JPH06168933A - Manufacture of thin film and manufacturing device thereof - Google Patents

Manufacture of thin film and manufacturing device thereof

Info

Publication number
JPH06168933A
JPH06168933A JP32157092A JP32157092A JPH06168933A JP H06168933 A JPH06168933 A JP H06168933A JP 32157092 A JP32157092 A JP 32157092A JP 32157092 A JP32157092 A JP 32157092A JP H06168933 A JPH06168933 A JP H06168933A
Authority
JP
Japan
Prior art keywords
thin film
gas
reaction
sputtering
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32157092A
Other languages
Japanese (ja)
Other versions
JP3059597B2 (en
Inventor
Masatoshi Kitagawa
雅俊 北川
Munehiro Shibuya
宗裕 澁谷
Takeshi Kamata
健 鎌田
Kazuki Komaki
一樹 小牧
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4321570A priority Critical patent/JP3059597B2/en
Priority to DE69331538T priority patent/DE69331538T2/en
Priority to EP93118535A priority patent/EP0600303B1/en
Publication of JPH06168933A publication Critical patent/JPH06168933A/en
Priority to US08/483,873 priority patent/US5674366A/en
Priority to US08/483,835 priority patent/US5672252A/en
Application granted granted Critical
Publication of JP3059597B2 publication Critical patent/JP3059597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film at a low temperature and to provide an oxide thin film having good film quality and denseness in combination by a method wherein a reactive physical vapor deposition process, which is accompanied by a chemical reaction with gas containing at least oxygen or the gas discharge plasma, and a reaction process for emitting short-wavelength light on a deposition surface in an atmosphere of gas containing at least a reaction element are alternately repeated plural times. CONSTITUTION:A short-wavelength light source 17 is built in a device container or a container 11, which is movable without breaking a vacuum state therein and is different from the device container, and a thin film deposition process using plasma decomposition in a certain constant time and a process for giving an optical energy to a thin film surface, on which deposition is not performed in a certain constant time, are alternately executed plural times, whereby an oxide thin film of good quality is formed on a low-temperature substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に反応性スパッタリ
ングを用いた酸化物等の化合物薄膜の製造方法及びその
製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method for manufacturing a compound thin film such as an oxide by using reactive sputtering and a manufacturing apparatus therefor.

【0002】[0002]

【従来の技術】従来、酸化物結晶薄膜形成に使用される
反応性スパッタリング装置は図3に示すような構成を持
つ。41が真空チャンバーで排気口42より真空に排気
される。直流または高周波電源43から電界が電極兼原
料ターゲットホルダー44へ導入され、基板加熱が可能
な基板ホルダ−兼電極45との間に電界が印加されプラ
ズマが発生する。46はガス導入口で、酸化物薄膜を形
成する場合には、例えばAr等のスパッタガスやO2
の酸化のための反応性ガスが導入される。これらのガス
がプラズマ分解されてそのプラズマ中のイオンをターゲ
ット47へ加速衝突させ、いわゆるスパッタ蒸着により
基板48上に酸化物薄膜が堆積形成される。このとき、
スパッタされた活性な粒子は基板に到達する際、プラズ
マ中の活性な酸素イオン・酸素ラジカル等の反応性粒子
と接触反応して基板上において酸化物薄膜形成が行われ
る。
2. Description of the Related Art Conventionally, a reactive sputtering apparatus used for forming an oxide crystal thin film has a structure as shown in FIG. 41 is evacuated to a vacuum from the exhaust port 42 in the vacuum chamber. An electric field is introduced from the direct current or high frequency power source 43 into the electrode / raw material target holder 44, and the electric field is applied between the substrate holder / electrode 45 capable of heating the substrate to generate plasma. Reference numeral 46 is a gas introduction port, and when forming an oxide thin film, for example, a sputtering gas such as Ar or a reactive gas for oxidation such as O 2 is introduced. These gases are decomposed by plasma, ions in the plasma are accelerated and collide with the target 47, and an oxide thin film is deposited and formed on the substrate 48 by so-called sputter deposition. At this time,
When the sputtered active particles reach the substrate, they react with reactive particles such as active oxygen ions and oxygen radicals in the plasma to form an oxide thin film on the substrate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この様
な従来の反応性スパッタ装置を用いた方法では、酸化反
応が不十分で、良質な酸化物薄膜を得ようとする場合、
堆積速度を極端に低下させ、かつ基板温度を比較的高温
に保つ必要があった。このため、例えば半導体デバイス
との組み合わせが困難であったり、低融点基板上にデバ
イス形成が出来ない等、様々な制約があり、デバイス設
計上や製造工程において制約が多くあるという問題点が
あり、より低温での形成の要求が高いのが現状である。
However, in the method using such a conventional reactive sputtering apparatus, when the oxidation reaction is insufficient and a high quality oxide thin film is to be obtained,
It was necessary to extremely reduce the deposition rate and keep the substrate temperature relatively high. Therefore, there are various restrictions such as difficulty in combination with a semiconductor device and device formation on a low melting point substrate, and there are many restrictions in device design and manufacturing process. At present, there is a high demand for formation at lower temperatures.

