JPH061669A - Method and device for producing ceramic substrate - Google Patents

Method and device for producing ceramic substrate

Info

Publication number
JPH061669A
JPH061669A JP4184578A JP18457892A JPH061669A JP H061669 A JPH061669 A JP H061669A JP 4184578 A JP4184578 A JP 4184578A JP 18457892 A JP18457892 A JP 18457892A JP H061669 A JPH061669 A JP H061669A
Authority
JP
Japan
Prior art keywords
ceramic substrate
fired
substrate
firing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4184578A
Other languages
Japanese (ja)
Inventor
Hideaki Araki
英明 荒木
Mitsuhisa Hatano
光久 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Electronics Devices Inc
Original Assignee
Sumitomo Metal Ceramics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Ceramics Inc filed Critical Sumitomo Metal Ceramics Inc
Priority to JP4184578A priority Critical patent/JPH061669A/en
Publication of JPH061669A publication Critical patent/JPH061669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers

Landscapes

  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To obtain a high-precision dense ceramic substrate with the nonuniformity due to contraction reduced in sintering by moving a substrate which is being horizontally rotated and sintering the substrate in a sintering furnace. CONSTITUTION:The gas atmosphere in a sintering furnace 1 is firstly adjusted to sinter a ceramic substrate 2, and the rotating chains 6 of a rectilinearly moving machines 3 are driven. The substrates 2 are transferred by a conveyor and placed on the setters arranged on turntables 7, the turntables 7 are horizontally rotated and rectilinearly moved in the furnace 1 by a rack and a pinion, and the substrates 2 are continuously sintered. Accordingly, the substrate 2 is uniformly contracted in sintering, and the difference in thermal contraction of the ceramic substrate 2 before and after the furnace 1 is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック基板の製造
方法とその装置に係り、より詳細には、多層回路(配
線)基板やIC基板等のセラミック基板を、その焼成進
行方向前部と後部とでの熱収縮差を少なくし、寸法精度
を低下させることなく連続して製造できるようにしたセ
ラミック基板の製造方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic substrate and an apparatus therefor, and more particularly, to a ceramic substrate such as a multilayer circuit (wiring) substrate or an IC substrate, in which a front portion and a rear portion in a firing advancing direction. The present invention relates to a method for manufacturing a ceramic substrate and a device for manufacturing the ceramic substrate, in which the difference in heat shrinkage between the two is reduced and the dimensional accuracy can be continuously manufactured.

【0002】[0002]

【従来の技術】近年、モジュールの小型化と高密度化に
伴い、セラミック多層配線基板の需要が高まってきてい
る。また、該基板に実装する部品も小型・狭ピッチ化が
進んでおり、歩留りよく、実装するには、基板寸法の精
度は、±0.01mmが必要とされるようになってき
た。
2. Description of the Related Art In recent years, with the miniaturization and high density of modules, the demand for ceramic multilayer wiring boards has been increasing. Further, the components mounted on the substrate are also becoming smaller and narrower in pitch, and the yield is good, and the precision of the substrate dimension is required to be ± 0.01 mm for mounting.

【0003】一方では、その実装効率を上げるため、一
枚のシートにできるだけ多くの基板を含む多数個搭載が
要求され、しかもシートのサイズは、従来の50mm角
や75mm角から100mm角へと拡大しつつある。1
00mm角基板においても±0.1mmの寸法精度は、
±0.10%に相当する。
On the other hand, in order to increase the mounting efficiency, it is required to mount a large number of substrates including as many substrates as possible on one sheet, and the size of the sheet is expanded from the conventional 50 mm square or 75 mm square to 100 mm square. I am doing it. 1
Even with a 00 mm square substrate, the dimensional accuracy of ± 0.1 mm is
This corresponds to ± 0.10%.

【0004】ところで、セラミック多層配線基板は、グ
リーンシート法により作成されるが、その焼成は、ベル
ト炉で連続焼成されている。すなわち、被焼成セラミッ
ク多層配線基板をベルトに載せて、ガス雰囲気を一定と
した焼成炉内を移動させることで焼成し、セラミック多
層配線基板を製造している。
By the way, the ceramic multilayer wiring substrate is produced by the green sheet method, but the firing is performed continuously in a belt furnace. That is, the ceramic multilayer wiring board is placed on a belt and fired by moving in a firing furnace in which the gas atmosphere is kept constant to manufacture a ceramic multilayer wiring board.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述した従来
のセラミック基板の製造方法の場合、焼成で各基板内の
収縮の不均一さによる変形が生じ、その寸法精度は、±
0.3〜0.4%が限界とされているという問題があ
る。
However, in the case of the above-described conventional method for manufacturing a ceramic substrate, deformation due to nonuniformity of shrinkage in each substrate occurs during firing, and the dimensional accuracy is ±
There is a problem that the limit is 0.3 to 0.4%.

【0006】本発明者は、この問題に対処し、種々・試
験・研究を行った処、前記製造方法の場合、ベルト進行
方向に対し、被焼成セラミック基板の前部と後部とで
は、温度差が生じ、該基板の焼成進行方向の前部が先に
加熱され収縮するため、その後部と比べ収縮が不均一に
なり、結果として寸法精度の低下や、焼成による変形が
発生することを究明した。
The inventor of the present invention has dealt with this problem and has conducted various tests and studies. In the case of the manufacturing method, the temperature difference between the front and rear portions of the ceramic substrate to be fired is different from that of the belt traveling direction. Since the front part of the substrate in the firing progress direction is heated and shrinks first, the shrinkage becomes more uneven than that of the rear part, resulting in a decrease in dimensional accuracy and deformation due to firing. .

【0007】本発明は、以上の点に鑑みて創作した方法
と装置であって、その目的とする処は、被焼成セラミッ
ク基板の焼成の際の収縮による不均一を低減し、高精
度、高密度のセラミック基板を製造する製造方法とその
装置を提供することにある。
The present invention is a method and apparatus created in view of the above points. The object of the present invention is to reduce nonuniformity due to shrinkage during firing of a fired ceramic substrate, and to achieve high precision and high accuracy. It is an object of the present invention to provide a manufacturing method and a device for manufacturing a ceramic substrate having a high density.

【0008】[0008]

【課題を解決するための手段】そして、上記課題を解決
するための手段としての本発明のセラミック基板の製造
方法は、被焼成セラミック基板を焼成炉で焼成してセラ
ミック基板を製造するに際し、該被焼成セラミック基板
を水平回転させながら移動させることで焼成させるよう
にした構成よりなる。
The method for manufacturing a ceramic substrate of the present invention as a means for solving the above problems is as follows: when a ceramic substrate to be fired is fired in a firing furnace to produce a ceramic substrate, The ceramic substrate to be fired is fired by moving it while horizontally rotating.

【0009】また、本発明のセラミック基板の製造装置
は、焼成炉内に、被焼成セラミック基板を前進移動させ
るための前進移動機構と、該被焼成セラミック基板を水
平回転させるための水平回転機構とを設け、前記焼成炉
内で該被焼成セラミック基板を水平回転と前進移動とを
並行して行えるようにした構成よりなる。
Further, the apparatus for manufacturing a ceramic substrate of the present invention comprises a forward moving mechanism for moving the fired ceramic substrate forward in the firing furnace, and a horizontal rotation mechanism for horizontally rotating the fired ceramic substrate. Is provided, and the ceramic substrate to be fired can be horizontally rotated and moved forward in parallel in the firing furnace.

【0010】[0010]

【作用】上記構成に基づく、本発明のセラミック基板の
製造方法は、例えば、被焼成セラミック基板を焼成炉内
で水平回転させながら直進移動させると、該焼成炉侵入
時点における該被焼成セラミック基板の前後点は、円弧
を描きながら進行方向に移動することになり、該被焼成
セラミック基板の前点は、 x=rcosωt+vt y=rsinωt 該被焼成セラミック基板の後点は、 x=rcos(ωt+π)+vt y=rsin(ωt+π) ただし、ω・・・被焼成セラミック基板の角速度 v・・・被焼成セラミック基板の直進方向(x方向)へ
の速度 で表され、該被焼成セラミック基板の前後点は、均一に
焼成される。従って、直進方向への移動速度vと、被焼
成セラミック基板の角速度ωとにより、トロコイドの軌
跡を描き、焼成による熱収縮を低減できるように作用す
る。
According to the method for manufacturing a ceramic substrate of the present invention having the above-described structure, for example, when the ceramic substrate to be fired is moved straight while being horizontally rotated in the firing furnace, the ceramic substrate to be fired at the time of entering the firing furnace is moved. The front and rear points move in an advancing direction while drawing an arc, and the front point of the fired ceramic substrate is x = rcosωt + vty y = rsinωt The back point of the fired ceramic substrate is x = rcos (ωt + π) + vt y = rsin (ωt + π) where ω ... angular velocity of the fired ceramic substrate v ... velocity of the fired ceramic substrate in the straight direction (x direction), and the front and rear points of the fired ceramic substrate are It is evenly baked. Therefore, the moving velocity v in the straight traveling direction and the angular velocity ω of the ceramic substrate to be fired serve to draw a locus of a trochoid and reduce the thermal contraction due to firing.

【0011】また、本発明のセラミック基板の製造装置
は、焼成炉内に、被焼成セラミック基板を前進移動させ
るための前進移動機構と、該被焼成セラミック基板を水
平回転させるための水平回転機構とを設けていることよ
り、該被焼成セラミック基板を、焼成炉内で水平回転さ
せながら移動させることができ、かつ両作動を並行して
スムーズに行えるように作用する。
Further, the apparatus for manufacturing a ceramic substrate of the present invention comprises a forward moving mechanism for moving the fired ceramic substrate forward in the firing furnace, and a horizontal rotation mechanism for horizontally rotating the fired ceramic substrate. Since the ceramic substrate to be fired is provided, the fired ceramic substrate can be moved while being horizontally rotated in the firing furnace, and both operations can be performed smoothly in parallel.

【0012】[0012]

【実施例】以下、図面を参照しながら、本発明を具体化
した実施例について説明する。ここに、図1〜図7は、
本発明の実施例を示し、図1は焼成炉内の概略構成図、
図2は焼成炉の縦断面図、図3は焼成炉内部の平面図、
図4は焼成後の熱収縮による変形量の測定法を説明する
ためのセラミック基板の説明図、図5は実施例方法によ
るセラミック基板の変形量の測定図、図6は比較例方法
によるセラミック基板の変形量の測定図、図7は焼成炉
内での被焼成セラミック基板の軌跡を説明するための軌
跡説明図である。
Embodiments of the present invention will be described below with reference to the drawings. Here, FIG. 1 to FIG.
FIG. 1 shows an embodiment of the present invention, and FIG.
2 is a vertical sectional view of the firing furnace, FIG. 3 is a plan view of the inside of the firing furnace,
FIG. 4 is an explanatory diagram of a ceramic substrate for explaining a method of measuring the amount of deformation due to thermal contraction after firing, FIG. 5 is a diagram of measuring the amount of deformation of the ceramic substrate by the example method, and FIG. 6 is a ceramic substrate by the comparative example method. FIG. 7 is a locus explanatory view for explaining a locus of the ceramic substrate to be fired in the firing furnace.

【0013】本実施例は、セラミック基板の製造装置で
あって、概略すると、焼成炉1の内部に被焼成セラミッ
ク基板2を直進移動させる直進移動機構3と、被焼成セ
ラミック基板2を水平回転させる水平回転機構4とより
構成されている。
The present embodiment is an apparatus for manufacturing a ceramic substrate, and roughly speaking, a linear moving mechanism 3 for linearly moving the ceramic substrate 2 to be fired inside the firing furnace 1 and a ceramic substrate 2 to be fired are horizontally rotated. It is composed of a horizontal rotation mechanism 4.

【0014】焼成炉1は、一般的なマッフル炉が使用さ
れていて、少なくとも、昇温速度が10℃/分,最高温
度900℃で20分保持できる連続焼成可能な焼成炉よ
りなる。そして、使用する加熱方式、雰囲気ガスの組
成、排気構成については、ベルト焼成炉と同様な構成と
され、直進移動機構3により被焼成セラミック基板2を
連続移動することで焼成できる構成されている。
As the firing furnace 1, a general muffle furnace is used, and it comprises a firing furnace capable of continuously firing at a temperature rising rate of 10 ° C./min and a maximum temperature of 900 ° C. for 20 minutes. The heating method used, the composition of the atmospheric gas, and the exhaust structure are the same as those of the belt baking furnace, and the straight moving mechanism 3 continuously moves the ceramic substrate 2 to be fired.

【0015】直進移動機構3は、チェーンガイド5,5
と、回転チェーン6,6、およびターンテーブル7とよ
り構成されている。チェーンガイド5,5は、焼成炉1
の内部左右に設置されていて、その上部に回転チェーン
6,6が設けられ、回転チェーン6,6間には複数個の
連結板8,8・・が所定間隔で連結され、各連結板8,
8・・の中央部位には被焼成セラミック基板2を載置す
るターンテーブル7,7・・が取りつけられ、被焼成セ
ラミック基板2を焼成炉1内で直進移動できるように構
成されている。
The linear movement mechanism 3 includes chain guides 5, 5
And the rotary chains 6, 6 and the turntable 7. Chain guides 5 and 5 are firing furnace 1
, Which are installed on the left and right sides of the inside of the rotary chain, and the rotary chains 6 and 6 are provided on the upper part thereof, and a plurality of connecting plates 8 and 8 are connected between the rotary chains 6 and 6 at predetermined intervals. ,
The turntables 7, 7 ... On which the fired ceramic substrate 2 is placed are attached to the central portion of 8 ... so that the fired ceramic substrate 2 can be moved straight in the firing furnace 1.

【0016】また、水平回転機構4は、被焼成セラミッ
ク基板2を載置するターンテーブル7,7・・と軸受9
を介して接続されているピニオン10と、ピニオン10
と噛み合うラック11とより構成されている。そして、
水平回転機構4は、直進移動機構3を構成する回転チェ
ーン6,6の駆動力によって、ラック11とピニオン1
0とが噛み合いによる直線運動を回転運動に変えること
で、ターンテーブル7,7・・を水平回転させるように
構成されている。
Further, the horizontal rotation mechanism 4 includes turntables 7 on which the ceramic substrate 2 to be fired is placed, and bearings 9.
And the pinion 10 connected via the
And a rack 11 that meshes with the rack 11. And
The horizontal rotation mechanism 4 is driven by the driving force of the rotation chains 6 and 6 that form the rectilinear movement mechanism 3 to move the rack 11 and the pinion 1 together.
.. is configured to horizontally rotate the turntables 7, 7 ... By converting the linear motion due to the meshing with 0 into a rotary motion.

【0017】次に、本実施例の被焼成セラミック基板の
製造装置を用いて、被焼成セラミック基板2,2・・の
焼成方法を説明する。まず、焼成炉1内のガス雰囲気を
被焼成セラミック基板2の焼成条件に調整した後、直進
移動機構3の回転チェーン6,6を駆動させる。そし
て、図示しないコンベア装置より移送される被焼成セラ
ミック基板2,2・・を、ターンテーブル7,7・・上
に設置(配置)されているセッターに載せると、ターン
テーブル7,7・・は、ラック11とピニオン10によ
り、水平回転しながら直進移動して焼成炉1の内部を移
動し、この間に被焼成セラミック基板2,2・・を連続
して焼成できる。
Next, a method of firing the fired ceramic substrates 2, 2, ... Using the apparatus for producing a fired ceramic substrate of this embodiment will be described. First, after adjusting the gas atmosphere in the firing furnace 1 to the firing conditions for the ceramic substrate 2 to be fired, the rotary chains 6 and 6 of the linear movement mechanism 3 are driven. When the fired ceramic substrates 2, 2, ... Transferred from a conveyor device (not shown) are placed on a setter installed (arranged) on the turntables 7, 7 ,. , The rack 11 and the pinion 10 move horizontally while moving horizontally to move inside the firing furnace 1, during which the fired ceramic substrates 2, 2 ... Can be fired continuously.

【0018】従って、被焼成セラミック基板2は、焼成
炉1の内部で、水平回転機構4により、水平回転をしな
がら焼成炉1内を移動するため、その焼成による収縮が
均一化されることにより、被焼成セラミック基板2の焼
成炉1への進入前後部位による熱収縮差が低減できるこ
とになる。
Accordingly, since the ceramic substrate 2 to be fired is moved in the firing furnace 1 while being horizontally rotated by the horizontal rotation mechanism 4 inside the firing furnace 1, the shrinkage due to the firing is made uniform. Therefore, the difference in heat shrinkage between the front and rear portions of the ceramic substrate 2 to be fired entering the firing furnace 1 can be reduced.

【0019】ここで、焼成炉1内における被焼成セラミ
ック基板2の直進移動と、水平回転とは、図7に示すよ
うに、水平回転しながら前進移動する軌跡で焼成炉1内
を移動する。ここで、該水平回転の軌跡は、ラック11
とピニオン10のギア構成によりターンテーブル7,7
・・の角速度が決定されるので、図示しないが、該ギア
構成を切替えできる構成とすることで、変更するように
している。
Here, the straight movement and the horizontal rotation of the ceramic substrate 2 to be fired in the firing furnace 1 move in the firing furnace 1 along a locus of forward movement while horizontally rotating, as shown in FIG. Here, the locus of the horizontal rotation is the rack 11
And the gear configuration of the pinion 10 and turntable 7,7
Although the angular velocity of .. is determined, although not shown, the gear configuration can be changed so that it can be changed.

【0020】次に、本実施例の効果を確認するために、
同一の被焼成セラミック基板2を用いて、本実施例のセ
ラミック基板の製造方法(以下、本実施例方法という)
と、焼成炉内を直進移動させることでセラミック基板を
製造する従来例方法とで、それぞれセラミック基板を製
造し、その焼成後の収縮による変形量を測定することで
比較を行った結果について説明する。
Next, in order to confirm the effect of this embodiment,
Using the same ceramic substrate 2 to be fired, a method for manufacturing a ceramic substrate of this embodiment (hereinafter referred to as the method of this embodiment)
And a conventional method of producing a ceramic substrate by moving straight in a firing furnace, a ceramic substrate is produced, and the result of comparison by measuring the amount of deformation due to shrinkage after firing is described. .

【0021】ここで、被焼成セラミック基板として、Ca
O-Al2O3-SiO2-B2O3 系ガラス粉末:60重量%と、アル
ミナ粉末:40重量%よりなる混合粉末に、溶剤、バイ
ンダー、可塑剤を加えて混練して得たスラリーを、ドク
ターブレード法により、厚みが0.3mmのグリーンシ
ートを作成し、該グリーンシートの表面に、焼成後に2
5mmピッチの格子状となるように0.5mmφの貫通
孔12を穿け、これを4枚、100℃、50kg/c
m2 ,20秒の条件で熱圧着した積層体を用いた。ま
た、焼成条件は、昇温速度:10℃/分、最高温度:9
00℃で20分保持とした。
Here, as the ceramic substrate to be fired, Ca
O-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder: 60 wt% and alumina powder: 40 wt% A mixed powder containing a solvent, a binder and a plasticizer, and kneaded to obtain a slurry. By a doctor blade method to prepare a green sheet having a thickness of 0.3 mm, and after the firing, 2
A through hole 12 of 0.5 mmφ is drilled so as to form a grid pattern of 5 mm pitch, and four holes are formed at 100 ° C. and 50 kg / c.
A laminated body thermocompression bonded under the condition of m 2 for 20 seconds was used. Further, the firing conditions are a temperature rising rate of 10 ° C./min and a maximum temperature of 9
It was kept at 00 ° C for 20 minutes.

【0022】なお、その熱収縮による変形量の測定法
は、図4に示す焼成後の縦横25mmピッチの格子状の
25個の孔12,12・・・の実測点(B1,B2,B3,・・・B2
5)(図4参照)と、基板の収縮率を考慮した焼成後の仮
想の正規の各点、すなわち設計点(A1,A2,A3・・・ A25)
(図5、図6参照)との距離(換言すれば、ズレ)|A1
-B1 | ,|A2-B2 |, ・・・ ,|A25-B25 |を測定する
ことで行い、その際、基板中心のA13 およびB13 を同一
点として原点とした。
The method of measuring the amount of deformation due to the heat shrinkage is as shown in FIG. 4, in which the measurement points (B1, B2, B3, 25) of the 25 lattice-shaped holes 12, 12 ... ... B2
5) (Refer to Fig. 4) and virtual normal points after firing considering the shrinkage of the substrate, that is, design points (A1, A2, A3 ... A25)
(See Figure 5 and Figure 6) Distance (in other words, deviation) | A1
-B1 |, | A2-B2 |, ..., | A25-B25 | were measured, and at that time, A13 and B13 at the center of the substrate were set as the same point as the origin.

【0023】本実施例方法については、回転数が1回/
1分、1回/3分、1回/10分の3種類の焼成を行
い、本実施例方法、従来例方法ともに、それぞれについ
て5回の比較試験を行った。そして、その距離(換言す
れば、ズレ)|A1-B1 | ,|A2-B2 |, ・・・ ,|A25-
B25 |の最大値を変形量としたものを表1に示す。ここ
で、表1において、変形比は、100×ズレ|An −B
n |/距離|原点−設計点|a(%)の最大値である。
In the method of this embodiment, the number of revolutions is once /
Three types of baking were performed for 1 minute, 1/3 times, and 1/10 minutes, and a comparison test was performed 5 times for each of the method of this example and the method of the conventional example. Then, the distance (in other words, deviation) | A1-B1 |, | A2-B2 |, ..., | A25-
Table 1 shows the maximum value of B25 | as the amount of deformation. Here, in Table 1, the deformation ratio is 100 × deviation | A n −B
n | / distance | origin-design point | a (%) is the maximum value.

【0024】[0024]

【表1】 [Table 1]

【0025】そして、表1に示すように、本実施例方法
の場合、比較例方法の変形量が0.236mmであるの
に対し、回転数が1回/1分の時の変形量が0.063
mmであり、また最大の1回/10分の時でも、その変
形量が従来例方法の1/2である0.115であり、焼
成による収縮変化の少ないことが確認できた。このこと
より、本実施例の方法と装置によれば、寸法精度の向上
を図れるセラミック基板を製造できることが明確となっ
た。
As shown in Table 1, in the case of the method of this embodiment, the deformation amount of the comparative example method is 0.236 mm, whereas the deformation amount is 0 when the number of revolutions is once per minute. 0.063
In addition, it was confirmed that the amount of deformation was 0.115, which is 1/2 of that of the conventional method even at the maximum of 1/10 minutes, and the shrinkage change due to firing was small. From this, it was clarified that the method and apparatus of the present example could manufacture a ceramic substrate with improved dimensional accuracy.

【0026】なお、本発明は、前述した実施例に限定さ
れるものでなく、本発明の要旨を変更しない範囲内で変
形実施できる構成を含む。因に、前述した実施例では、
被焼成セラミック基板として、セラミック多層配線基板
で説明したが、グリーンシート法によらないセラミック
のみの基板であってもよく、また基板としては、800
〜1100℃の低温焼成基板、アルミナ基板、窒化アル
ミニウム基板、その他、種々のセラミック材料(例え
ば、ムライト等)よりなるセラミック基板の全てのもの
に適用できることは当然である。また、前述した実施例
においては、焼成炉をマッフル炉で説明したが、被焼成
セラミック基板を回転させる回転機構を備えた構成であ
れば、プッシャー炉、ローラーハース炉等の焼成炉であ
ってもよいことは当然である。
It should be noted that the present invention is not limited to the above-described embodiments, but includes configurations that can be modified and implemented within the scope that does not change the gist of the present invention. Incidentally, in the above-mentioned embodiment,
As the ceramic substrate to be fired, the ceramic multilayer wiring substrate has been described, but a ceramic-only substrate that does not rely on the green sheet method may be used.
Needless to say, the present invention can be applied to all low temperature firing substrates of ˜1100 ° C., alumina substrates, aluminum nitride substrates, and other ceramic substrates made of various ceramic materials (eg, mullite). Further, in the above-described embodiments, the firing furnace is described as a muffle furnace. The good thing is right.

【0027】更に、前述した実施例にといては、焼成炉
内での被焼成セラミック基板の移動機構を直進移動機構
として説明したが、蛇行移動(水平方向への蛇行、垂直
方向への蛇行)、周回移動(焼成炉内を折り返す構成
等)する移動機構であってもよい。また、回転機構と前
進移動機構は、それぞれ独立して駆動する構成としても
よい。なお、本明細書において、回転には、回動(例え
ば、正転と逆転を繰り返す形態)を含む。
Further, in the above-mentioned embodiment, the moving mechanism of the ceramic substrate to be fired in the firing furnace has been described as a straight moving mechanism, but meandering movement (meandering in the horizontal direction, meandering in the vertical direction). Alternatively, it may be a moving mechanism that moves in a circuit (a structure in which the inside of the firing furnace is folded back). Further, the rotation mechanism and the forward movement mechanism may be driven independently of each other. In the present specification, rotation includes rotation (for example, a form in which normal rotation and reverse rotation are repeated).

【0028】[0028]

【発明の効果】以上の説明より明らかなように、本発明
のセラミック基板の製造方法によれば、被焼成セラミッ
ク基板を焼成炉内で水平回転させながら移動させるの
で、被焼成セラミック基板の任意の各点は、円弧を描き
ながら進行方向に移動し、均一に焼成されることより、
焼成による熱収縮を低減でき、その寸法精度を向上でき
るという効果を有する。
As is apparent from the above description, according to the method for manufacturing a ceramic substrate of the present invention, since the ceramic substrate to be fired is moved while being horizontally rotated in the firing furnace, any ceramic substrate to be fired can be produced. Each point moves in the traveling direction while drawing an arc, and because it is baked uniformly,
This has the effect of reducing heat shrinkage due to firing and improving the dimensional accuracy.

【0029】また、本発明のセラミック基板の製造装置
によれば、焼成炉内に、被焼成セラミック基板を前進移
動させるための前進移動機構と、該被焼成セラミック基
板を水平回転させるための水平回転機構とを設けている
ことより、被焼成セラミック基板を、焼成炉内で水平回
転させながら移動させることができるという効果を有す
る。
Further, according to the apparatus for manufacturing a ceramic substrate of the present invention, a forward moving mechanism for moving the fired ceramic substrate forward in the firing furnace and a horizontal rotation for horizontally rotating the fired ceramic substrate. By providing the mechanism, it is possible to move the ceramic substrate to be fired while horizontally rotating in the firing furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】 焼成炉内の概略構成図である。FIG. 1 is a schematic configuration diagram of the inside of a firing furnace.

【図2】 焼成炉の縦断面図である。FIG. 2 is a vertical sectional view of a firing furnace.

【図3】 焼成炉内部の平面図である。FIG. 3 is a plan view of the inside of a firing furnace.

【図4】 焼成後の熱収縮による変形量の測定法を説明
するためのセラミック基板の説明図である。
FIG. 4 is an explanatory diagram of a ceramic substrate for explaining a method of measuring a deformation amount due to thermal contraction after firing.

【図5】 本実施例方法によるセラミック基板の変形量
の測定図である。
FIG. 5 is a measurement diagram of the amount of deformation of the ceramic substrate according to the method of the present embodiment.

【図6】 比較例方法によるセラミック基板の変形量の
測定図である。
FIG. 6 is a measurement diagram of a deformation amount of a ceramic substrate according to a comparative example method.

【図7】 焼成炉内での被焼成セラミック基板の軌跡を
説明するための軌跡説明図である。
FIG. 7 is a locus explanatory view for explaining a locus of a fired ceramic substrate in a firing furnace.

【符号の説明】[Explanation of symbols]

1・・・焼成炉、2・・・被焼成セラミック基板、3・
・・直進移動機構(前進移動機構)、4・・・水平回転
機構、5・・・チェーンガイド、6・・・回転チェー
ン、7・・・ターンテーブル、8・・・連結板、9・・
・軸受、10・・・ピニオン、11・・・ラック、12
・・・貫通孔
1 ... Baking furnace, 2 ... Baking ceramic substrate, 3 ...
..Straight moving mechanism (forward moving mechanism), 4 ... Horizontal rotating mechanism, 5 ... Chain guide, 6 ... Rotating chain, 7 ... Turntable, 8 ... Connecting plate, 9 ...
・ Bearing, 10 ... Pinion, 11 ... Rack, 12
... Through holes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被焼成セラミック基板を焼成炉で焼成し
てセラミック基板を製造するに際し、該被焼成セラミッ
ク基板を水平回転させながら移動させることで焼成させ
るようにしたことを特徴とするセラミック基板の製造方
法。
1. When manufacturing a ceramic substrate by firing the ceramic substrate to be fired in a firing furnace, the ceramic substrate is fired by moving it while horizontally rotating it. Production method.
【請求項2】 焼成炉内に、被焼成セラミック基板を前
進移動させるための前進移動機構と、該被焼成セラミッ
ク基板を水平回転させるための水平回転機構とを設け、
前記焼成炉内で該被焼成セラミック基板を水平回転と前
進移動とを並行して行えるようにしたことを特徴とする
セラミック基板の製造装置。
2. A forward moving mechanism for moving the fired ceramic substrate forward and a horizontal rotation mechanism for horizontally rotating the fired ceramic substrate are provided in the firing furnace.
An apparatus for producing a ceramic substrate, wherein the ceramic substrate to be fired can be horizontally rotated and moved forward in parallel in the firing furnace.
JP4184578A 1992-06-17 1992-06-17 Method and device for producing ceramic substrate Pending JPH061669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184578A JPH061669A (en) 1992-06-17 1992-06-17 Method and device for producing ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184578A JPH061669A (en) 1992-06-17 1992-06-17 Method and device for producing ceramic substrate

Publications (1)

Publication Number Publication Date
JPH061669A true JPH061669A (en) 1994-01-11

Family

ID=16155664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184578A Pending JPH061669A (en) 1992-06-17 1992-06-17 Method and device for producing ceramic substrate

Country Status (1)

Country Link
JP (1) JPH061669A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269475A (en) * 1985-09-20 1987-03-30 アンプ インコ−ポレ−テツド Socket slide mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269475A (en) * 1985-09-20 1987-03-30 アンプ インコ−ポレ−テツド Socket slide mechanism

Similar Documents

Publication Publication Date Title
CN1887594A (en) Process for the constrained sintering of a pseudo-symmetrically configured low temperature cofired ceramic structure
JP2004214573A (en) Manufacturing method for multilayered ceramic substrate
JPH061669A (en) Method and device for producing ceramic substrate
JP2004022706A (en) Method for manufacturing ceramic multilayered substrate
CN206048534U (en) A kind of automatic double-sided indentation equipment of LTCC/HTCC
KR20120046562A (en) A device for sintering a ceramic board and a method of sintering a ceramic board by using the same
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
JPH0526475Y2 (en)
JP2006273643A (en) Sintered compact, wiring board and method for producing the same
JPH0286187A (en) Method of baking ceramic substrate
JP2002290040A (en) Method of manufacturing ceramic board
CN221178047U (en) High-precision calibrating device for electronic element patch
JPH10200261A (en) Manufacture of ceramic multilayer substrate
JP4423025B2 (en) Multilayer substrate and manufacturing method thereof
WO1999056510A1 (en) Method of producing ceramic multilayer substrate
JP2011148098A (en) Scribing apparatus and scribing method
JP2002076628A (en) Manufacturing method of glass ceramic substrate
JP2005159038A (en) Method for manufacturing low temperature calcining ceramic board
JPH08119748A (en) Device for removing binder from ceramic molded product
CN206048536U (en) A kind of automatic double-sided indentation equipment of LTCC/HTCC
CN206048535U (en) A kind of automatic double-sided indentation equipment of LTCC/HTCC
JP3607443B2 (en) Substrate baking apparatus including film forming material
JPH10294561A (en) Highly de-bindered multilayered wiring board and its manufacture
JPH10182245A (en) Ceramic multilayered wiring board, its production and device therefor
JPH03275571A (en) Method for firing green sheets in piled state