JPS62149876A - Formation of oxide film - Google Patents

Formation of oxide film

Info

Publication number
JPS62149876A
JPS62149876A JP28934285A JP28934285A JPS62149876A JP S62149876 A JPS62149876 A JP S62149876A JP 28934285 A JP28934285 A JP 28934285A JP 28934285 A JP28934285 A JP 28934285A JP S62149876 A JPS62149876 A JP S62149876A
Authority
JP
Japan
Prior art keywords
oxide film
film
oxygen
forming
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28934285A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tokunaga
博之 徳永
Yoshiyuki Osada
芳幸 長田
Toshimichi Oda
小田 俊理
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28934285A priority Critical patent/JPS62149876A/en
Publication of JPS62149876A publication Critical patent/JPS62149876A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxide film having good quality by introducing a metallic element, compd. having an alkoxy group or alkyl group, oxygen or compd. contg. oxygen and active seed into a film forming space and forming the oxide film. CONSTITUTION:The compd. A expressed by the formula I or the compd. B expressed by the formula II, oxygen or the compd. contg. oxygen and active 0seed are introduced into the film forming space and the oxide film is deposited. In the formula I, the formula II, M, M'; metallic element, R; an alkyl group, m; the positive integer equal to the valency of M or the integer times of said valency, n; the positive integer equal to the valency of M' or the integer times of said valency. The compd. contg. oxygen is alcohols R-OH (R; an alkyl group of 1-4C) and the active seed is a hydrogen radial.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化膜の形成方法に係り、特に成膜温度の低
温化、膜質の向上等を企図した酸化膜の形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an oxide film, and more particularly to a method for forming an oxide film intended to lower the film forming temperature, improve film quality, etc.

[従来技術およびその聞届点] 酸化11’+!は、半導体装置における絶縁膜、素子分
)領域、素子表面のパッシベーション1!2等として広
く用いられており、特に絶縁ゲート型トランジスタにお
けるゲート酸化膜の膜質は、トランジスタの耐圧、耐久
性および電気的特性に大きく影テすることが知られてい
る。また1回路の集積化に伴ない、低い成膜温度で良質
の酸化膜を安価に形成することが集積回路の製造にとっ
て重要な技術となっている。
[Prior art and its findings] Oxidation 11'+! It is widely used as an insulating film, an element region, and a passivation 1 or 2 for the element surface in semiconductor devices. In particular, the quality of the gate oxide film in insulated gate transistors is important for the breakdown voltage, durability, and electrical performance of the transistor. It is known that it greatly affects the characteristics. Furthermore, with the increasing integration of single circuits, it has become an important technology for the manufacture of integrated circuits to inexpensively form a high-quality oxide film at a low film-forming temperature.

しかしながら、従来の熱CVD法、プラズマCVD法又
はMOGVD (Metal Organic Che
mical VaporDeposition)法等は
、L記要請を十分満足しているとは言えなかった。
However, conventional thermal CVD method, plasma CVD method or MOGVD (Metal Organic Chemistry
It could not be said that the Act on Vapor Deposition (Mical Vapor Deposition) etc. sufficiently satisfied the requirements of Article L.

まず、熱CVD法では、酸化膜を堆積させる基板又は堆
積面を500〜1200℃まで高める必要があり、基板
材料等の選択範囲に大きな制限があった。また、結晶性
が悪く、ピンホールが多いなど十分な膜質を得ることが
できなかった。
First, in the thermal CVD method, it is necessary to raise the temperature of the substrate or deposition surface on which the oxide film is deposited to 500 to 1200° C., and there are significant restrictions on the selection range of the substrate material and the like. In addition, the crystallinity was poor and there were many pinholes, making it impossible to obtain a sufficient film quality.

プラズマCVD法では低温成膜が可能であるが、8cv
n法に比べて反応プロセスが複雑であり、酸化膜の形成
パラメータが多い (例えば、基板温度、圧力、ガスの
流量、高周波電力、電極構造など)。そのために成膜条
件が不安定になり易く、膜厚および膜質の均一性や量産
性を十分に満足させることが困難であった。さらに、プ
ラズマCV(1法では、成膜空間でプラズマを発生させ
るために、堆積した膜にダメージが残るという問題点も
有していた。
Although low-temperature film formation is possible with the plasma CVD method,
The reaction process is more complex than the n-method, and there are many parameters for forming the oxide film (e.g., substrate temperature, pressure, gas flow rate, high-frequency power, electrode structure, etc.). For this reason, film forming conditions tend to become unstable, making it difficult to fully satisfy uniformity of film thickness and film quality, and mass productivity. Furthermore, the plasma CV method (1) has the problem that damage remains on the deposited film because plasma is generated in the film-forming space.