【0004】しかしながら、従来の連続的に堆積させ続
ける方法では、結果的に基板に向かうイオン性荷電粒子
が、成膜面に衝突することによって受ける衝撃のため、
良好な結晶成長や格子の形成が妨げられ、低温形成が難
しい状態であった。
However, in the conventional method of continuously depositing, as a result, ionic charged particles toward the substrate are impacted by colliding with the film forming surface, and
Good crystal growth and formation of lattices were hindered, and low temperature formation was difficult.

【0005】本発明は、前記従来の問題を解決するた
め、低温で薄膜を形成しても欠陥が少なく、良好な膜質
・緻密性を合わせ持つ酸化物薄膜を実現し得る薄膜の製
造方法及びその製造装置を提供することを目的とする。
In order to solve the above-mentioned conventional problems, the present invention provides a method for producing a thin film which can realize an oxide thin film having a good number of defects even when the thin film is formed at a low temperature and having good film quality and compactness, and a method thereof. An object is to provide a manufacturing apparatus.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の薄膜の製造方法は、原材料となるターゲッ
トのスパッタリングよる物理的気相堆積手段を用いて薄
膜を製造する方法において、少なくとも酸素を含むガス
またはその放電プラズマとの化学反応を伴う反応性物理
気相堆積工程と、少なくとも反応元素を含むガス雰囲気
において短波長光を堆積表面に照射する反応工程とを、
複数回交互に繰り返すことを特徴とする。
In order to achieve the above object, a method for producing a thin film according to the present invention is a method for producing a thin film using a physical vapor deposition means by sputtering a target as a raw material. A reactive physical vapor deposition step involving a chemical reaction with a gas containing or a discharge plasma thereof, and a reaction step of irradiating the deposition surface with short wavelength light in a gas atmosphere containing at least a reactive element,
It is characterized by repeating a plurality of times alternately.

【0007】前記構成においては、反応性物理気相堆積
工程において、堆積中の化学反応に関与するガスと反応
には関与せずスパッタリングのみに関与する不活性なガ
スの混合ガスを供給し、短波長光照射反応工程におい
て、反応元素を含むガスのみを供給することが好まし
い。
In the above configuration, in the reactive physical vapor deposition process, a mixed gas of a gas involved in a chemical reaction during deposition and an inert gas not involved in the reaction but only involved in sputtering is supplied, In the wavelength light irradiation reaction step, it is preferable to supply only the gas containing the reactive element.

【0008】また前記構成においては、反応性物理気相
堆積工程と短波長光照射反応工程を、複数回交互に行な
う工程に際して、両工程において、堆積中の反応に関与
するガスと反応には関与せずスパッタリングのみに関与
する不活性なガスの混合ガスを供給することが好まし
い。
Further, in the above structure, when the reactive physical vapor deposition step and the short wavelength light irradiation reaction step are alternately performed a plurality of times, in both steps, the gas involved in the reaction during the deposition and the reaction are involved. It is preferable to supply a mixed gas of an inert gas that participates only in sputtering without sputtering.

【0009】次に本発明の薄膜の製造装置は、原材料と
なるターゲットのスパッタリングよる物理的気相堆積手
段を用いて薄膜を製造する装置において、少なくとも酸
素を含むガスまたはその放電プラズマとの化学反応を伴
う反応性物理気相堆積手段と、少なくとも反応元素を含
むガス雰囲気において短波長光を堆積表面に照射する反
応手段とを備え、前記両手段を複数回交互に繰り返す手
段を備えたことを特徴とする。
Next, the thin film producing apparatus of the present invention is an apparatus for producing a thin film by using a physical vapor deposition means by sputtering a target as a raw material, and a chemical reaction with a gas containing at least oxygen or its discharge plasma. And a reactive physical vapor deposition means for irradiating the deposition surface with short wavelength light in a gas atmosphere containing at least reactive elements, and means for alternately repeating the both means a plurality of times. And

【0010】前記構成においては、短波長光源が、スパ
ッタリング堆積工程を生じさせるためのターゲット電極
と同一容器内に設置されるか、もしくは少なくとも真空
を破断することなく、前記基板をスパッタリング工程を
行なう容器もしくは領域と光照射工程を行なう容器もし
くは領域との間を移動できる構造を有することが好まし
い。
In the above construction, the short wavelength light source is installed in the same container as the target electrode for causing the sputtering deposition process, or at least the container for performing the sputtering process on the substrate without breaking the vacuum. Alternatively, it is preferable to have a structure that can move between the region and the container or region in which the light irradiation step is performed.

【0011】また前記構成においては、スパッタリング
工程を行なう容器もしくは領域と光照射工程を行なう容
器もしくは領域との間を移動するに際して、基板を支持
する基板ホルダーを回転することにより行なうことが好
ましい。
In the above structure, it is preferable to rotate the substrate holder that supports the substrate when moving between the container or region in which the sputtering process is performed and the container or region in which the light irradiation process is performed.

【0012】また前記構成においては、短波長光源とし
て少なくとも150nm〜300nmの波長を含む光源
を用いることが好ましい。
In the above structure, it is preferable to use a light source having a wavelength of at least 150 nm to 300 nm as the short wavelength light source.

【0013】[0013]

【作用】前記本発明の構成によれば、少なくとも酸素を
含むガスまたはその放電プラズマとの化学反応を伴う反
応性物理気相堆積工程と、少なくとも反応元素を含むガ
ス雰囲気において短波長光を堆積表面に照射する反応工
程とを、複数回交互に繰り返すことにより、低温で薄膜
を形成しても欠陥が少なく、良好な膜質・緻密性を合わ
せ持つ酸化物薄膜を得ることができる。すなわち、反応
性スパッタリングによる堆積工程の後、基板をスパッタ
粒子に曝さない状態において酸化に用いられるガスを導
入しかつ基板(堆積)表面に短波長光照射による光エネ
ルギーを与える工程を行なう。この工程によって、第1
の作用として表面近傍の反応ガスが光励起され、例えば
酸素の場合、活性な原子状酸素が多く発生し、堆積形成
された膜中の酸素欠損部分の酸素原子による補償を行な
う。また第2の作用として短波長光源の照射により堆積
薄膜の極表面のみが加熱され、いわゆる熱処理効果が大
きい。これら2つの工程を交互に繰り返すことによりス
パッタリングによって、例えば酸化物薄膜の場合、形成
された膜中の未結合手(ダングリングボンド)の部分を
選択的に酸素化し、かつ過剰な酸素に対しては、その酸
素と結合しO2の形で取り去ってしまう作用を有する。
その後再び膜形成を行なう工程を繰り返すものである。
これにより、低温で形成しても結果的に欠陥が少なく、
特に良好な膜質・緻密性を合わせ持つ酸化物薄膜を実現
し得る作用を持つ。
According to the structure of the present invention, a reactive physical vapor deposition step involving a chemical reaction with a gas containing at least oxygen or its discharge plasma, and a surface on which short wavelength light is deposited in a gas atmosphere containing at least a reactive element. By alternately repeating the reaction step of irradiating the film with a plurality of times, it is possible to obtain an oxide thin film which has few defects even when the thin film is formed at a low temperature and has good film quality and compactness. That is, after the deposition step by reactive sputtering, a step of introducing a gas used for oxidation in a state where the substrate is not exposed to sputtered particles and giving light energy to the surface of the substrate (deposition) by irradiation with short wavelength light is performed. By this process, the first
As a result, the reaction gas in the vicinity of the surface is photoexcited, and in the case of oxygen, for example, a large amount of active atomic oxygen is generated, and the oxygen vacancy portion in the deposited film is compensated by oxygen atoms. In addition, as a second effect, only the extreme surface of the deposited thin film is heated by the irradiation of the short wavelength light source, and the so-called heat treatment effect is great. By repeating these two steps alternately, by sputtering, for example, in the case of an oxide thin film, a dangling bond portion in the formed film is selectively oxygenated and excess oxygen is removed. Has the action of binding to the oxygen and removing it in the form of O 2 .
After that, the step of forming the film again is repeated.
As a result, even if formed at low temperature, there are few defects as a result,
In particular, it has the function of realizing an oxide thin film having both good film quality and compactness.

【0014】また本発明の製造装置の構成によれば、前
記した本発明方法を効率良く合理的に製造することがで
きる。
Further, according to the structure of the manufacturing apparatus of the present invention, the above-mentioned method of the present invention can be efficiently and reasonably manufactured.

【0015】[0015]

【実施例】以下図面に基づき、本発明の代表的な実施例
を示す。図1は本発明で使用される一実施例として示す
光照射酸化処理可能な反応性スパッタリング装置の概略
図である。11が真空チャンバーで、排気口12より真
空に排気される。直流または高周波電源13から電界が
電極兼原料ターゲットホルダー14へ導入され、基板加
熱が可能な基板ホルダ−兼電極15との間に電界が印加
されプラズマが発生する。16は第1のガス導入口で、
例えばAr等のスパッタガスや酸化物薄膜を形成する場
合にはO2 等の酸化のための反応性ガスが導入される。
17は短波長光を基板に照射するための光源で、基板ホ
ルダ−15は例えばシャフト18で支持されており、シ
ャフトを回転させることにより基板19をターゲットに
対向させたり光源に対向させたりする事が出来る。20
は第2のガス導入口で、例えば酸化物薄膜を形成する場
合にはO2 等の酸化のための反応性ガスのみが基板近傍
に導入される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Representative embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a reactive sputtering apparatus capable of performing a light irradiation oxidation treatment shown as an embodiment used in the present invention. A vacuum chamber 11 is evacuated to a vacuum through an exhaust port 12. An electric field is introduced from the direct current or high frequency power supply 13 into the electrode / raw material target holder 14, and the electric field is applied between the substrate holder / electrode 15 capable of heating the substrate to generate plasma. 16 is the first gas inlet,
For example, when a sputtering gas such as Ar or an oxide thin film is formed, a reactive gas such as O 2 for oxidizing is introduced.
Reference numeral 17 is a light source for irradiating the substrate with short-wavelength light, and the substrate holder 15 is supported by, for example, a shaft 18. By rotating the shaft, the substrate 19 is made to face the target or the light source. Can be done. 20
Is a second gas inlet, and when forming an oxide thin film, for example, only a reactive gas such as O 2 for oxidizing is introduced near the substrate.

【0016】また、本実施例で使用した装置では、ター
ゲットの設置してある領域と光照射の光源の設置してあ
る領域に仕切21を設け、基板ホルダ−の回転には支障
が無い程度でかつ堆積工程ではスパッタガスであるAr
と反応性ガスであるO2 の混合ガスの雰囲気となってお
り、一方光反応工程では反応ガスであるO2 ガス雰囲気
となる構造となっている。
Further, in the apparatus used in this embodiment, the partition 21 is provided in the area where the target is installed and the area where the light source for light irradiation is installed, so that the rotation of the substrate holder is not hindered. Moreover, Ar which is a sputtering gas in the deposition process
And an atmosphere of a mixed gas of O 2 which is a reactive gas, and an O 2 gas atmosphere which is a reaction gas in the photoreaction step.

【0017】第1の膜堆積工程においては、基板をター
ゲット上に配置し、いわゆるスパッタ蒸着により基板1
9上に堆積形成される。このとき、スパッタされた活性
な粒子は基板に到達する際、プラズマ中の活性な酸素イ
オン・酸素ラジカル等の反応性粒子と接触反応して基板
上において酸化物薄膜形成が行われる第2の酸化および
堆積膜中の欠陥除去工程においては例えば基板ホルダ−
を回転させるなどして、ターゲットからスパッタ粒子が
到達しないかもしくは極めて堆積速度が小さい領域へ基
板を移動せしめ、かつ光源17から発せられる光が有効
に照射され得る領域に置き基板表面およびその近傍に光
照射させる。この時、基板近傍では酸素分子等の酸化ガ
ス分子の光分解により、活性な酸素原子が多く発生し、
かつ堆積極表面の加熱効果により、酸化が不足し生じた
欠陥部の酸化や膜表面の過剰酸素除去また膜中に生じた
格子歪の熱的な緩和を行なう。この第2の工程は、堆積
膜の表面から比較的浅い領域にのみ有効であるので第1
の堆積工程を行なう時間と光照射工程の時間との関係に
は最適な条件が存在するが、これらの工程を交互に行う
ことにより、比較的低温で緻密で良質な薄膜を基板損傷
を生ずることなく堆積形成し得る。
In the first film deposition step, the substrate is placed on the target and the substrate 1 is formed by so-called sputter deposition.
9 is deposited and formed on 9. At this time, when the sputtered active particles reach the substrate, they react with reactive particles such as active oxygen ions and oxygen radicals in the plasma to form a thin oxide film on the substrate. In the process of removing defects in the deposited film, for example, the substrate holder-
The substrate is moved to a region where the sputtered particles do not reach from the target or the deposition rate is extremely low by rotating, and is placed in a region where the light emitted from the light source 17 can be effectively irradiated, and the substrate surface and its vicinity are placed. Let it illuminate. At this time, many active oxygen atoms are generated in the vicinity of the substrate due to photolysis of oxidizing gas molecules such as oxygen molecules,
In addition, due to the heating effect on the surface of the deposition electrode, oxidation of defective portions caused by insufficient oxidation, removal of excess oxygen on the film surface, and thermal relaxation of lattice strain generated in the film are performed. This second step is effective only in a region relatively shallow from the surface of the deposited film, so
There is an optimum condition for the relationship between the time of performing the deposition process of P.O.C. and the time of the light irradiation process. However, by performing these processes alternately, it is possible to damage a dense and high-quality thin film at a relatively low temperature. It can be deposited without forming.

【0018】本実施例では仕切を設けた構造を有するこ
とにより堆積工程と光反応工程におけるガス雰囲気を区
別しているが、仕切が無い場合では全ての工程にわた
り、Arと酸素の混合ガスとして流し続けるても良い
し、基板の回転に応じてガスを混合ガスから酸素ガスの
みまた酸素のみから混合ガスへ交互に切り換える工程と
してもよい。
In this embodiment, the gas atmosphere in the deposition process and the photoreaction process is distinguished by having a structure with a partition. However, when there is no partition, it is kept flowing as a mixed gas of Ar and oxygen throughout all the processes. Alternatively, the gas may be alternately switched from the mixed gas to only the oxygen gas or from only the oxygen to the mixed gas in accordance with the rotation of the substrate.

【0019】次に図2に堆積基板温度を変化させたと
き、第1の堆積工程においてのスパッタ高周波電力密度
を0.3W/cm2 、とし、第2の工程の光源として低圧
水銀ランプを用い、その光照射光量を0.5W/cm2
一定とし、基板ホルダ−の回転速度2rpm としたとき、
光照射ありと光照射なしにおける形成したチタン酸鉛薄
膜の比誘電率の変化を示す。本実施例では、ターゲット
の直径は6インチ(約15cm)で基板のターゲット上を
一回通過する時間は約5秒でこの条件では約1.5nm堆
積した後、光照射を約4秒間行なうような条件となって
いる。光照射時と照射無し(回転は行なっている)では
明らかに違いが見られ、光照射時では、光照射のない場
合に比べ200℃以上低い基板温度から比誘電率の向上
が見られる。1〜10rpm 程度回転速度の範囲では、光
照射時と照射無し(回転は行なっている)では明らかに
違いが見られるが、回転数による変化は、ほとんど見ら
れなかった。
Next, referring to FIG. 2, when the deposition substrate temperature is changed, the sputtering high frequency power density in the first deposition step is set to 0.3 W / cm 2 , and a low pressure mercury lamp is used as a light source in the second step. When the amount of light irradiation is constant at 0.5 W / cm 2 and the rotation speed of the substrate holder is 2 rpm,
The change in relative permittivity of the lead titanate thin film formed with and without light irradiation is shown. In this embodiment, the target has a diameter of 6 inches (about 15 cm), and the time required for the substrate to pass once over the target is about 5 seconds. Under this condition, light is irradiated for about 4 seconds after depositing about 1.5 nm. It is a condition. A clear difference is observed between light irradiation and no light irradiation (rotation is performed), and an improvement in relative permittivity is observed during light irradiation from a substrate temperature lower by 200 ° C. or more than in the case without light irradiation. In the range of the rotation speed of about 1 to 10 rpm, a clear difference was observed between the time of light irradiation and the time of no light irradiation (rotation was performed), but almost no change due to the number of rotations was observed.

【0020】この図2から明らかなように、堆積と酸化
雰囲気での光照射が交互に行なわれることによって、低
温基板温度で形成した酸化物誘電体薄膜における誘電体
特性の向上が明らかである。
As is clear from FIG. 2, it is clear that the dielectric characteristics of the oxide dielectric thin film formed at the low temperature of the substrate are improved by alternately performing the deposition and the light irradiation in the oxidizing atmosphere.

【0021】[0021]

【発明の効果】以上説明した通り、本発明によれば、装
置容器内もしくは真空を破ることなく移動可能な異なる
容器に短波長光源を内蔵し、ある一定時間のプラズマ分
解による薄膜堆積工程とある一定時間の堆積を行なわな
い薄膜表面に光エネルギ−を与える工程を複数回交互に
行なうことことにより、低温基板で良質な酸化物薄膜を
得る。
As described above, according to the present invention, there is a thin film deposition process in which a short wavelength light source is built in a different container that can be moved without breaking the vacuum and plasma decomposition for a certain period of time. A high quality oxide thin film can be obtained on a low temperature substrate by alternately performing a plurality of steps of applying light energy to the surface of the thin film which is not deposited for a certain period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜形成装置概略図。FIG. 1 is a schematic view of a thin film forming apparatus according to an embodiment of the present invention.

【図2】本発明の効果を示すためにを基板温度を変化さ
せたとき、基板ホルダ−の回転速度を5rpm としたとき
の光照射ある場合とない場合における形成したチタン酸
鉛薄膜の比誘電率の変化を示す図。
FIG. 2 shows the relative dielectric constant of the lead titanate thin film formed with and without light irradiation when the substrate temperature is changed to show the effect of the present invention and the rotation speed of the substrate holder is 5 rpm. The figure which shows the change of a rate.

【図3】従来の反応性スパッタリング装置概略図。FIG. 3 is a schematic diagram of a conventional reactive sputtering apparatus.

【符号の説明】[Explanation of symbols]

11 真空チャンバー 12 排気孔 13 直流または高周波電源 14 電極兼ターゲットホルダ− 15 電極兼基板ホルダ− 16 第1のガス導入口 17 短波長光源 18 支持シャフト 19 基板 20 第2のガス導入口 21 仕切り 11 Vacuum Chamber 12 Exhaust Hole 13 DC or High Frequency Power Supply 14 Electrode / Target Holder-15 Electrode / Substrate Holder-16 First Gas Inlet 17 Short Wavelength Light Source 18 Support Shaft 19 Substrate 20 Second Gas Inlet 21 Partition

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小牧 一樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuki Komaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原材料となるターゲットのスパッタリン
グよる物理的気相堆積手段を用いて薄膜を製造する方法
において、少なくとも酸素を含むガスまたはその放電プ
ラズマとの化学反応を伴う反応性物理気相堆積工程と、
少なくとも反応元素を含むガス雰囲気において短波長光
を堆積表面に照射する反応工程とを、複数回交互に繰り
返すことを特徴とする薄膜の製造方法。
1. A method for producing a thin film using a physical vapor deposition means by sputtering a target as a raw material, a reactive physical vapor deposition step involving a chemical reaction with a gas containing at least oxygen or its discharge plasma. When,
A method for producing a thin film, characterized in that a reaction step of irradiating the deposition surface with short-wavelength light in a gas atmosphere containing at least a reactive element is alternately repeated a plurality of times.
【請求項2】 反応性物理気相堆積工程において、堆積
中の化学反応に関与するガスと反応には関与せずスパッ
タリングのみに関与する不活性なガスの混合ガスを供給
し、短波長光照射反応工程において、反応元素を含むガ
スのみを供給する請求項1に記載の薄膜の製造方法。
2. In the reactive physical vapor deposition process, a mixed gas of a gas involved in a chemical reaction during deposition and an inert gas not involved in the reaction but only involved in sputtering is supplied to perform short wavelength light irradiation. The method for producing a thin film according to claim 1, wherein only a gas containing a reactive element is supplied in the reaction step.
【請求項3】 反応性物理気相堆積工程と短波長光照射
反応工程を、複数回交互に行なう工程に際して、両工程
において、堆積中の反応に関与するガスと反応には関与
せずスパッタリングのみに関与する不活性なガスの混合
ガスを供給する請求項1に記載の薄膜の製造方法。
3. In the step of alternately performing the reactive physical vapor deposition step and the short wavelength light irradiation reaction step a plurality of times, in both steps, the gas involved in the reaction during the deposition and the sputtering are not involved in the reaction. The method for producing a thin film according to claim 1, wherein a mixed gas of an inert gas that participates in is supplied.
【請求項4】 原材料となるターゲットのスパッタリン
グよる物理的気相堆積手段を用いて薄膜を製造する装置
において、少なくとも酸素を含むガスまたはその放電プ
ラズマとの化学反応を伴う反応性物理気相堆積手段と、
少なくとも反応元素を含むガス雰囲気において短波長光
を堆積表面に照射する反応手段とを備え、前記両手段を
複数回交互に繰り返す手段を備えたことを特徴とする薄
膜の製造装置。
4. An apparatus for producing a thin film by using a physical vapor deposition means by sputtering a target as a raw material, a reactive physical vapor deposition means involving a chemical reaction with a gas containing at least oxygen or its discharge plasma. When,
An apparatus for producing a thin film, comprising: a reaction means for irradiating a deposition surface with short-wavelength light in a gas atmosphere containing at least a reactive element, and means for alternately repeating the both means a plurality of times.
【請求項5】 短波長光源が、スパッタリング堆積工程
を生じさせるためのターゲット電極と同一容器内に設置
されるか、もしくは少なくとも真空を破断することな
く、前記基板をスパッタリング工程を行なう容器もしく
は領域と光照射工程を行なう容器もしくは領域との間を
移動できる構造を有する請求項4に記載の薄膜の製造装
置。
5. A short wavelength light source is placed in the same container as the target electrode for causing the sputtering deposition process, or at least the container or region in which the sputtering process is performed without breaking the vacuum. The thin film manufacturing apparatus according to claim 4, wherein the thin film manufacturing apparatus has a structure capable of moving between a container and an area where the light irradiation step is performed.
【請求項6】 スパッタリング工程を行なう容器もしく
は領域と光照射工程を行なう容器もしくは領域との間を
移動するに際して、基板を支持する基板ホルダーを回転
することにより行なう請求項4に記載の薄膜の製造装
置。
6. The production of a thin film according to claim 4, wherein when the container or region for performing the sputtering process and the container or region for performing the light irradiation process are moved, the substrate holder for supporting the substrate is rotated. apparatus.
【請求項7】 短波長光源として少なくとも150nm
〜300nmの波長を含む光源を用いる請求項1に記載
の薄膜の製造方法または請求項4に記載の薄膜の製造装
置。
7. A short wavelength light source of at least 150 nm
The thin film manufacturing method according to claim 1, or the thin film manufacturing apparatus according to claim 4, wherein a light source including a wavelength of 300 nm to 300 nm is used.
JP4321570A 1992-12-01 1992-12-01 Method and apparatus for manufacturing thin film Expired - Fee Related JP3059597B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4321570A JP3059597B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing thin film
DE69331538T DE69331538T2 (en) 1992-12-01 1993-11-18 Process for producing an electrical thin film
EP93118535A EP0600303B1 (en) 1992-12-01 1993-11-18 Method for fabrication of dielectric thin film
US08/483,873 US5674366A (en) 1992-12-01 1995-06-07 Method and apparatus for fabrication of dielectric thin film
US08/483,835 US5672252A (en) 1992-12-01 1995-06-15 Method and apparatus for fabrication of dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4321570A JP3059597B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing thin film

Publications (2)

Publication Number Publication Date
JPH06168933A true JPH06168933A (en) 1994-06-14
JP3059597B2 JP3059597B2 (en) 2000-07-04

Family

ID=18134040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4321570A Expired - Fee Related JP3059597B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing thin film

Country Status (1)

Country Link
JP (1) JP3059597B2 (en)

Also Published As

Publication number Publication date
JP3059597B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0600303B1 (en) Method for fabrication of dielectric thin film
US20020066720A1 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH08293483A (en) Flattening method for solid surface with gas cluster ion beam
JP3293912B2 (en) Method of forming oxide thin film
JP4167833B2 (en) Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof
JPS6223450B2 (en)
JP3059597B2 (en) Method and apparatus for manufacturing thin film
JP3446765B2 (en) Method and apparatus for producing oxide thin film
JP3078853B2 (en) Oxide film formation method
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPH0860347A (en) Method for depositing dielectric thin film
JP2004137101A (en) Method of producing titanium oxide film
JPS6389656A (en) Electrically conductive transparent film and its formation
JP2007507618A (en) Apparatus and method for depositing rutile titanium dioxide at high speed
JPH04182317A (en) Formation of oxide superconducting thin film
JPH03174307A (en) Production of oxide superconductor
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JPH08337435A (en) Production of quartz glass film
JPH064520B2 (en) Manufacturing method of oxide thin film
JPH11111713A (en) Improvement of insulating film and manufacture of semi conductor device
JP2525910B2 (en) Laser excited thin film formation method
JP3349519B2 (en) Sputtering equipment
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
JPH01215963A (en) Formation of thin superconducting film
JPS62149876A (en) Formation of oxide film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees