JPH06168936A - Oxidizing method of semiconductor substrate - Google Patents

Oxidizing method of semiconductor substrate

Info

Publication number
JPH06168936A
JPH06168936A JP3121917A JP12191791A JPH06168936A JP H06168936 A JPH06168936 A JP H06168936A JP 3121917 A JP3121917 A JP 3121917A JP 12191791 A JP12191791 A JP 12191791A JP H06168936 A JPH06168936 A JP H06168936A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor substrate
silicon wafer
thickness
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3121917A
Other languages
Japanese (ja)
Other versions
JPH0783019B2 (en
Inventor
Hideo Honma
秀男 本間
Naohiro Monma
直弘 門馬
Masami Naito
正美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58100915A external-priority patent/JPS59227128A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3121917A priority Critical patent/JPH0783019B2/en
Publication of JPH06168936A publication Critical patent/JPH06168936A/en
Publication of JPH0783019B2 publication Critical patent/JPH0783019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the uniformity and the reproducibility of an oxide film, by treating an initial oxide thin film of a semiconductor substrate, with mixed solution of acidic solution and alkaline solution, in the oxidizing method of a semiconductor substrate wherein the initial oxide film is formed before a practical oxide film is formed. CONSTITUTION:After a silicon wafer 1 is dipped in solution of BF:H2O=1:4 for one minute, and unnecessary oxide film which has been formed on the surface is completely eliminated, the wafer is washed in flowing pure water for about 15 minutes. The thickness of an oxide film formed on the silicon wafer 1 by the above washing is about 2-3Angstrom . Dry oxygen is made to flow at a rate of 3 liter/min in a quartz diffusion tube 3 kept at 800 deg.C by an electric furnace 4 for heating, from a processing gas feeding inlet 3A of one end of the tube 3. After the silicon wafer 1 is inserted into the tube 3 and held for 10 minutes, the wafer is taken out from the tube 3. The thickness of an initial oxide film formed on the silicon wafer 1 at this time is 20Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基体の酸化法に係
り、特に、半導体基体の表面に形成される酸化膜厚の均
一性および再現性を改善することのできる、半導体基体
の酸化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing a semiconductor substrate, and more particularly to a method for oxidizing a semiconductor substrate which can improve the uniformity and reproducibility of an oxide film formed on the surface of the semiconductor substrate. .

【0002】[0002]

【従来の技術】MOSトランジスタでは、ゲート酸化膜
の厚みが、そのしきい値電圧(VT )等の特性を左右す
る重要なパラメータであることは周知のとおりである。
2. Description of the Related Art It is well known that in a MOS transistor, the thickness of a gate oxide film is an important parameter that influences characteristics such as its threshold voltage (V T ).

【0003】近年、MOSLSIの高集積化に伴い、前
記ゲート酸化膜の薄膜化が進んでいる。その結果、膜厚
の均一化が製造プロセス上の重要な課題となってきてい
る。
In recent years, with the high integration of MOSLSI, the gate oxide film has been made thinner. As a result, making the film thickness uniform has become an important issue in the manufacturing process.

【0004】ゲート酸化膜の形成法としては、 (1) 他の方法に比べて膜厚の再現性が優れていること。 (2) 装置が簡便であること。 などの理由から、酸化性の雰囲気ガス中で半導体基体を
加熱処理する熱酸化法が一般に用いられている。
As a method for forming a gate oxide film, (1) the film thickness reproducibility is superior to other methods. (2) The device is simple. For these reasons, the thermal oxidation method in which the semiconductor substrate is heat-treated in an oxidizing atmosphere gas is generally used.

【0005】通常の場合、MOSLSI等のゲート酸化
膜の形成は、ゲート酸化以前の工程で形成された半導体
基体表面のゲート形成領域の不要酸化膜を、フッ酸系の
溶液で完全に除去した後、酸化性の雰囲気ガス中で、前
記半導体基体を加熱処理することによって行われてい
る。
Normally, a gate oxide film such as MOSLSI is formed after completely removing an unnecessary oxide film in the gate formation region on the surface of the semiconductor substrate formed in the process before the gate oxidation with a hydrofluoric acid-based solution. The heat treatment is performed on the semiconductor substrate in an oxidizing atmosphere gas.

【0006】[0006]

【発明が解決しようとする課題】しかし、この方法で
は、半導体基体の面内及びロット内、ロット間の膜厚ば
らつきが大きく、均一性、再現性が十分でないという問
題があった。
However, this method has a problem that there is a large variation in the film thickness within the surface of the semiconductor substrate, within the lot, and between lots, and the uniformity and reproducibility are not sufficient.