また、MOCVD 7J、では、有機金属ガスと酸化剤
を導入して酸化膜を堆積させるが、その時の中間生成物
が複雑であり、良質の膜の作製条件を決めることが困難
であった。
Furthermore, in MOCVD 7J, an oxide film is deposited by introducing an organometallic gas and an oxidizing agent, but the intermediate products produced at this time are complex, making it difficult to determine the conditions for producing a high-quality film.

更に、)、(板温((2のみで中間生成物を分解するた
めに、中間生成物の分解温度が高いと基板温度を高くす
る必要があり、基板材料の選択範囲が制限されてしまう
。一方、基板温度を高くすることなく、2(板と回し反
応室内でのプラズマや光等によって中間生成物を分解す
る方法を用いると、堆積した薄膜表面にダメージが残り
、結晶性、欠陥′重度等に悪い)影響が出てしまう。
Furthermore, since the intermediate product is decomposed only by ), (plate temperature ((2), if the decomposition temperature of the intermediate product is high, it is necessary to increase the substrate temperature, which limits the selection range of the substrate material. On the other hand, if we use the method 2 (decomposing intermediate products using plasma or light in a rotating reaction chamber without raising the substrate temperature), damage will remain on the surface of the deposited thin film, resulting in poor crystallinity and defect severity. etc.) will have a negative impact.

[問題点を解決するための手段] 」;記従来の問題点を解決するために、本発明による酸
化膜の形成方法は、 を記の一般式で各ノ?表わされる化合物AもしくはBと
、酸素もしくは酸素を含む化合物と、活性種を成膜空間
内に導入することによって、酸化膜を堆積させることを
特徴とする。
[Means for Solving the Problems] In order to solve the problems of the prior art, the method for forming an oxide film according to the present invention is based on the following general formula. The method is characterized in that an oxide film is deposited by introducing the expressed compound A or B, oxygen or a compound containing oxygen, and active species into a film formation space.

化合物A・・・M(OR)m 化合物B・・・M ’ Rn ただし、MおよびM′は金属元素、 Rはアルキル基、 mはMの価数に等しいか又はその 整数倍の正整数、 nはM′の価数に等しいか又はそ の整数倍の正整数を各々示す。Compound A...M(OR)m Compound B...M' Rn However, M and M' are metal elements, R is an alkyl group, m is equal to or equal to the valence of M a positive integer multiple of integers, n is equal to the valence of M' or Each indicates a positive integer that is an integer multiple of .

[作用説明等] ここで活性種とは、上記化合物AもしくはB又は/およ
び上記酸素もしくは酸素を含む化合物と化学的相互作用
を起して、それらを酸化膜が形成できる状態にする役目
を担うものをいう。
[Description of action, etc.] Here, the active species has the role of causing a chemical interaction with the above compound A or B or/and the above oxygen or a compound containing oxygen to make them into a state where an oxide film can be formed. say something

このような活性種は、前記成膜室とは異なる活性化室に
おいて生成され、成膜空間に導入される。活性種は、活
性化室において放電、光、8等のエネルギ又はこれらの
併用によって励起されるだけではなく、触媒等との接触
又は添加によって生成され七もよい。
Such active species are generated in an activation chamber different from the film forming chamber and introduced into the film forming space. The active species may not only be excited by electric discharge, light, energy such as light, or a combination thereof in the activation chamber, but also be generated by contact with or addition of a catalyst or the like.

このような活性種が成膜空間に導入され、主に化学的な
プロセスによって酸化膜が形成されるために、プラズマ
CVD法のように堆積膜にダメージを与えない。
Since such active species are introduced into the film forming space and an oxide film is formed mainly through a chemical process, the deposited film is not damaged unlike the plasma CVD method.

また1分解しにくい中間生成物を生じるようなガス種の
組合せであっても、その中間生成物を低い温度で分解で
きる。したがって、従来のCVD法より堆積速度を大幅
に向上させることができ、加えて堆積膜形成の際に基板
温度をより低湿化することができる。
Furthermore, even if the combination of gas species produces an intermediate product that is difficult to decompose, the intermediate product can be decomposed at a low temperature. Therefore, the deposition rate can be significantly improved compared to the conventional CVD method, and in addition, the substrate temperature and humidity can be lowered during the formation of the deposited film.

したがって、堆積がスムーズに進行し、結晶性が良く電
子捕獲準位の少ない良質の酸化膜を得ることができる。
Therefore, the deposition progresses smoothly, and a high-quality oxide film with good crystallinity and few electron capture levels can be obtained.

[実施例] 以ド、本発明の実施例を図面に)1(づいて詳細に説明
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

添付図面は、本発明を実施するために使用される製造装
置の模式的構成図である。
The accompanying drawings are schematic diagrams of manufacturing equipment used to carry out the present invention.

同図において、成膜室101内には基板ホルダ+02が
配置され、)、(仮ホルタ102上に基板103が固定
される。さらに基板ホルダ102には加熱用のヒータが
設けられ、基板103を所望温度に設定する。
In the figure, a substrate holder +02 is arranged in a film forming chamber 101, and a substrate 103 is fixed on a temporary holder 102.Furthermore, the substrate holder 102 is provided with a heater for heating the substrate 103. Set to desired temperature.

成膜室101内の成j漠空間には、ガス導入管104お
よび】05から原料ガスAおよびBが導入され、輸送管
lO6から水素ラジカルが導入される。
Raw material gases A and B are introduced into the formation space in the film forming chamber 101 from the gas introduction pipe 104 and 05, and hydrogen radicals are introduced from the transport pipe 106.

活性種としての水素ラジカルは、活性化室107内に導
入された活性種生成物質(H2、D2 、HD等)に活
性化エネルギを加えることによって生成される。活性化
エネルギとしては、赤外線加熱等の熱エネルギ、レーザ
光、水銀ランプ算の光エネルギ、マイクロ波、RF等に
よる放電を利用する電気エネルギなどを挙げることがで
きるが、本実施例ではマイクロ波放電を用いた。
Hydrogen radicals as active species are generated by applying activation energy to an active species generating substance (H2, D2, HD, etc.) introduced into the activation chamber 107. Examples of activation energy include thermal energy such as infrared heating, laser light, light energy equivalent to a mercury lamp, and electric energy using discharge by microwaves, RF, etc. In this example, microwave discharge is used. was used.

なお、図示されていないが、ドーピングガスも別のガス
導入管によって成膜室101内の成膜空間に導入される
よう構成されている。
Although not shown, the doping gas is also introduced into the film forming space in the film forming chamber 101 through another gas introduction pipe.

成膜室101内のガスは調節バルブ10日を通して排気
系によって排出され、調節バルブ108によって成膜室
101内の圧力は制御可能である。
The gas in the film forming chamber 101 is exhausted by the exhaust system through the control valve 108, and the pressure in the film forming chamber 101 can be controlled by the control valve 108.

次に、このような製造装置を用いて、本発明による酸化
膜の形成方法の一実施例を説明する。
Next, one embodiment of the method for forming an oxide film according to the present invention will be described using such a manufacturing apparatus.

まず、酸化膜を堆植させようとする基板103を基板ホ
ルタ102に設置する。
First, a substrate 103 on which an oxide film is to be deposited is placed in the substrate holder 102.

基板103の材料としては、たとえばガラス、石英、半
導体、サファイア、セラミック等あるが、本発明は低温
成膜が可ス克であることから、ここではガラス基板を使
用した。なお、酸化膜は、ガラス基板fill上に1α
接形成されてもよいし、またガラス人(板1031に予
め形成された半導体層や金属電極等の上に形成されても
よい。
Materials for the substrate 103 include, for example, glass, quartz, semiconductor, sapphire, and ceramic, but a glass substrate was used here because low-temperature film formation is possible in the present invention. Note that the oxide film has a thickness of 1α on the glass substrate fill.
It may be formed directly on the glass plate 1031, or may be formed on a semiconductor layer, metal electrode, etc. previously formed on the plate 1031.

次に、活性化室107に活性種生成物質としてのH2ガ
スを導入し、マイクロ波放電によって活性種としての水
素ラジカルを生成する。この水素ラジカルを輸送管10
Bを通して、また次表に示すような原遺ガスAおよびB
をガス導入管104および105を通して成膜室101
の成膜空間に導入し、酸化膜(AI 203又はTa2
0 s )を形成する。
Next, H2 gas as an active species generating substance is introduced into the activation chamber 107, and hydrogen radicals as active species are generated by microwave discharge. This hydrogen radical is transported to the transport pipe 10.
through B, and the original gases A and B as shown in the table below.
into the film forming chamber 101 through gas introduction pipes 104 and 105.
oxide film (AI 203 or Ta2
0 s).

第1表 第  2  表 このように水素ラジカルを活性種として成膜空間内に導
入し、かつ上記原料ガスAおよび原料ガスB  (’t
GにC2Hs OH)をJ&成膜空間内導入するT&膜
方法によって、最適温度200〜400℃という低い基
板温度で、結晶性が良く膜内の電子捕獲準位が少ない良
質の酸化膜を形成することができる。したがって、上記
酸化膜を絶縁ゲート型トランジスタの絶縁膜として用い
れば、トランジスタの耐圧、耐久性および電気的特性の
安定性を向上させることができる。
Table 1 Table 2 In this way, hydrogen radicals are introduced into the film forming space as active species, and the source gas A and source gas B ('t
By using the T& film method in which C2Hs OH) is introduced into the film formation space, a high-quality oxide film with good crystallinity and few electron trapping levels in the film is formed at a low substrate temperature of an optimum temperature of 200 to 400°C. be able to. Therefore, if the above oxide film is used as an insulating film of an insulated gate transistor, the breakdown voltage, durability, and stability of electrical characteristics of the transistor can be improved.

[発明の効果] 以上詳細に説明したように、本発明による酸化膜の形成
方法は、金属元素およびアルコキシ基もしくはアルキル
基の化合物と、酸素もしくは酸素を含む化合物と、活性
種をJ&成膜空間内導入して酸化膜を形成するために1
次のような優れた効果を有する。
[Effects of the Invention] As explained in detail above, the method for forming an oxide film according to the present invention is to combine a metal element, a compound of an alkoxy group or an alkyl group, oxygen or a compound containing oxygen, and an active species into a J & film formation space. 1 to form an oxide film by introducing
It has the following excellent effects.

(1)  酸化膜を200〜400℃という低い温度で
形成できるために、良質の酸化膜を得ることができ、更
に基板にガラスを用いることができるために、低コスト
化を促進できる。また形成時の堆積面温度を均一・に維
持することが容易となり、大面積の醇化j1りを形成で
き、t1ニー産性に優れている。
(1) Since the oxide film can be formed at a low temperature of 200 to 400° C., a high quality oxide film can be obtained, and furthermore, glass can be used for the substrate, so cost reduction can be promoted. Furthermore, it is easy to maintain a uniform deposition surface temperature during formation, a large area of molten resin can be formed, and the t1 knee productivity is excellent.

(2)  酸化1112を形成する際、活性種によって
堆積面がクリーニングされるために、酸化1模の堆積面
に対する密着力が向上し、また堆積がスムーズに開始さ
れ、不純物のない良質の酸化膜が形成できる。
(2) When forming oxide 1112, the deposition surface is cleaned by active species, so the adhesion of oxide 1 to the deposition surface is improved, and the deposition starts smoothly, resulting in a high-quality oxide film free of impurities. can be formed.

(3)  活性種は、成膜室とは別の活性化室で生成さ
れ成膜空間に導入されるために、従来のプラズマCVD
法に比べて反応プロセスが単純となり、成膜条件もより
安定化される。
(3) Since active species are generated in an activation chamber separate from the film-forming chamber and introduced into the film-forming space, conventional plasma CVD
Compared to the method, the reaction process is simpler and the film forming conditions are more stable.

また、従来のMOCVD法のように、熱エネルギ、光又
はプラズマ等を用いて中間生成物を分解する必要がない
ために、結晶性が良く欠陥密度の少ない良質の酸化膜を
形成する条件を容易に設定できる。
In addition, unlike the conventional MOCVD method, there is no need to decompose intermediate products using thermal energy, light, plasma, etc., so conditions for forming a high-quality oxide film with good crystallinity and low defect density can be easily created. Can be set to

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、本発明を実施するために使用される製造装
芒の模式的構成図である。 101 ・・・成膜室 102 ・・・基板ホルダ 103@・・基板 104 、105−・・ガス導入管 1013 争働・輸送管 107 ・・・活性化室
The accompanying drawings are schematic diagrams of manufacturing equipment used to carry out the invention. 101...Film forming chamber 102...Substrate holder 103@...substrate 104, 105-...Gas introduction pipe 1013 Action/transport pipe 107...Activation chamber

Claims (4)

【特許請求の範囲】[Claims] (1)下記の一般式で各々表わされる化合物Aもしくは
Bと、酸素もしくは酸素を含む化合物と、活性種を成膜
空間内に導入することによって、酸化膜を堆積させるこ
とを特徴とする酸化膜の形成方法。 化合物A・・・M(OR)m 化合物B・・・M′Rn ただし、MおよびM′は金属元素、 Rはアルキル基、 mはMの価数に等しいか又はその 整数倍の正整数、 nはM′の価数に等しいか又はそ の整数倍の正整数を各々示す。
(1) An oxide film characterized in that the oxide film is deposited by introducing a compound A or B each represented by the following general formula, oxygen or a compound containing oxygen, and an active species into a film-forming space. How to form. Compound A...M(OR)m Compound B...M'Rn where M and M' are metal elements, R is an alkyl group, m is a positive integer equal to the valence of M or an integral multiple thereof, n represents a positive integer equal to the valence of M' or an integral multiple thereof.
(2)上記酸素を含む化合物は、アルコール類R−OH
(ただし、Rは炭素数1〜4のアルキル基)であること
を特徴とする特許請求の範囲第1項記載の酸化膜の形成
方法。
(2) The above oxygen-containing compound is an alcohol R-OH
(However, R is an alkyl group having 1 to 4 carbon atoms.) The method for forming an oxide film according to claim 1, wherein R is an alkyl group having 1 to 4 carbon atoms.
(3)上記活性種は、水素ラジカルであることを特徴と
する特許請求の範囲第1項記載の酸化膜の形成方法。
(3) The method for forming an oxide film according to claim 1, wherein the active species is a hydrogen radical.
(4)上記酸化膜は400℃以下で形成されることを特
徴とする特許請求の範囲第1項記載の酸化膜の形成方法
(4) The method for forming an oxide film according to claim 1, wherein the oxide film is formed at a temperature of 400° C. or lower.
JP28934285A 1985-12-24 1985-12-24 Formation of oxide film Pending JPS62149876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28934285A JPS62149876A (en) 1985-12-24 1985-12-24 Formation of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28934285A JPS62149876A (en) 1985-12-24 1985-12-24 Formation of oxide film

Publications (1)

Publication Number Publication Date
JPS62149876A true JPS62149876A (en) 1987-07-03

Family

ID=17741958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28934285A Pending JPS62149876A (en) 1985-12-24 1985-12-24 Formation of oxide film

Country Status (1)

Country Link
JP (1) JPS62149876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189135A (en) * 1988-01-25 1989-07-28 Fujitsu Ltd Vapor growth method
JP2009502658A (en) * 2005-07-13 2009-01-29 アクアパック・インターナショナル・リミテッド Forming a hermetic seal around the cable
CN106086814A (en) * 2016-06-17 2016-11-09 中山大学 A kind of face glass film plating layer and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189135A (en) * 1988-01-25 1989-07-28 Fujitsu Ltd Vapor growth method
JP2009502658A (en) * 2005-07-13 2009-01-29 アクアパック・インターナショナル・リミテッド Forming a hermetic seal around the cable
CN106086814A (en) * 2016-06-17 2016-11-09 中山大学 A kind of face glass film plating layer and preparation method thereof

Similar Documents

Publication Publication Date Title
CN113140503A (en) Method of forming high aspect ratio features
KR100838436B1 (en) Manufacturing method of semiconductor apparatus
US8440268B2 (en) Method and apparatus for growing plasma atomic layer
WO2000044033A1 (en) Method and apparatus for film deposition
US7589002B2 (en) Method of forming an oxygen- or nitrogen-terminated silicon nanocrystalline structure and an oxygen- or nitrogen-terminated silicon nanocrystalline structure formed by the method
JPH02281627A (en) Manufacture of semiconductor device
KR19980087249A (en) Silicon oxide film, method for forming the same, and forming apparatus
JP2004165682A (en) Multi-step cvd method for thin film transistor
KR20020095194A (en) Method of forming a dielectric film
JP4126517B2 (en) Vapor processing equipment
JP2000223421A (en) Film growth method and its device
Kakiuchi et al. Controllability of structural and electrical properties of silicon films grown in atmospheric-pressure very high-frequency plasma
JP2000260721A (en) Cvd system, cvd method and method of cleaning the cvd system
JPS62149876A (en) Formation of oxide film
JPS6239534B2 (en)
JPS6239533B2 (en)
JP2649331B2 (en) Plasma processing method
JPS61189629A (en) Formation of deposited film
JP2649330B2 (en) Plasma processing method
KR100451507B1 (en) Method for manufacturing semiconductor device
JP2002134500A (en) Forming method of insulation film, manufacturing apparatus thereof, thin-film transistor using the same, and manufacturing method of the transistor
JPH09283371A (en) Formation of thin film capacitor
JP2004043847A (en) Thin-film forming method and apparatus
JPH0424432B2 (en)
JPS62145869A (en) Manufacture of thin film transistor