JPH0617505B2 - Hot working method for Mo-containing, N-austenitic stainless steel - Google Patents

Hot working method for Mo-containing, N-austenitic stainless steel

Info

Publication number
JPH0617505B2
JPH0617505B2 JP61166232A JP16623286A JPH0617505B2 JP H0617505 B2 JPH0617505 B2 JP H0617505B2 JP 61166232 A JP61166232 A JP 61166232A JP 16623286 A JP16623286 A JP 16623286A JP H0617505 B2 JPH0617505 B2 JP H0617505B2
Authority
JP
Japan
Prior art keywords
hot
slab
austenitic stainless
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61166232A
Other languages
Japanese (ja)
Other versions
JPS6320412A (en
Inventor
敏郎 名越
紹泰 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61166232A priority Critical patent/JPH0617505B2/en
Publication of JPS6320412A publication Critical patent/JPS6320412A/en
Publication of JPH0617505B2 publication Critical patent/JPH0617505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は含Mo,Nオーステナイト系ステンレス鋼の熱間
加工技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a hot working technique for Mo- and N-austenitic stainless steels.

〔従来の技術〕[Conventional technology]

オーステナイト系ステンレス鋼は,一般に,熱間圧延時
の変形抵抗が大きく,またオーステナイト粒界に硫化物
などが析出して熱間割れを起こし易いことが知られてい
る。含Mo,Nオーステナイト系ステンレス鋼の場合には
通常のオーステナイト系ステンレス鋼に比べてさらに変
形抵抗が高くなるので熱間割れも助長される。通常のオ
ーステナイト系ステンレス鋼の高温脆化を防止する処法
としては,次のような方法が知られている。
It is known that austenitic stainless steel generally has a large deformation resistance during hot rolling, and that sulfides and the like are precipitated at the austenite grain boundaries to easily cause hot cracking. In the case of Mo-containing N austenitic stainless steel, the deformation resistance becomes higher than that of ordinary austenitic stainless steel, so that hot cracking is promoted. The following methods are known as methods for preventing high temperature embrittlement of ordinary austenitic stainless steel.

(1)化学成分中のP,S,OおよびN等を低減する。例え
ば,これら不純物元素に対して親和力の高いAl,Ca,RE
Mなどを添加して鋼中のγ地に安定な化合物として析出
させるか,精練中に効率よく脱炭,脱酸,脱硫して不純
物を除去する。場合によっては原料そのものに高品位の
ものを使用することもある。
(1) Reduce P, S, O and N in the chemical composition. For example, Al, Ca, RE, which have a high affinity for these impurity elements
Add M or the like to precipitate it as a stable compound on the γ base in steel, or efficiently remove impurities by decarburizing, deoxidizing, and desulfurizing during refining. In some cases, the raw material itself may be of high quality.

(2)凝固過程においてδフェライト中へ不純物元素を固
溶させる。例えば,鋼成分を決定する過程で,Ni当量
とCr当量のバランスを考え,若干 のδフェライト量
が凝固過程で生ずる成分設計にする。
(2) In the solidification process, the impurity element is dissolved in δ ferrite. For example, in the process of determining the steel composition, the balance between Ni equivalent and Cr equivalent is considered, and the composition is designed so that a small amount of δ-ferrite occurs in the solidification process.

(3)鋳造組織を改善する。例えば,鍛造などがその代表
例であるが,連続鋳造の場合には,鋳造温度を融点に近
づけて鋳造したり,電磁撹拌装置を用いて柱状晶をでき
るだけ等軸晶にして鋳造組織を改善する。
(3) Improving the casting structure. For example, forging is a typical example, but in the case of continuous casting, casting is performed with the casting temperature close to the melting point, or columnar crystals are made as equiaxed as possible using an electromagnetic stirring device to improve the cast structure. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

含Mo,Nオーステナイト系ステンレス鋼の場合には,前
記のように,熱間変形抵抗が通常のオーステナイト系ス
テンレス鋼に比べてさらに高くなるので熱間割れの問題
が深刻となる。したがって前記の(1),(2)ないし(3)の方
法を単独或いは複合して採用することが望まれる。
In the case of Mo-containing and N-austenitic stainless steels, as described above, the hot deformation resistance becomes higher than that of ordinary austenitic stainless steels, and the problem of hot cracking becomes serious. Therefore, it is desired to adopt the above methods (1), (2) to (3) alone or in combination.

しかし,(1)の方法では不純物元素を完全には除去でき
ず,その除去量は現状の製鋼技術の範囲内に止まり,お
のずと限界がある。また予め不純物の少ない原料を使用
するとコスト高になる。
However, the method (1) cannot completely remove the impurity element, and the amount of removal is limited within the range of the current steelmaking technology, which is naturally limited. In addition, if raw materials containing few impurities are used in advance, the cost will increase.

また,(2)の方法では不純物元素の粒界析出を抑えるに
は有効であるが,出来上がった製品を溶接施工した時に
δフェライトが析出して耐食性が劣下することがある。
MoやNiなどの合金元素を添加する範囲が限定されるの
もこの方法の問題点である。さらに,(3)の方法を用い
てもスラブ厚,設備能力等の制約から熱間加工性を改善
するには限界がある。
The method (2) is effective in suppressing the grain boundary precipitation of impurity elements, but when the finished product is welded, δ ferrite may precipitate and the corrosion resistance may deteriorate.
It is also a problem of this method that the range of adding alloy elements such as Mo and Ni is limited. Furthermore, even if the method of (3) is used, there is a limit to improving hot workability due to constraints such as slab thickness and equipment capacity.

熱間歩留および製造コストの面から総合的に判断する
と,連鋳スラブの鋳造組織を(3)の方法で改善してダイ
レクト圧延するのが最善である。しかし通常の熱延条件
では熱間割れを起こし易い。したがって,スラブを小型
化したり或いは鋼塊鋳造に切り換えて分塊圧延による組
織改善を図ったりしているが,熱間歩留減や製造コスト
アップは避けられない。分塊条件は低速,軽圧下の条件
が一般的であるが,1ヒート当りのパス回数が多くな
り,それに伴って温度低下が大きくなるので大型鋼塊の
場合にはヒート数が増えて製造コストが上がることにな
る。
From a comprehensive judgment in terms of hot yield and manufacturing cost, it is best to improve the casting structure of the continuous cast slab by the method of (3) and perform direct rolling. However, normal hot rolling conditions tend to cause hot cracking. Therefore, although slabs have been downsized or steel slab casting has been switched to improve the structure by slab rolling, it is inevitable to reduce hot yield and increase manufacturing cost. Generally, the slumping conditions are low speed and light pressure, but the number of passes per heat increases and the temperature drop increases accordingly. Therefore, in the case of large steel ingots, the number of heat increases and the manufacturing cost increases. Will rise.

このように,成分的に不純物元素を低減し且つ鋳造組織
を改善しても,含Mo,Nオーステナイト系ステンレス鋼
は熱間割れを防止しにくい材料系であると言える。
Thus, it can be said that Mo-containing N-N austenitic stainless steel is a material system in which it is difficult to prevent hot cracking even if the impurity elements are reduced compositionally and the cast structure is improved.

本発明は,かような含Mo,Nオーステナイト系ステンレ
ス鋼の熱間割れ,特に粗圧延時のスラブ表面割れや熱延
コイルの耳割れを低減および防止することを目的とした
ものである。
The present invention is intended to reduce and prevent such hot cracking of Mo-containing and N-austenitic stainless steels, especially slab surface cracking during rough rolling and edge cracking of hot rolled coils.

〔問題点を解決する手段〕[Means for solving problems]

本発明は,4重量%以上のMoおよび0.10重量%以上の
Nを含有する含Mo,Nオーステナイト系ステンレス鋼の
柱状晶を有する連鋳片または鋼塊の熱間加工にさいし,
該連鋳片または鋼塊を1200〜1260℃の温度範囲に均熱
し,1250〜1150℃の温度範囲で1回当りの圧下量が8mm
以上のパスをもつ分塊圧延を実施して分塊スラブを製造
し,この分塊スラブを1200℃以上に加熱して熱間圧延す
ることを特徴とする。
The present invention relates to hot working of a continuous cast slab or ingot having columnar crystals of Mo-containing and N-austenitic stainless steel containing 4% by weight or more of Mo and 0.10% by weight or more of N,
The continuous cast slab or steel ingot is soaked in the temperature range of 1200 to 1260 ° C, and the reduction amount per operation is 8 mm in the temperature range of 1250 to 1150 ° C.
The slab is characterized by performing slab rolling with the above passes to manufacture a slab, and heating this slab to 1200 ° C or higher and hot rolling.

ここで分塊圧延とは,一般には造塊法で得られた鋼塊を
熱延可能な形状(スラブ)に成形することを意味する
が,本明細書で言う『分塊圧延』は造塊法で得られた鋼
塊だけではなく連続鋳造法で得られた連鋳スラブをも対
象とし,柱状晶を有するこれら鋼片の組織を熱延可能な
ものにするための圧延を言う。また本明細書で言う『熱
間圧延』は該分塊圧延と区別されるものであり,粗圧延
機および仕上圧延機をもつ通常の連続熱延ラインに通板
して熱延することを意味している。なお,本発明におい
て連鋳スラブを対象とした分塊圧延は粗圧延機を用いて
実施することが可能である。
Here, slab-rolling generally means forming a steel ingot obtained by the ingot-making method into a shape (slab) that can be hot-rolled. Not only the steel ingot obtained by the method, but also the continuous cast slab obtained by the continuous casting method is called rolling to make the microstructure of these steel pieces with columnar crystals hot-rollable. The "hot rolling" referred to in the present specification is to be distinguished from the slabbing rolling, and means passing through a normal continuous hot rolling line having a rough rolling mill and a finish rolling mill to carry out hot rolling. is doing. In the present invention, the slabbing for continuous cast slabs can be carried out using a rough rolling mill.

また,本発明において「含Mo,Nオーステナイト系ステ
ンレス鋼」とは,Moが4重量%以上でNが0.10重量%
以上含有するオーステナイト系ステンレス鋼を意味する
が,その代表例としては,Cr:18〜25%,Ni:20〜30
%,Cu:0.3〜3.0%,Mn≦2.0%,Mo:4〜8
%,N:0.1〜0.30%を含む鋼が挙げられる。このよう
な鋼はα相を含まない完全オーステナイト鋼である。
In the present invention, "containing Mo, N austenitic stainless steel" means that Mo is 4% by weight or more and N is 0.10% by weight.
The austenitic stainless steels contained above are meant. Typical examples are Cr: 18-25%, Ni: 20-30
%, Cu: 0.3 to 3.0%, Mn ≦ 2.0%, Mo: 4 to 8
%, N: 0.1-0.30% steel. Such a steel is a full austenitic steel containing no α phase.

以下に本発明の内容を詳述する。The details of the present invention will be described below.

第1図は現場溶製した20Cr-24Ni-6Mo-0.5Cu-0.2N
鋼の連鋳スラブ,分塊材および鍛造材から丸棒試片を切
り出し,図中の各温度で熱間引張を行い,その時の最大
破断応力(第1図(a)の斜線部)と断面収縮率(第1図
(b))をプロットしたものである。第1図(a)には最大破
断応力をSUS304のものと比較して示したが,含Mo,Nオ
ーステナイト系ステンレス鋼はSUS304に比べて約2倍の
高変形抵抗を示し,特に低温域で著しくなる。一方第1
図(b)に見られるように含Mo,Nオーステナイト系ステ
ンレス鋼の柱状晶材,分塊材および鍛造材のいずれの試
片とも1270℃以上の高温域において液膜脆化にともなう
脆化域が存在する。したがって,含Mo,Nオーステナイ
ト系ステンレス鋼の熱間圧延にさいしては,第1図(a)
に見られるように低温では変形抵抗が高いので高温域で
の方が圧延には都合がよいことになるが,第1図(b)か
らはあまり高温になると脆化を起こすので好ましくない
ことがわかる。つまり,熱間圧延にさいして,1260℃を
越えてはならないがこの温度以下の範囲で出来るだけ高
い温度を加熱炉からの鋼片抽出温度とすべきであること
になる。
Figure 1 shows in-situ melted 20Cr-24Ni-6Mo-0.5Cu-0.2N
Round bar specimens were cut from steel continuous cast slabs, agglomerates and forged materials, and hot tensile was performed at each temperature in the figure, and the maximum breaking stress (hatched area in Figure 1 (a)) and cross section at that time Shrinkage rate (Fig. 1
(b)) is plotted. The maximum breaking stress is shown in Fig. 1 (a) in comparison with that of SUS304. Mo- and N-austenitic stainless steels with high deformation resistance are about twice as high as those of SUS304, especially at low temperatures. It will be noticeable. While the first
As shown in Fig. (B), the embrittlement area associated with liquid film embrittlement at high temperature of 1270 ℃ or higher in any of the specimens of columnar crystal material, slab material and forged material of Mo-containing, N-austenitic stainless steel. Exists. Therefore, during hot rolling of Mo-containing and N-austenitic stainless steels, Fig. 1 (a)
As shown in Fig. 1, the deformation resistance is high at low temperature, so it is more convenient for rolling in the high temperature region. However, from Fig. 1 (b), it is not preferable because too high temperature causes embrittlement. Recognize. In other words, during hot rolling, the temperature that should not exceed 1260 ° C, but is as high as possible within this temperature range, should be the extraction temperature of the billet from the heating furnace.

一方,第1図(b)の柱状晶試片(○印)に注目すると,
前記の1270℃以上の高温側での脆化のほかに,1100℃付
近でも脆化する領域がある。したがって,柱状晶をもつ
鋼片を用いて熱間圧延する場合には,この1100℃付近の
領域をできる限り避けて,例えば1150℃以上で圧延する
ことが必要となる。例えば柱状晶を有する連鋳スラブを
熱間圧延する場合には,主として1150〜1250℃の温度範
囲で熱間圧延すべきである。そのさい,第1図(b)の柱
状晶材における歪速度が1/S(○印)のものと10/S(●
印)のものとを比較すると,10/Sのものの方が延性を示
す領域が広いので,高速圧延がより有利となる。
On the other hand, focusing on the columnar crystal specimen (marked with ○) in Fig. 1 (b),
In addition to the embrittlement on the high temperature side above 1270 ° C, there is a region where embrittlement occurs near 1100 ° C. Therefore, in the case of hot rolling using a steel piece with columnar crystals, it is necessary to avoid this region near 1100 ° C as much as possible and roll at, for example, 1150 ° C or higher. For example, when a continuous cast slab having columnar crystals is hot-rolled, it should be hot-rolled mainly in the temperature range of 1150 to 1250 ° C. At that time, the strain rates of the columnar crystal materials of Fig. 1 (b) were 1 / S (○) and 10 / S (●).
Compared with the one marked with 10), the 10 / S type has a wider ductility region, so high speed rolling is more advantageous.

第2図は,第1図と同じ鋼についてその柱状晶の熱間圧
延における再結晶特性を調べたものであり,鋳片を第2
図(a)に表示の加熱温度で加熱したあと,1パスで圧下
したときの圧下率を第2図(a)に表示の如く種々変化さ
せ,その圧下後ただちに水冷し,酸エッチングによる
金属顕微鏡写真(倍率 81.5倍)で再結晶状態を調べ,
第2図(b)にその代表例を示した。第2図の結果に見ら
れるように温度が高いほど(1250℃)そして圧下量が大き
いほど再結晶化し易いことがわかる。一般に再結晶化は
熱間加工性を改善するように働く。
Fig. 2 shows the recrystallization characteristics of the same steel as in Fig. 1 in the hot rolling of columnar crystals.
After heating at the heating temperature shown in Fig. (A), the reduction rate when reduced in one pass was changed variously as shown in Fig. 2 (a), and immediately after the reduction, water cooling was performed and a metallurgical microscope by acid etching was used. Check the recrystallized state in the photograph (magnification 81.5 times),
A representative example is shown in FIG. 2 (b). As can be seen from the results in FIG. 2, the higher the temperature (1250 ° C.) and the larger the reduction amount, the easier the recrystallization is. Recrystallization generally acts to improve hot workability.

したがって,含Mo,Nオーステナイト系ステンレス鋼の
柱状晶を有する鋼片では,鋼片を1200〜1260℃の加熱温
度で均熱して抽出し,これを1150〜1250℃の温度範囲に
おいて1回当りの圧下量を大きくして歪み速度を高くし
て圧延し,1150℃以下では圧下量を小さくして圧延する
のがよいことがわかる。
Therefore, in the billet having columnar crystals of Mo-containing and N-austenitic stainless steel, the billet is uniformly heated and extracted at a heating temperature of 1200 to 1260 ° C, and is extracted once in the temperature range of 1150 to 1250 ° C. It can be seen that it is better to roll by increasing the reduction amount and increasing the strain rate, and by reducing the reduction amount at 1150 ° C or lower.

次に,分塊材および鍛造材については,第1図(b)に見
られるように,柱状晶試片とは異なり1100℃付近の脆化
は改善されている。したがって柱状晶を有する鋼片を分
塊する場合には前記の加熱温度および加工温度を採用す
べきであるが,得られた分塊材をさらに熱間圧延する場
合には1150℃以下の圧延温度も採用することができる。
しかしこの熱間圧延時でも1150〜1250℃の温度範囲にお
いては圧下量を多くとる方がよい。したがって,柱状晶
を有する鋼片から分塊圧延を経て熱間圧延用の鋼片を製
造する場合には,本発明に従って1150〜1250℃の温度範
囲において高温ほど1パス当りの圧下量を大きくして分
塊圧延し,1150℃以下では圧下量を小さくして分塊圧延
することによって分塊材を作ると,得られた分塊材は11
50℃以下の温度のところでも熱間圧延することができる
ようになる。そのさい,鋼塊またはスラブの厚みが大き
いものでは熱間圧延用の厚みまで圧下するまでに温度降
下して1150〜1250℃の温度範囲において必要な圧下量
(本発明では1パス当り8mm以上)を採れない場合もあ
るが,この場合には,温度降下した時点で分塊圧延を中
断し,再び加熱炉に装入して1200〜1260℃に加熱してか
ら分塊すればがよい。すなわち1200〜1260℃の加熱と11
50〜1250℃の圧延を繰り返すことによって通常の熱間圧
延に必要な厚みまであらかじめ分塊すれば1100℃付近の
脆化域を回避しながら圧延することができる。なお,後
記の表1にも示すが1150〜1250℃における分塊の圧下量
は8mm/パス以上がよく,圧下率は4%以上をとるべき
である。
Next, regarding the agglomerated material and the forged material, as shown in Fig. 1 (b), unlike the columnar crystal specimen, the embrittlement around 1100 ° C is improved. Therefore, the above heating temperature and working temperature should be adopted when agglomerating the steel pieces having columnar crystals, but if the obtained agglomerated material is further hot-rolled, the rolling temperature of 1150 ° C or less is required. Can also be adopted.
However, even during this hot rolling, it is better to increase the amount of reduction in the temperature range of 1150 to 1250 ° C. Therefore, in the case of producing a billet for hot rolling from a billet having a columnar crystal through the slabbing rolling, according to the present invention, the higher the temperature is in the temperature range of 1150 to 1250 ° C, the larger the reduction amount per pass is. When the lump is rolled at a temperature of 1150 ° C or lower, and the rolling amount is reduced at a temperature of 1150 ° C or lower to make a lump, the obtained lump is 11
Hot rolling can be performed even at a temperature of 50 ° C or lower. At that time, if the thickness of the steel ingot or slab is large, the temperature falls until it is reduced to the thickness for hot rolling, and the necessary reduction amount in the temperature range of 1150 to 1250 ° C (in the present invention, 8 mm or more per pass). In some cases, the slabbing may be stopped when the temperature drops, and the slabbing may be carried out by charging the reheating furnace again and heating it at 1200 to 1260 ° C. That is, heating at 1200 to 1260 ° C and 11
By repeatedly rolling at 50 to 1250 ° C and lumping to a thickness required for normal hot rolling, rolling can be performed while avoiding the embrittlement region near 1100 ° C. As shown in Table 1 below, the reduction amount of the lumps at 1150 to 1250 ° C is preferably 8 mm / pass or more, and the reduction rate should be 4% or more.

なお,熱間圧延にさいしては,1100℃付近の脆化が改善
されたものでも温度が過度に低くなると延性が低下し変
形抵抗が大きくなり,耳割れなどが生ずるので,1200℃
以上に加熱して熱間圧延し,950℃以上で仕上げること
が重要である。
In hot rolling, even if the embrittlement around 1100 ° C is improved, if the temperature becomes too low, ductility decreases and deformation resistance increases, causing ear cracks, etc.
It is important to heat above and hot roll to finish at 950 ° C or higher.

以上のようにして本発明法によると含Mo,Nオーステナ
イト系ステンレス鋼であっても割れを著しく軽減して熱
間圧延を行うことができる。
As described above, according to the method of the present invention, even with Mo-containing N austenitic stainless steel, hot rolling can be performed with significantly reduced cracking.

実施例 下記の表1は本発明法と従来法にしたがって,20Cr-24
Ni-6Mo-0.5Cu-0.2N鋼から熱延コイルを製造した場
合の割れの状況と歩留りを示したものである。
Examples Table 1 below shows 20Cr-24 according to the present invention method and the conventional method.
2 shows the cracking situation and yield when a hot rolled coil is manufactured from Ni-6Mo-0.5Cu-0.2N steel.

なお,表1の本発明法における(1)は連鋳スラブを1250
℃±10℃で抽出し,1150〜1250℃で高温ほど1パス当り
の圧下量を大きくし,1150℃から温度が低下するにした
がって1パス当りの圧下量を小さくして分塊したのち,
この分塊スラブを再び1250℃±10℃に加熱して抽出し,
粗圧延機および仕上圧延機を通板して950℃以上で熱延
コイルに仕上げたもの, 同(2)は鋼塊を1250℃±10℃で抽出し,1150〜1250℃で
1パス当りの圧下量を大きくし,1150℃から温度が低下
するにしたがって1パス当りの圧下量を小さくして分塊
圧延し,再び1250℃±10℃に加熱して抽出し,1150〜12
50℃で1パス当りの圧下量を大きくして分塊圧延する工
程によって分塊スラブをつくったのち,1250℃±10℃に
加熱して抽出し,粗圧延機および仕上圧延機を通板して
950℃以上で熱延コイルに仕上げたものである。
In addition, (1) in the method of the present invention in Table 1 is a continuous cast slab
Extraction at ℃ ± 10 ℃, increase the amount of reduction per pass as the temperature rises from 1150 to 1250 ℃, and decrease the amount of reduction per pass as the temperature decreases from 1150 ℃, and then agglomerate.
This agglomerated slab is heated again to 1250 ℃ ± 10 ℃ and extracted,
Hot rolled coil finished at 950 ℃ or higher by passing through rough rolling mill and finish rolling mill. The same (2) extracts steel ingot at 1250 ℃ ± 10 ℃, and 1150 ~ 1250 ℃ per pass Increase the amount of reduction, decrease the amount of reduction per pass as the temperature decreases from 1150 ℃, perform slabbing, heat again to 1250 ℃ ± 10 ℃, and extract,
After forming a slab of slab by increasing the reduction amount per pass at 50 ° C and performing slab rolling, it is heated to 1250 ° C ± 10 ° C for extraction and passed through a rough rolling mill and finish rolling mill. hand
It is a hot rolled coil finished at 950 ° C or higher.

表1の結果に見られるように,含Mo,Nオーステナイト
系ステンレス鋼の連鋳材をそのまま熱間圧延した従来法
では加熱炉での抽出温度が本発明法と同等であっても歩
留りは高々75%であり,また,たとえ分塊圧延を実施し
ても,高温側で高い圧下量を採らず,温度が降下した後
半で高い圧下量を採った比較法では,やはり歩留りが70
%以下であるのに対し,本発明法に従って分塊圧延した
もの(本発明法(1))および造塊材を本発明法に従って
分塊圧延したもの(本発明法(2))ではいずれも歩留り9
0%以上で良好な熱延コイルが得られたことがわかる。
As can be seen from the results in Table 1, in the conventional method in which the continuous cast material of Mo-containing and N-austenitic stainless steel is hot-rolled as it is, the yield is high even if the extraction temperature in the heating furnace is the same as the method of the present invention. 75%, and even if slabbing was performed, a high reduction amount was not taken on the high temperature side, and the yield was 70% in the comparative method that took a high reduction amount in the latter half of the temperature drop.
% Or less, the slabs rolled according to the method of the present invention (method of the present invention (1)) and the slabs subjected to slab rolling according to the method of the present invention (method of the present invention (2)) are both Yield 9
It can be seen that a good hot rolled coil was obtained at 0% or more.

【図面の簡単な説明】[Brief description of drawings]

第1図は現場溶製した20Cr-24Ni-6Mo-0.5Cu-0.2N
鋼の連鋳スラブ,分塊材および鍛造材から丸棒試片を切
り出し,図中の各温度で熱間引張を行い,その時の最大
破断応力(第1図(a)の斜線部)と断面収縮率(第1図
(b))をプロットした図,第2図は第1図と同じ鋼につ
いてその柱状晶の熱間圧延における再結晶特性を調べた
ものであり,第2図(a)は30mm厚の鋳片を表示の加熱温
度で加熱したあと1パスで圧下したときの圧下量を種々
変化させた場合の条件表,第2図(b)はその圧下後ただ
ちに水冷し,第2図(a)の条件表のうちイ,ロ,ハ,
ニ,ヘ,ヌ,カおよびタの条件での各試料の酸エッチ
ングによる金属顕微鏡写真(倍率81.5倍)を示したもの
である。
Figure 1 shows in-situ melted 20Cr-24Ni-6Mo-0.5Cu-0.2N
Round bar specimens were cut from steel continuous cast slabs, agglomerates and forged materials, and hot tensile was performed at each temperature in the figure, and the maximum breaking stress (hatched area in Figure 1 (a)) and cross section at that time Shrinkage rate (Fig. 1
Fig. 2 (b)) is a plot of Fig. 2 and Fig. 2 shows the recrystallization characteristics of the same steel as in Fig. 1 during hot rolling of columnar crystals. Fig. 2 (a) shows a 30 mm thick slab. The condition table when the amount of reduction is varied in one pass after heating at the indicated heating temperature. Fig. 2 (b) shows the condition of Fig. 2 (a) immediately after water cooling. In the table, a, b, c,
Fig. 3 shows a metallurgical micrograph (magnification: 81.5 times) of each sample under the conditions of d, he, n, mosquito, and ta.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】4重量%以上のMoおよび0.10重量%以上
のNを含有する含Mo,Nオーステナイト系ステンレス鋼
の柱状晶を有する連鋳片または鋼塊からなる鋼片の熱間
加工にさいし,該鋼片を1200〜1260℃の温度範囲に均熱
し,1250〜1150℃の温度範囲において1回当りの圧下量
が8mm以上のパスをもつ分塊圧延を実施して分塊スラブ
を製造し,この分塊スラブを1200℃以上に加熱して熱間
圧延することを特徴とする含Mo,Nオーステナイト系ス
テンレス鋼の熱間加工法。
1. Hot working of a continuous cast slab having columnar crystals of Mo-containing austenitic stainless steel containing 4% by weight or more of Mo and 0.10% by weight or more of N or a steel ingot made of a steel ingot. , The steel slab is soaked in the temperature range of 1200 to 1260 ℃, and the lump slab is manufactured by performing slab rolling with a pass of a rolling reduction of 8 mm or more in the temperature range of 1250 to 1150 ℃. A hot working method for Mo-containing N austenitic stainless steel, characterized in that this slab is heated to 1200 ℃ or higher and hot-rolled.
【請求項2】含Mo,Nオーステナイト系ステンレス鋼
は,Cr:18〜25%,Ni:20〜30%,Cu:0.3〜3.0
%,Mn≦2.0%,Mo:4〜8%,N:0.1〜0.30%,残
部が鉄および不可避的不純物からなる特許請求の範囲第
1項記載の熱間加工法。
2. A Mo-containing N austenitic stainless steel containing Cr: 18-25%, Ni: 20-30%, Cu: 0.3-3.0.
%, Mn≤2.0%, Mo: 4-8%, N: 0.1-0.30%, the balance being iron and unavoidable impurities, The hot working method according to claim 1.
JP61166232A 1986-07-15 1986-07-15 Hot working method for Mo-containing, N-austenitic stainless steel Expired - Fee Related JPH0617505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166232A JPH0617505B2 (en) 1986-07-15 1986-07-15 Hot working method for Mo-containing, N-austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166232A JPH0617505B2 (en) 1986-07-15 1986-07-15 Hot working method for Mo-containing, N-austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS6320412A JPS6320412A (en) 1988-01-28
JPH0617505B2 true JPH0617505B2 (en) 1994-03-09

Family

ID=15827560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166232A Expired - Fee Related JPH0617505B2 (en) 1986-07-15 1986-07-15 Hot working method for Mo-containing, N-austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0617505B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990025234A (en) * 1997-09-11 1999-04-06 이구택 Manufacturing method of 301 stainless steel hot rolled sheet with less M type defect
JP2008036698A (en) * 2006-08-09 2008-02-21 Daido Steel Co Ltd Method for manufacturing large forged product made of austenitic stainless steel
CN104032108B (en) * 2014-06-06 2016-03-02 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of production method of duplex stainless steel hot rolling volume
CN112275797B (en) * 2020-09-03 2023-04-07 太原钢铁(集团)有限公司 Method for eliminating surface defects of super austenitic stainless steel middle plate
CN114643280B (en) * 2022-04-19 2023-04-11 山西太钢不锈钢股份有限公司 Hot rolling method of niobium-containing austenitic stainless steel section
CN117358756A (en) * 2023-09-26 2024-01-09 安徽富凯特材有限公司 Rolling method for improving internal structure of ferronickel-chromium high-temperature corrosion-resistant alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193319A (en) * 1982-05-01 1983-11-11 Nippon Stainless Steel Co Ltd Production of hot coil from ferrite-containing austenite stainless steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(社)日本鉄鋼協会編「鉄鋼製造法(第2分冊)」P275.(昭和52年3月15日.丸善(株)発行)

Also Published As

Publication number Publication date
JPS6320412A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
JP5972870B2 (en) Austenitic-ferritic stainless steel with improved machinability
US4078920A (en) Austenitic stainless steel with high molybdenum content
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH0617505B2 (en) Hot working method for Mo-containing, N-austenitic stainless steel
JP2803522B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JPH09202919A (en) Production of high tensile strength steel material excellent in toughness at low temperature
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
WO2022145061A1 (en) Steel material
JPH0551633A (en) Production of high si-containing austenitic stainless steel
WO2022145068A1 (en) Steel material
EP0058837B1 (en) Process for producing austenitic stainless steels less susceptible to rolling defects
KR102612324B1 (en) Manufacturing method of high manganese steel cast steel and manufacturing method of high manganese steel steel strip or steel plate
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH0148337B2 (en)
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
WO2022145069A1 (en) Steel material
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP7126099B2 (en) Steel continuous casting method
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
JP4705751B2 (en) Wire drawing material with excellent cold forgeability and machinability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees