltage by forming the first gate electrode 25 and then forming the second gate electrode 25.

【0007】しかしながら、特開平2−292834に
示された方法の場合、エッチバックにより絶縁膜の側壁
16を形成する際、第2のゲートとなる部分の半導体基
板19表面をエッチングのストッパーとして用いなけれ
ばならず、この部分が過剰のダメージを受け、固体撮像
装置を作成した場合、暗電流が増加したり画像キズを発
生させるという問題点がある。
However, in the case of the method disclosed in Japanese Patent Laid-Open No. 2-292834, when the side wall 16 of the insulating film is formed by etch back, the surface of the semiconductor substrate 19 which is to be the second gate must be used as an etching stopper. However, when this portion is excessively damaged and a solid-state image pickup device is produced, there is a problem that dark current increases and image scratches occur.

【0008】また、特開平3−30439に示された方
法の場合、第2のゲート膜と電極間絶縁膜を同時に形成
することになるため、この絶縁膜は十分厚くすることが
できない。したがって絶縁耐圧には限界があり、さらに
電極間には大きな浮揚容量を持つことになり、CCDの
駆動における消費電力が増大するという問題点を持つ。
Further, in the case of the method disclosed in Japanese Patent Application Laid-Open No. 3-30439, since the second gate film and the interelectrode insulating film are formed at the same time, this insulating film cannot be made sufficiently thick. Therefore, there is a limit to the withstand voltage, and a large levitation capacity is provided between the electrodes, resulting in an increase in power consumption for driving the CCD.

【0009】本発明は、上記問題点を解消した上で電極
間の絶縁耐圧を十分高くすることができ、画素数の多い
CCDでも特性を損うことなく高歩留りで製造できるC
CDを提供することである。
According to the present invention, the dielectric breakdown voltage between the electrodes can be sufficiently increased in addition to solving the above problems, and even a CCD having a large number of pixels can be manufactured with a high yield without impairing its characteristics.
To provide a CD.

【0010】[0010]

【課題を解決するための手段】本発明の電荷転送装置
は、第1のゲート絶縁膜が形成された半導体基板上に、
上面に絶縁膜が積層された第1のゲート電極が形成さ
れ、この第1のゲート電極の側面に絶縁膜もしくは多結
晶シリコン膜のサイドウォールが形成され、前記第1の
ゲート電極の直下部分以外の第1のゲート絶縁膜が除去
された後は導体基板上に第2のゲート絶縁膜が形成さ
れ、この第2のゲート絶縁膜を介して第2のゲート電極
が形成された構造を有している。
A charge transfer device according to the present invention comprises: a semiconductor substrate on which a first gate insulating film is formed;
A first gate electrode having an insulating film laminated on the upper surface is formed, and a sidewall of an insulating film or a polycrystalline silicon film is formed on a side surface of the first gate electrode, except for a portion directly below the first gate electrode. Has a structure in which a second gate insulating film is formed on the conductor substrate after the first gate insulating film is removed, and a second gate electrode is formed through the second gate insulating film. ing.

【0011】[0011]

【実施例】次に本発明について図面を用いて説明する。
図1は、本発明の第1の実施例のCCD転送電極の断面
図である。図2(a)〜(d),図3(a),(b)は
図1に示す本発明の第1の実施例の転送電極を形成する
手順を示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a CCD transfer electrode according to the first embodiment of the present invention. 2 (a) to 2 (d), 3 (a) and 3 (b) are sectional views showing a procedure for forming the transfer electrode of the first embodiment of the present invention shown in FIG.