【0007】すなわち、従来の方法では、 (1) その基板が熱酸化炉のどの位置におかれていたかに
よって、形成される酸化膜の厚みが異なる。 (2) 一枚の基板内でも、酸化膜の厚みにばらつきを生ず
る。 (3) ロットごとに、同じ条件で処理しても、厚みがばら
つく。
That is, in the conventional method, (1) the thickness of the oxide film to be formed differs depending on the position of the substrate in the thermal oxidation furnace. (2) Even within a single substrate, the thickness of the oxide film varies. (3) Even if each lot is processed under the same conditions, the thickness will vary.

【0008】などの欠点があった。本発明の目的は、上
記した従来技術の不都合や欠点を除去し、酸化膜の均一
性および再現性の良好な、半導体基体の酸化法を提供す
ることにある。
There are drawbacks such as An object of the present invention is to eliminate the above-mentioned inconveniences and drawbacks of the prior art, and to provide a method for oxidizing a semiconductor substrate with good uniformity and reproducibility of an oxide film.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、本発明では、半導体基体を加熱処理して実質酸
化膜を形成する前に、この実質酸化膜の成長速度より遅
い速度で均一な厚みの初期酸化膜を形成する半導体基体
の酸化法において、前記初期酸化薄膜を、酸化性溶液と
アルカリ性溶液との混合溶液で半導体基体を薬液処理す
ることによって形成するようにした点に特徴がある。
In order to achieve the above-mentioned object, in the present invention, before the semiconductor substrate is heat-treated to form a substantial oxide film, it is uniformly grown at a rate slower than the growth rate of the substantial oxide film. In the method of oxidizing a semiconductor substrate to form an initial oxide film having a uniform thickness, the initial oxide thin film is formed by chemical treatment of the semiconductor substrate with a mixed solution of an oxidizing solution and an alkaline solution. is there.

【0010】[0010]

【作用】上記した構成によれば、初期酸化膜が均一な膜
厚に形成されるので、最終的な酸化膜厚のばらつきが小
さくなる。
According to the above structure, since the initial oxide film is formed to have a uniform film thickness, variations in the final oxide film thickness are reduced.

【0011】[0011]

【実施例】以下、本発明について更に詳しく説明する。The present invention will be described in more detail below.

【0012】膜厚ばらつきの形態を詳細に調べた結果、
膜厚のばらつきは、主に酸化の初期に起こっていること
がわかった。また膜厚のばらつきは酸化の生長速度が大
きいほど大きいこともわかった。
As a result of detailed investigation of the form of film thickness variation,
It was found that the variation in film thickness mainly occurred in the early stage of oxidation. It was also found that the variation in film thickness was greater as the growth rate of oxidation was higher.

【0013】この原因は、前記の如く、酸化工程の初期
に、フッ酸系の溶液で、半導体基体表面の酸化膜が完全
に除去され、極めて活性な表面が露出しているためであ
ると考えられる。
It is considered that this is because, as described above, the oxide film on the surface of the semiconductor substrate is completely removed by the hydrofluoric acid-based solution at the initial stage of the oxidation step, and the extremely active surface is exposed. To be

【0014】なぜならば、このように活性化された表面
は、周知のように、高温の酸化性雰囲気中にさらされる
と、酸化が極めて速い速度で進行する。しかも、このと
き形成される初期の酸化膜はばらつきが極めて大きい。
そして、このばらつきは酸化速度が大きい場合程、顕著
に現れる。
This is because, as is well known, when the surface thus activated is exposed to a high temperature oxidizing atmosphere, the oxidation proceeds at an extremely high rate. Moreover, the initial oxide film formed at this time has extremely large variations.
Then, this variation becomes more remarkable as the oxidation rate is higher.

【0015】しかし、一旦20〜30オングストローム
程度の酸化膜が形成されると、その後は比較的ばらつき
の少ない酸化が進行する。
However, once an oxide film having a thickness of about 20 to 30 angstroms is formed, thereafter, oxidation with relatively little variation proceeds.

【0016】従って、酸化初期に膜厚のばらつきを生じ
なければ、均一な酸化膜が形成されるはずである。すな
わち、実質酸化膜を形成する通常の酸化工程の前に、厚
みの均一な酸化薄膜をあらかじめ形成しておけば、最終
的な酸化膜厚のばらつきを大きく低減できるはずであ
る。本発明は、前述のような考察に基づいて案出された
ものである。
Therefore, a uniform oxide film should be formed if there is no variation in film thickness at the initial stage of oxidation. That is, if an oxide thin film having a uniform thickness is formed in advance before the normal oxidation process for forming a substantial oxide film, the final variation in oxide film thickness should be greatly reduced. The present invention has been devised based on the above consideration.

【0017】実質酸化膜を形成する酸化処理前に、厚み
の均一な酸化薄膜を形成する方法としては、前記の如く
酸化初期の膜厚がばらつく範囲の酸化速度を低下させる
ことが考えられる。すなわち、酸化性雰囲気ガス中で半
導体基体を加熱処理する前に、(1) これより低温におい
て加熱処理する方法、あるいは(2) 前記酸化性の雰囲気
ガスよりも酸素又は水分の分圧を下げた雰囲気ガス中で
加熱処理する方法、などが考えられる。これらの方法で
あれば、半導体基体の表面に成長する初期酸化膜の生長
速度が、実質酸化膜を形成する工程での生長速度より小
さいので、比較的厚みの均一な初期酸化薄膜を形成する
ことができる。
As a method of forming an oxide thin film having a uniform thickness before the oxidation treatment for forming a substantial oxide film, it is considered to reduce the oxidation rate in the range where the film thickness in the initial stage of oxidation varies as described above. That is, before heat-treating a semiconductor substrate in an oxidizing atmosphere gas, (1) a method of heat-treating at a lower temperature than this, or (2) a partial pressure of oxygen or water is lowered as compared with the oxidizing atmosphere gas A method in which heat treatment is performed in an atmosphere gas may be considered. According to these methods, since the growth rate of the initial oxide film growing on the surface of the semiconductor substrate is lower than the growth rate in the step of forming the substantial oxide film, it is necessary to form an initial oxide thin film having a relatively uniform thickness. You can

【0018】実質酸化膜を形成する酸化工程の前に、厚
みの均一な初期酸化薄膜を形成する他の方法としては、
半導体基体をフッ酸系の溶液で処理して所望部分の不要
酸化膜を完全に除去した後、酸化性の溶液に浸漬する方
法が考えられる。
Another method of forming an initial oxide thin film having a uniform thickness before the oxidation step of forming a substantial oxide film is as follows.
A method is conceivable in which the semiconductor substrate is treated with a hydrofluoric acid-based solution to completely remove the unnecessary oxide film in a desired portion and then immersed in an oxidizing solution.

【0019】この場合の好適な酸化性の溶液としては、
硝酸、塩酸、硫酸あるいは王水などがあげられる。ま
た、これらの溶液とアルカリ溶液(例えば、アンモニア
水など)との混合溶液であってもよい。なお、アルカリ
溶液はシリコンに対してエッチング作用をもつが、混合
溶液が、全体として酸化性であればよい。
In this case, a suitable oxidizing solution is
Examples thereof include nitric acid, hydrochloric acid, sulfuric acid, and aqua regia. Further, it may be a mixed solution of these solutions and an alkaline solution (for example, ammonia water). The alkaline solution has an etching effect on silicon, but the mixed solution may be oxidizable as a whole.

【0020】一例として、100°Cに保たれた硝酸中
に、シリコン基板を20分間浸漬すれば、約20オング
ストロームの均一な酸化膜が生長する。このシリコンウ
エハを酸化性雰囲気ガス中で加熱処理すれば、極めて均
一性の良い酸化膜が形成できる。
As an example, if a silicon substrate is immersed in nitric acid kept at 100 ° C. for 20 minutes, a uniform oxide film of about 20 angstroms grows. If this silicon wafer is heat-treated in an oxidizing atmosphere gas, an oxide film with extremely good uniformity can be formed.

【0021】図1は本発明の方法を実施するのに好適な
熱酸化装置の構造を示す断面図である。石英拡散管3の
内部には、ウエハホルダ2が装填され、ウエハホルダ2
の上には、多数のシリコン基体1が、互いに間隔をおい
て平行に載置される。石英拡散管3の外周には加熱用電
気炉4が配置される。また、石英拡散管3は処理ガス導
入口3Aを有している。
FIG. 1 is a sectional view showing the structure of a thermal oxidation apparatus suitable for carrying out the method of the present invention. A wafer holder 2 is loaded inside the quartz diffusion tube 3, and the wafer holder 2
On top of this, a large number of silicon substrates 1 are placed in parallel at intervals. An electric furnace 4 for heating is arranged on the outer periphery of the quartz diffusion tube 3. Further, the quartz diffusion tube 3 has a processing gas introduction port 3A.

【0022】つぎに、本発明者らが行った実施例につい
て具体的に説明する。 実験例 1 この実験において用いた半導体基体は、面方位(10
0)、n型導電性、抵抗率10Ωcm、直径76mm、厚み
500μmのシリコンウエハ1(20枚)である。 ま
ず、このシリコンウエハをHF:H2 O=1:4の溶液
中に1分間浸漬し、表面に形成されていた不要な酸化膜
を完全に除去した後、純水中で約15分間流水洗浄し
た。なお、この洗浄によってシリコンウエハに生成され
た酸化膜は、2〜3オングストロームの厚さであった。
Next, the examples carried out by the present inventors will be specifically described. Experimental Example 1 The semiconductor substrate used in this experiment has a plane orientation (10
0), n-type conductivity, resistivity 10 Ωcm, diameter 76 mm, thickness 500 μm silicon wafer 1 (20 pieces). First, this silicon wafer is immersed in a solution of HF: H 2 O = 1: 4 for 1 minute to completely remove an unnecessary oxide film formed on the surface, and then washed with running pure water for about 15 minutes. did. The oxide film formed on the silicon wafer by this cleaning had a thickness of 2 to 3 angstroms.

【0023】次に、加熱用電気炉4により800°Cに
保たれた石英拡散管3内に、その一端の処理ガス導入口
3Aから乾燥酸素を3リットル/分の割合で流し、この
中に前記シリコンウエハ1を挿入して10分間保持した
後、石英拡散管3内から取り出した。このとき、シリコ
ンウエハに形成された初期酸化膜は20オングストロー
ムであった。
Next, dry oxygen was flowed at a rate of 3 liters / minute into the quartz diffusion tube 3 kept at 800 ° C. by the heating electric furnace 4 from the processing gas inlet 3A at one end of the quartz diffusion tube 3. After the silicon wafer 1 was inserted and held for 10 minutes, it was taken out from the quartz diffusion tube 3. At this time, the initial oxide film formed on the silicon wafer was 20 Å.

【0024】次に実質酸化膜を形成する工程として、1
000°Cに保たれた石英拡散管内に一端3Aから乾燥
酸素を3リットル/分ずつ流し、初期酸化薄膜を形成し
た前記シリコンウエハを挿入して60分間保持した。そ
の後、シリコンウエハ1を石英拡散管3から取り出し、
酸化性膜厚をエリプソメータにて測定した。
Next, as a step of forming a substantial oxide film, 1
Dry oxygen was flowed from the end 3A at a rate of 3 l / min into the quartz diffusion tube kept at 000 ° C., and the silicon wafer on which the initial oxide thin film was formed was inserted and held for 60 minutes. After that, the silicon wafer 1 is taken out from the quartz diffusion tube 3,
The oxidizable film thickness was measured with an ellipsometer.

【0025】膜厚の測定は、各ウエハについて、中心の
1点及び周辺の4点(シリコンウエハの端から10mmの
点で相互に90°の角度をもつ位置)の計5点である。
このようにして全ウエハ(20枚)を測定した。更に、
同一の実験を10ロット繰り返し行い、再現性を評価し
た結果を、図2にグラフAで示した。
The thickness of each wafer was measured at one point at the center and four points at the periphery (positions having an angle of 90 ° with each other at a point of 10 mm from the edge of the silicon wafer) for a total of five points.
In this way, all wafers (20 sheets) were measured. Furthermore,
The same experiment was repeated 10 lots, and the results of evaluation of reproducibility are shown by graph A in FIG.

【0026】また比較のために、800°Cでの熱処理
(初期酸化薄膜の形成処理)を施さない(他の条件は本
実験例と同一)従来法での実験も、10ロット行い、結
果を図2にグラフBで示した。
For comparison, heat treatment at 800 ° C. (formation treatment of the initial oxide thin film) is not performed (other conditions are the same as those of the present experimental example), and 10 lots of the conventional method are used. It is shown by graph B in FIG.

【0027】なお、表1に本実験例と従来法との膜厚ば
らつきの比較を、ウエハ面内及びロット間に分けて示し
た。
Table 1 shows a comparison of film thickness variations between the present experimental example and the conventional method, divided into the wafer surface and the lot.

【0028】[0028]

【表1】 図2のグラフA,Bの比較及び表1から明らかなよう
に、本発明よる実験例では、従来法に比べてウエハ面内
及びロット内、ロット間のいずれにおいてもばらつきが
1/2 以下に低減しており、本発明の効果が確認できた。 実験例 2 次に本発明の第2の実験例について説明する。用いた半
導体基体は、前記第1の実験例と同一であり、シリコン
ウエハの前処理洗浄も同一である。
[Table 1] As is clear from the comparison between the graphs A and B in FIG. 2 and Table 1, in the experimental example according to the present invention, the variation in the wafer surface, within the lot, and between lots is larger than that in the conventional method.
It was reduced to 1/2 or less, and the effect of the present invention was confirmed. Experimental Example 2 Next, a second experimental example of the present invention will be described. The semiconductor substrate used is the same as in the first experimental example, and the pretreatment cleaning of the silicon wafer is also the same.

【0029】まず、950°Cに保たれた石英拡散管3
内に、一端3Aから酸素0.3リットル/分と窒素2.
7リットル/分の混合気体を流し、この中にシリコンウ
エハ1を挿入して10分間保持した後、流入ガスを酸素
3リットル/分のみに切り換えて60分間保持した。
First, the quartz diffusion tube 3 kept at 950 ° C.
Oxygen 0.3 liter / min and nitrogen 2.
After flowing a mixed gas of 7 liters / minute, the silicon wafer 1 was inserted therein and kept for 10 minutes, and then the inflowing gas was switched to only 3 liters / minute of oxygen and kept for 60 minutes.

【0030】その後、石英拡散管3内からシリコンウエ
ハ1を取り出し、第1の実験例と同様な方法で、膜厚を
評価した。なお、前期混合気体による10分間の熱処理
で、シリコンウエハに生成された初期酸化膜厚は、40
〜42オングストロームであった。
Then, the silicon wafer 1 was taken out from the quartz diffusion tube 3 and the film thickness was evaluated by the same method as in the first experimental example. Note that the initial oxide film thickness formed on the silicon wafer by the heat treatment for 10 minutes with the mixed gas in the previous period was 40%.
Was ~ 42 Å.

【0031】更に、同一の実験を10ロット繰り返し行
ない、再現性を評価した結果を図3にグラフCで示し
た。また、比較のため酸素0.3リットル/分と窒素
2.7リットル/分の混合気体中での熱処理を施さない
(他の条件は本実験例と同一)従来法での実験も10ロ
ット行ない、その結果を図3にグラフDで示した。
Furthermore, the same experiment was repeated 10 lots, and the reproducibility was evaluated. The result is shown in graph C in FIG. For comparison, heat treatment in a mixed gas of 0.3 liter / min of oxygen and 2.7 liter / min of nitrogen was not performed (other conditions are the same as those of the present experimental example), and 10 lots were also tested by the conventional method. The results are shown in Graph D in FIG.

【0032】なお、表2に本実験例と従来例との膜厚ば
らつきの比較を、ウエハ面内及びロット内、ロット間に
分けて示した。
Table 2 shows a comparison of the film thickness variation between the present experimental example and the conventional example, divided into the wafer surface, the lot, and the lot.

【0033】[0033]

【表2】 図3のグラフC,Dの比較及び表2から明らかなよう
に、本発明の実験例では、従来法に比べて、ウエハ面内
及びロット間のいずれにおいてもばらつきが1/2以下に
低減しており、本発明の効果が確認できた。 実験例 3 次に本発明の第3の実験例について説明する。用いた半
導体基体は面方位(100)、n型導電性、抵抗率2Ω
cm、直径100mm、厚み500μmのシリコンウエハ
(20枚)である。
[Table 2] As is clear from the comparison between the graphs C and D in FIG. 3 and Table 2, in the experimental example of the present invention, the variation in the wafer surface and between lots was reduced to less than 1/2 in comparison with the conventional method. Therefore, the effect of the present invention was confirmed. Experimental Example 3 Next, a third experimental example of the present invention will be described. The semiconductor substrate used is plane orientation (100), n-type conductivity, and resistivity 2Ω.
It is a silicon wafer (20 sheets) having a cm, a diameter of 100 mm and a thickness of 500 μm.

【0034】まず、このウエハをHF:H2 O=1:4
の溶液中に1分間浸漬し、表面に生成されていた不要な
酸化膜を完全に除去した後、純水中で約15分間流水洗
浄した。更にその後、100°Cに保たれた硝酸(HN
3 )中に20分間浸漬した後、純水中で約15分間流
水洗浄した。
First, this wafer was subjected to HF: H 2 O = 1: 4.
It was immersed in the above solution for 1 minute to completely remove the unnecessary oxide film formed on the surface, and then washed with running water for about 15 minutes in pure water. After that, nitric acid (HN
O 3) was immersed 20 minutes in, and washed with running water for about 15 minutes in pure water.

【0035】前記の処理でシリコンウエハに生成された
初期酸化膜厚は19〜20オングストロームであった。
こうして洗浄したシリコンウエハを、950°Cに保た
れた石英拡散管3内に一端から酸素3リットル/分と窒
素3リットル/分の混合気体を流した中に挿入して、1
00分間保持した。
The initial oxide film thickness formed on the silicon wafer by the above process was 19 to 20 angstroms.
The thus cleaned silicon wafer was inserted into a quartz diffusion tube 3 kept at 950 ° C. while flowing a mixed gas of 3 liters / minute of oxygen and 3 liters / minute of nitrogen from one end.
Hold for 00 minutes.

【0036】その後、シリコンウエハ1を石英拡散管3
から取り出し、第1の実験例と同様にして、実質酸化膜
の膜厚を測定した。更に、同一の実験を10ロット繰り
返し、評価した結果を図4にグラフEで示した。
Thereafter, the silicon wafer 1 is attached to the quartz diffusion tube 3
Then, the film thickness of the substantial oxide film was measured in the same manner as in the first experimental example. Furthermore, the same experiment was repeated for 10 lots, and the evaluation results are shown in Graph E in FIG.

【0037】また比較のために、硝酸中に浸出する処理
を施さない(他の条件は本実験例と同一)従来法での実
験も10ロット行ない、結果を図4にグラフFで示し
た。
For comparison, 10 lots were also tested by the conventional method without leaching in nitric acid (other conditions are the same as those of this experimental example), and the results are shown in graph F in FIG.

【0038】なお、表3に本実験例と従来法との膜厚ば
らつきの比較をウエハ面内及びロット内、ロット間に分
けて示した。
Table 3 shows a comparison of film thickness variations between the present experimental example and the conventional method, divided into the wafer surface, the lot, and the lot.

【0039】[0039]

【表3】 図4のグラフA,Bの比較及び表3から明らかなよう
に、本実験例によれば、従来法に比べてウエハ面内及び
ロット内、ロット間のいずれにおいてもばらつきが1/2
以下に低減しており、本発明の効果が確認できた。 実験例 4 次に、本発明の第4実施例について説明する。用いた半
導体基体は、面方位(100)、n型導電性、抵抗率8
Ωcm、直径100mm、厚み500μmのシリコンウエハ
である。シリコンウエハの前処理洗浄は、前記第1の実
験例と同一で行なった。
[Table 3] As is clear from the comparison between the graphs A and B in FIG. 4 and Table 3, according to this experimental example, the variation is 1/2 in the wafer surface, in the lot, and between lots as compared with the conventional method.
It was reduced to the following, and the effect of the present invention was confirmed. Experimental Example 4 Next, a fourth example of the present invention will be described. The semiconductor substrate used has a plane orientation (100), n-type conductivity, and a resistivity of 8
It is a silicon wafer having an Ωcm, a diameter of 100 mm and a thickness of 500 μm. The pretreatment cleaning of the silicon wafer was performed in the same manner as in the first experimental example.

【0040】まず、950°Cに保たれた石英拡散管3
内に、その一端3Aから酸素3.0リットル/分と水素
0.06リットル/分を流して燃焼させる。その結果生
じる2.97リットル/分の酸素と0.06リットル/
分の水蒸気(H2 O)との混合気流内に、シリコンウエ
ハを挿入し2分間保持した。
First, the quartz diffusion tube 3 kept at 950 ° C.
Oxygen 3.0 liters / minute and hydrogen 0.06 liters / minute are made to flow from one end 3A thereof for combustion. The resulting 2.97 l / min oxygen and 0.06 l / min
A silicon wafer was inserted into a mixed gas flow of water vapor (H 2 O) for 2 minutes and held for 2 minutes.

【0041】その後、酸素を3リットル/分の一定流量
に保持したまま、水素流量を1.8リットル/分に切り
換え(このときは、水素の燃焼により、1.8リットル
/分の水蒸気と2.1リットル/分の酸素の混合気流と
なる)10分間保持した。
Thereafter, the flow rate of hydrogen was switched to 1.8 liters / minute while keeping the oxygen at a constant flow rate of 3 liters / minute. (It becomes a mixed gas flow of oxygen of 1 liter / minute) for 10 minutes.

【0042】その後、石英拡散管3内からシリコンウエ
ハ1を取り出し、第1の実験例と同様な方法で、膜厚を
評価した。更に同一の実施例を10ロット繰り返し行な
い、再現性を評価した結果を、図5にグラフGで示し
た。
Then, the silicon wafer 1 was taken out from the quartz diffusion tube 3 and the film thickness was evaluated by the same method as in the first experimental example. Further, 10 lots of the same example were repeated and the reproducibility was evaluated. The result is shown as a graph G in FIG.

【0043】また、比較のために酸素2.97リットル
/分と水蒸気0.06リットル/分の混合気流中での熱
処理を施さない(他の条件は本実施例と同一)従来法で
の実験も10ロット行ない、その結果を図5にグラフH
で示した。
Further, for comparison, the heat treatment in a mixed air flow of 2.97 liters / min of oxygen and 0.06 liters / min of steam (other conditions are the same as those of this example) was conducted by the conventional method. Also performed 10 lots, and the results are shown in Graph H in Figure 5.
Indicated by.

【0044】なお、表4に、本実験例と従来法との膜厚
ばらつきの比較を、ウエハ面内及びロット内、ロット間
に分けて示した。
Table 4 shows a comparison of the film thickness variations between the present experimental example and the conventional method for the wafer surface, the lot, and the lot.

【0045】[0045]

【表4】 図5のグラフG,Hの比較及び表4から明らかなよう
に、本発明の実験例によれば従来法に比べてウエハ面
内、ロット内、ロット間のいずれにおいても、ばらつき
が1/2 以下に低減しており、本発明の効果が確認でき
た。
[Table 4] As is clear from the comparison between the graphs G and H in FIG. 5 and Table 4, the experimental example of the present invention shows that the variation is 1/2 in the wafer surface, within the lot, and between lots as compared with the conventional method. It was reduced to the following, and the effect of the present invention was confirmed.

【0046】さらに、本発明によれば、厚さ20〜30
オングストロームの初期酸化膜が形成されるまでの成膜
速度のみを遅くすれば実質酸化膜の膜厚を均一にできる
ので、従来にくらべて成膜時間が短縮され、成膜工程の
能率を向上させることができる。 なお、特許請求の範
囲に記載した他の条件で実験しても、本発明の効果を奏
することが確認された。
Furthermore, according to the invention, a thickness of 20-30
By slowing only the film formation rate until the initial angstrom oxide film is formed, the film thickness of the actual oxide film can be made uniform, so that the film formation time can be shortened and the efficiency of the film formation process can be improved compared to the conventional method. be able to. In addition, it was confirmed that the effect of the present invention was exhibited even when the experiment was conducted under the other conditions described in the claims.

【0047】[0047]

【発明の効果】以上において説明したように、本発明に
よれば、酸化膜の生長初期における膜厚のばらつきがな
くなるので、極めて均一制、再現性の良い酸化膜が形成
でき、ひいてはMOSLSIの特性、製造歩留まり、お
よび製造効率を大幅に向上することができる。
As described above, according to the present invention, since there is no variation in the film thickness in the initial stage of growth of the oxide film, an oxide film having an extremely uniform structure and excellent reproducibility can be formed, which in turn results in the characteristics of MOSLSI. The manufacturing yield, and the manufacturing efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに好適な熱酸化装置
の構造を示した断面図である。
FIG. 1 is a sectional view showing the structure of a thermal oxidation device suitable for carrying out the method of the present invention.

【図2】本発明の方法によって製造した酸化膜厚のばら
つき状況を従来法によるばらつき状況と対比して示した
図である。
FIG. 2 is a diagram showing a variation situation of an oxide film thickness manufactured by the method of the present invention in comparison with a variation situation of a conventional method.

【図3】本発明の方法によって製造した酸化膜厚のばら
つき状況を従来法によるばらつき状況と対比して示した
図である。
FIG. 3 is a diagram showing a variation situation of an oxide film thickness manufactured by the method of the present invention in comparison with a variation situation of a conventional method.

【図4】本発明の方法によって製造した酸化膜厚のばら
つき状況を従来法によるばらつき状況と対比して示した
図である。
FIG. 4 is a diagram showing a variation situation of an oxide film thickness manufactured by the method of the present invention in comparison with a variation situation of a conventional method.

【図5】本発明の方法によって製造した酸化膜厚のばら
つき状況を従来法によるばらつき状況と対比して示した
図である。
FIG. 5 is a diagram showing a variation situation of an oxide film thickness produced by the method of the present invention in comparison with a variation situation of a conventional method.

【符号の説明】[Explanation of symbols]

1…シリコン基体、2…ウエハホルダ、3…石英拡散
管、4…加熱用電気炉、3A…処理ガス導入口
1 ... Silicon substrate, 2 ... Wafer holder, 3 ... Quartz diffusion tube, 4 ... Electric furnace for heating, 3A ... Processing gas inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化性の雰囲気ガス中で半導体基体を加
熱処理して実質酸化膜を形成する工程の前に、半導体基
体を実質酸化する前記工程における酸化膜の成長速度よ
り遅い速度で半導体基体に実質的に均一な厚みの初期酸
化膜を形成する工程を設けた半導体基体の酸化法におい
て、 前記半導体基体に初期酸化薄膜を形成する工程は、前記
半導体基体に酸化性溶液とアルカリ性溶液との混合溶液
で薬液処理する工程であることを特徴とする半導体基体
の酸化法。
1. A semiconductor substrate at a rate slower than a growth rate of an oxide film in the step of substantially oxidizing the semiconductor substrate before the step of heat-treating the semiconductor substrate in an oxidizing atmosphere gas to form a substantial oxide film. In the method of oxidizing a semiconductor substrate having a step of forming an initial oxide film having a substantially uniform thickness in the step of forming an initial oxide thin film on the semiconductor substrate, the step of forming an initial oxide thin film on the semiconductor substrate is performed with an oxidizing solution and an alkaline solution. A method for oxidizing a semiconductor substrate, which comprises a step of chemical treatment with a mixed solution.
【請求項2】 前記アルカリ溶液はアンモニア水である
ことを特徴とする請求項1記載の半導体基体の酸化法。
2. The method for oxidizing a semiconductor substrate according to claim 1, wherein the alkaline solution is aqueous ammonia.
JP3121917A 1983-06-08 1991-04-25 Oxidation method of semiconductor substrate Expired - Lifetime JPH0783019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121917A JPH0783019B2 (en) 1983-06-08 1991-04-25 Oxidation method of semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58100915A JPS59227128A (en) 1983-06-08 1983-06-08 Oxidation method for semiconductor substrate
JP3121917A JPH0783019B2 (en) 1983-06-08 1991-04-25 Oxidation method of semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58100915A Division JPS59227128A (en) 1983-06-08 1983-06-08 Oxidation method for semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH06168936A true JPH06168936A (en) 1994-06-14
JPH0783019B2 JPH0783019B2 (en) 1995-09-06

Family

ID=26441854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121917A Expired - Lifetime JPH0783019B2 (en) 1983-06-08 1991-04-25 Oxidation method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0783019B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132273A (en) * 1974-09-13 1976-03-18 New Nippon Electric Co EPITAKI SHARUEHAA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132273A (en) * 1974-09-13 1976-03-18 New Nippon Electric Co EPITAKI SHARUEHAA

Also Published As

Publication number Publication date
JPH0783019B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPH08330248A (en) Manufacture of semiconductor device
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
JP2002510437A (en) Method of nitriding gate oxide layer of semiconductor device and resulting device
JPS5914549B2 (en) Plasma cleaning etch method
JPH0223023B2 (en)
JPH06168936A (en) Oxidizing method of semiconductor substrate
JP2821264B2 (en) Gas cleaning method for silicon devices
JPH0727898B2 (en) Oxidation method of semiconductor substrate
JP2705592B2 (en) Method for manufacturing semiconductor device
JP3042659B2 (en) Method for oxidizing semiconductor wafer
JPH07302775A (en) Manufacture of semiconductor device
JPS62123098A (en) Silicon single crystal
JPS60247928A (en) Cleaning method of semiconductor substrate
JPS63129633A (en) Surface treatment for semiconductor
JP3036366B2 (en) Processing method of semiconductor silicon wafer
JP2602598B2 (en) Semiconductor substrate processing method
KR102368657B1 (en) Method for measuring defect of silicon wafer and wafer
JPH03163821A (en) Manufacture of semiconductor device
CN114188213B (en) Method for solving problem of transmission failure of silicon carbide wafer
JP3489329B2 (en) Silicon wafer surface treatment method
JP3238957B2 (en) Silicon wafer
JPH05152236A (en) Manufacture of semiconductor device
JPH0684865A (en) Dry cleaning of semiconductor device
JPS61183923A (en) Formation of epitaxial layer
CN116798853A (en) Growth method of silicon epitaxial wafer