【0012】まず、図2(a)に示すように半導体基板
1上に厚さ70nmのシリコン酸化膜からなるゲート絶
縁膜2およびゲート電極用の多結晶シリコン膜3を形成
し、さらに多結晶シリコン膜3上にCVD法によりシリ
コン酸化膜4を200nmの厚さに成長させる。次に図
2(b)に示すようにフォトリソグラフィ法によりシリ
コン酸化膜4および多結晶シリコン膜3をエッチングし
第1ゲート電極5を形成する。次に、図2(c)に示す
ように半導体基板1上全面にシリコン窒化膜6を100
nmの厚さに成長し、図2(d)に示すようにエッチン
グによってシリコン窒化膜6のサイドウォールを形成す
る。この際、シリコン酸化膜4とゲート絶縁膜2はシリ
コン窒化膜6とのエッチング選択比が2以上あるため十
分な厚さの膜が残される。次に、図3(a)に示すよう
に第1ゲート電極5直下部分を除くゲート絶縁膜2をエ
ッチング除去した後、半導体基板1上全面にCVD法に
よりシリコン酸化膜を70nmの厚さで成長し第2ゲー
ト絶縁膜7とする。次に図3(b)に示すようにCVD
法とフォトリソグラフィ法により多結晶シリコンの第2
ゲート電極8を形成する。
First, as shown in FIG. 2A, a gate insulating film 2 made of a silicon oxide film having a thickness of 70 nm and a polycrystalline silicon film 3 for a gate electrode are formed on a semiconductor substrate 1 and further polycrystalline silicon is formed. A silicon oxide film 4 is grown to a thickness of 200 nm on the film 3 by the CVD method. Next, as shown in FIG. 2B, the silicon oxide film 4 and the polycrystalline silicon film 3 are etched by photolithography to form a first gate electrode 5. Next, as shown in FIG. 2C, a silicon nitride film 6 is formed on the entire surface of the semiconductor substrate 1 by 100.
After that, the sidewalls of the silicon nitride film 6 are formed by etching as shown in FIG. 2D. At this time, since the silicon oxide film 4 and the gate insulating film 2 have an etching selection ratio of 2 or more with respect to the silicon nitride film 6, a film having a sufficient thickness is left. Next, as shown in FIG. 3A, after removing the gate insulating film 2 except the portion directly below the first gate electrode 5, a silicon oxide film is grown to a thickness of 70 nm on the entire surface of the semiconductor substrate 1 by the CVD method. Then, the second gate insulating film 7 is formed. Next, as shown in FIG.
Of polycrystalline silicon by photolithography and photolithography
The gate electrode 8 is formed.

【0013】このようにして転送電極列を形成し電極間
の層間膜を十分な厚さのCVD膜とすることにより、絶
縁耐圧は著しく向上し、素子数の多いCCDにおいても
高い歩留りで安定に製造することができる。
By thus forming the transfer electrode array and forming the interlayer film between the electrodes as a CVD film having a sufficient thickness, the withstand voltage is remarkably improved, and even in a CCD having a large number of elements, the yield is stable and high. It can be manufactured.

【0014】図7(a)〜(d)は本発明の第2の実施
例の製造工程を説明する断面図である。この実施例は図
2,図3で説明した手順とほとんど同じであるが、図2
(c)で形成したシリコン窒化膜6の代りにポリシリコ
ン膜66を形成し、エッチバックすることにより第1ゲ
ート電極5の側壁にポリシリコン膜のサイドウォールを
形成する(図7(c),(d))。シリコン酸化膜4お
よびゲート絶縁膜2は、ポリシリコンに対する選択比が
10以上あるためエッチバック後も十分な厚さの膜が残
る。以下の工程は図2,図3で説明したと同様にして行
い、図1に示す構造が形成される。この実施例では、第
1ゲート電極5と第2ゲート電極8との間の絶縁膜とし
て厚さ70nmの第2ゲート絶縁膜が設けられるが、こ
の膜はCVD法で形成されるため絶縁耐圧が50V以上
と優れ、歩留りを低下させることは無い。
7 (a) to 7 (d) are sectional views for explaining the manufacturing process of the second embodiment of the present invention. This embodiment is almost the same as the procedure described with reference to FIGS.
A polysilicon film 66 is formed instead of the silicon nitride film 6 formed in (c), and a sidewall of the polysilicon film is formed on the side wall of the first gate electrode 5 by etching back (FIG. 7C, (D)). Since the silicon oxide film 4 and the gate insulating film 2 have a selection ratio with respect to polysilicon of 10 or more, a film having a sufficient thickness remains after etching back. The subsequent steps are performed in the same manner as described with reference to FIGS. 2 and 3 to form the structure shown in FIG. In this embodiment, a 70-nm-thick second gate insulating film is provided as an insulating film between the first gate electrode 5 and the second gate electrode 8. However, since this film is formed by the CVD method, the withstand voltage is high. It is as excellent as 50 V or more and does not lower the yield.

【0015】図2,図3および図7ではゲート電極材料
として多結晶シリコンを用いたが、かかるゲート電極と
して多結晶シリコンとタングステンシリサイドの積層構
造電極、もしくはタングステンシリサイドの単層構造電
極を用いることもできる。この場合、配線抵抗が大幅に
低下するので高速駆動が必要なCCDやチップサイズの
大きなCCDでも駆動パルスなまりによる転送不良の発
生を防ぐことができ、さらに電極の光透過率が大幅に低
下するので固体撮像装置のスミアを著しく減少させるこ
とができるという利点を持つ。
Although polycrystalline silicon is used as the gate electrode material in FIGS. 2, 3 and 7, a laminated structure electrode of polycrystalline silicon and tungsten silicide or a single layer structure electrode of tungsten silicide is used as the gate electrode. You can also In this case, since the wiring resistance is significantly reduced, it is possible to prevent the occurrence of transfer failure due to rounding of the drive pulse even in a CCD requiring high-speed driving or a CCD having a large chip size, and further, the light transmittance of the electrode is significantly reduced. It has an advantage that the smear of the solid-state imaging device can be significantly reduced.

【0016】[0016]

【発明の効果】以上説明したように本発明は、ゲート絶
縁膜に比べて厚い層間絶縁膜をCVD法で形成すること
ができるため、CCDの特性を損なわず、かつ消費電力
の増加することなしに電極間の絶縁耐圧を十分に向上さ
せることができるという効果がある。
As described above, according to the present invention, since the interlayer insulating film which is thicker than the gate insulating film can be formed by the CVD method, the characteristics of the CCD are not impaired and the power consumption is not increased. Moreover, there is an effect that the withstand voltage between the electrodes can be sufficiently improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図である。FIG. 1 is a cross-sectional view of a first embodiment of the present invention.

【図2】(a)〜(d)は本発明の第1の実施例の前半
の製造工程を示す断面図である。
2 (a) to 2 (d) are cross-sectional views showing the first half of the manufacturing steps of the first embodiment of the present invention.

【図3】(a),(b)は本発明の第1の実施例の後半
の製造工程を示す断面図である。
3 (a) and 3 (b) are cross-sectional views showing the latter half of the manufacturing process of the first embodiment of the present invention.

【図4】従来のCCDの断面図である。FIG. 4 is a sectional view of a conventional CCD.

【図5】(a),(b)は従来のCCDの問題点を解消
するために提案された製造工程を示す断面図である。
5A and 5B are cross-sectional views showing a manufacturing process proposed to solve the problems of the conventional CCD.

【図6】従来のCCDの問題点を解消するために提案さ
れた他の技術を示す断面図である。
FIG. 6 is a cross-sectional view showing another technique proposed to solve the problem of the conventional CCD.

【図7】(a)〜(d)は本発明の第2の実施例の製造
工程を示す断面図である。
7 (a) to 7 (d) are cross-sectional views showing the manufacturing process of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,9 半導体基板 2,10 ゲート絶縁膜 3 多結晶シリコン 4,12 シリコン酸化膜 5,11 第1ゲート電極 6 シリコン窒化膜 7 第2ゲート絶縁膜 8,13 第2ゲート電極 66 ポリシリコン膜 1,9 Semiconductor substrate 2,10 Gate insulating film 3 Polycrystalline silicon 4,12 Silicon oxide film 5,11 First gate electrode 6 Silicon nitride film 7 Second gate insulating film 8,13 Second gate electrode 66 Polysilicon film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1のゲート絶縁膜が形成された半導体
基板上に、上面に絶縁膜が積層された第1のゲート電極
が形成され、該第1のゲート電極の側面に絶縁膜もしく
は多結晶シリコン膜のサイドウォールが形成され、該第
1のゲート電極の直下部分以外の該第1のゲート絶縁膜
が除去された後該半導体基板上に第2のゲート絶縁膜が
形成され、該第2のゲート絶縁膜を介して第2のゲート
電極が形成されている構造を有することを特徴とする電
荷転送装置。
1. A first gate electrode having an insulating film laminated on an upper surface thereof is formed on a semiconductor substrate having a first gate insulating film formed thereon, and an insulating film or a multi-layered film is formed on a side surface of the first gate electrode. A side wall of a crystalline silicon film is formed, and after removing the first gate insulating film except a portion directly below the first gate electrode, a second gate insulating film is formed on the semiconductor substrate. A charge transfer device having a structure in which a second gate electrode is formed via a second gate insulating film.
JP32636092A 1992-12-07 1992-12-07 Charge transfer device Pending JPH06177171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32636092A JPH06177171A (en) 1992-12-07 1992-12-07 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32636092A JPH06177171A (en) 1992-12-07 1992-12-07 Charge transfer device

Publications (1)

Publication Number Publication Date
JPH06177171A true JPH06177171A (en) 1994-06-24

Family

ID=18186930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32636092A Pending JPH06177171A (en) 1992-12-07 1992-12-07 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH06177171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227255B2 (en) 2001-07-19 2007-06-05 Sony Corporation Semiconductor device and method of producing the same
JP2007194499A (en) * 2006-01-20 2007-08-02 Fujifilm Corp Solid-state imaging element, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227255B2 (en) 2001-07-19 2007-06-05 Sony Corporation Semiconductor device and method of producing the same
JP2007194499A (en) * 2006-01-20 2007-08-02 Fujifilm Corp Solid-state imaging element, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH0736437B2 (en) Method of manufacturing semiconductor memory
KR100350753B1 (en) Semiconductor device having barrier metal layer between a silicon electrode and metal electrode and manufacturing method for same
JPH05206437A (en) Solid state image sensor and fabrication thereof
JP3153647B2 (en) Method for manufacturing charge transfer device
JPH06177171A (en) Charge transfer device
US6143585A (en) Method of manufacturing solid state image sensing device
JP2003332555A (en) Solid-state image pickup device and its manufacturing method
CN1144291C (en) Semiconductor integrated circuit device and process for fabricating thereof
JPH08204173A (en) Manufacture of charge transfer device
JP2712847B2 (en) Method for manufacturing charge transfer device
JP3238072B2 (en) Thin film transistor
JP3426935B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2507066B2 (en) Charge transfer device and manufacturing method thereof
JP2714000B2 (en) Method for manufacturing solid-state imaging device
JPH05267355A (en) Manufacture of charge transfer device
JP3004764B2 (en) Charge-coupled device
JP2911146B2 (en) Semiconductor device
JP2004200319A (en) Imaging device and its manufacturing method
JPS6366965A (en) Laminated solid-state image sensing device
JPS5811753B2 (en) Kotai Satsuzousou Chino Seihou
JPH03248538A (en) Charge-coupled element and manufacture thereof
US20050036052A1 (en) Solid-state image pickup device and manufacturing method thereof
JP2000114504A (en) Manufacture of solid-state image sensor
JPS6010662A (en) Semiconductor memory
JPH0682821B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990330