JPH06163989A - Semiconductor light-emitting element and light-emitting device - Google Patents

Semiconductor light-emitting element and light-emitting device

Info

Publication number
JPH06163989A
JPH06163989A JP31802992A JP31802992A JPH06163989A JP H06163989 A JPH06163989 A JP H06163989A JP 31802992 A JP31802992 A JP 31802992A JP 31802992 A JP31802992 A JP 31802992A JP H06163989 A JPH06163989 A JP H06163989A
Authority
JP
Japan
Prior art keywords
light emitting
junction
polycrystalline
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31802992A
Other languages
Japanese (ja)
Inventor
Hisao Nagata
久雄 永田
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP31802992A priority Critical patent/JPH06163989A/en
Publication of JPH06163989A publication Critical patent/JPH06163989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To realize multi-wavelength light emission, by a method wherein a film composed of material in which epitaxial growth is not generated is formed on a single-crystal semiconductor light-emitting element, and a light- emitting element which has a P-N junction and a PIN junction in the inside is formed on the film. CONSTITUTION:An N-GaP layer 2 doped with N, and a P-GaP layer 3 are formed in order on a single crystal N-GaP substrate 1 by an LPE method. By a CVD method, an SiO2 film 4 of 0.5mum in thickness is formed, on which about 30mum diameter grains composed of AlGaAs are grown. A P-type polycrystalline AlGaAs layer 5 and an N-type polycrystalline AlGaAs layer 6 are successively grown. An N-type electrode 10 and a P-type electrode 9 are formed on the surface of polycrystalline AlGaAs layer 6 are formed. A P-type electrode 8 is formed on the P-type GaP layer 3. When a forward direction bias is applied across the electrodes 7-8, green light of wavelength 550nm is emitted. When a forward direction bias is applied across the electrodes 9-10, red light is emitted from a region 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、注入型の半導体発光素
子に関し、特にマルチカラーディスプレイ等で利用でき
る多波長出力が可能な半導体発光素子および半導体発光
デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection type semiconductor light emitting device, and more particularly to a semiconductor light emitting device and a semiconductor light emitting device which can be used in a multi-color display or the like and which can output multiple wavelengths.

【0002】[0002]

【従来の技術】発光素子の代表的なものとして発光ダイ
オード(LED(Light EmittingDiode))と、半導体レ
ーザあるいはレーザダイオード(LD(Laser Diode))
が知られている。発光ダイオードや半導体レーザは化合
物半導体(GaAs、GaP、AlGaAs等)にpn
またはpinの接合を形成し、これに順方向電圧を印加
することにより接合内部にキャリアを注入、その再結合
の過程で生じる発光現象を利用したものである。このよ
うなLEDやLDは従来、GaAsやInPなどの単結
晶基板上にGaAs、AlGaAs、InP、InGa
AsPなどそれぞれの基板に格子整合した化合物半導体
をLPE(liquid phase epitaxy)法、MOCVD(metal
organic chemical vapor deposition)法、VPE(vapo
rphase epitaxy)法、MBE(molecular beam epitaxy)
法などの結晶成長法を用いてエピタキシャル成長させ、
加工を施すことで製造されてきた。すなわちLEDやL
Dはn型またはp型の単結晶基板の片面に、単結晶基板
と同じ導電型の半導体材料とそれとは異なった導電型を
示す半導体材料を順次エピタキシャル成長させてpn接
合もしくはpin接合が形成されている。そして単結晶
基板とエピタキシャル成長膜の表面に設けられた電極間
に電流を流すことで発光させている。
2. Description of the Related Art A typical example of a light emitting element is a light emitting diode (LED) and a semiconductor laser or a laser diode (LD (Laser Diode)).
It has been known. Light emitting diodes and semiconductor lasers are compound semiconductors (GaAs, GaP, AlGaAs, etc.)
Alternatively, a pin junction is formed, a forward voltage is applied to the pin junction, carriers are injected into the junction, and a light emission phenomenon that occurs in the process of recombination thereof is used. Conventionally, such LEDs and LDs are formed on a single crystal substrate such as GaAs or InP on which GaAs, AlGaAs, InP, InGa are formed.
Compound semiconductors such as AsP that are lattice-matched to each substrate are LPE (liquid phase epitaxy) method, MOCVD (metal
organic chemical vapor deposition) method, VPE (vapo
rphase epitaxy) method, MBE (molecular beam epitaxy)
Epitaxial growth using crystal growth methods such as
It has been manufactured by subjecting it to processing. LED or L
D is formed by sequentially epitaxially growing a semiconductor material having the same conductivity type as the single crystal substrate and a semiconductor material having a conductivity type different from that on one surface of the n-type or p-type single crystal substrate to form a pn junction or a pin junction. There is. Then, light is emitted by passing a current between the single crystal substrate and the electrodes provided on the surface of the epitaxial growth film.

【0003】[0003]

【発明が解決しようとする課題】一方、LEDを用いた
マルチカラーディスプレイは、図5に示したように発光
波長の異なる発光ダイオードを並べることで製造されて
いる。図5は面発光型の赤と緑の2色の発光ダイオード
を用いた場合である。セラミック多層配線基板50に赤
色発光ダイオード51と緑色発光ダイオード52を一対
としてX配線53上にダイボンドされており、発光ダイ
オードの他方の電極はそれぞれYR配線54、YG配線
55にボンディングされている。図6はこのマトリック
ス配線で、たとえばX2−Y1G間に順方向電圧を印加す
ると緑色の発光ダイオードD21Gが点灯する。またX3
−Y2RおよびX3−Y2Gに同時に電界を印加するとD
32RとD32Gが同時に発光し、黄色で発光しているよう
に観測される。ところが、このディスプレイでは1ドッ
トを形成するのに2つの素子が必要となっている。その
ため、ディスプレイの製造作業に多大のコストがかかっ
ていた。そこで本発明では、ディスプレイ等を製造する
に際して、1つの素子で多波長出力が可能な半導体発光
素子を提供し、該発光素子を用いた発光デバイスの製造
工程を短縮させることを目的としている。
On the other hand, a multi-color display using LEDs is manufactured by arranging light emitting diodes having different emission wavelengths as shown in FIG. FIG. 5 shows a case where surface emitting type light emitting diodes of two colors, red and green, are used. A red light emitting diode 51 and a green light emitting diode 52 as a pair are die-bonded on the X wiring 53 on the ceramic multilayer wiring board 50, and the other electrodes of the light emitting diode are bonded to the YR wiring 54 and the YG wiring 55, respectively. FIG. 6 shows this matrix wiring, for example, when a forward voltage is applied between X 2 and Y 1 G, the green light emitting diode D 21 G is turned on. See also X 3
When an electric field is applied simultaneously to -Y 2 R and X 3 -Y 2 G, D
It is observed that 32 R and D 32 G simultaneously emit light and emit yellow light. However, this display requires two elements to form one dot. Therefore, the manufacturing work of the display was very costly. Therefore, it is an object of the present invention to provide a semiconductor light emitting device capable of outputting multiple wavelengths with one device when manufacturing a display or the like, and to shorten the manufacturing process of a light emitting device using the light emitting device.

【0004】[0004]

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。すなわち、pn接合、pin接
合またはこれに類する接合に電流を注入して発光させる
単結晶半導体発光素子上にエピタキシャル成長が起こら
ない材料からなる膜を形成し、さらにこの膜上に内部に
少なくともpn接合、pin接合あるいはこれに類する
接合を有し、電流注入により発光する多結晶半導体発光
素子を形成し、前記単結晶半導体発光素子および前記多
結晶半導体発光素子の接合に独立したバイアスを印加で
きる構造を有し、それぞれの発光の制御が可能である半
導体発光素子または該発光素子を用いた発光デバイスで
ある。ここで、前記単結晶半導体発光素子のpn接合、
pin接合またはこれに類する接合と多結晶半導体発光
素子のpn接合、pin接合またはこれに類する接合と
で、発光メカニズムが異なり、あるいは接合を形成する
半導体材料のバンドギャップが異なり、両者で異なった
波長で発光する構成とすることができる。
The above object of the present invention can be achieved by the following constitutions. That is, a film made of a material that does not cause epitaxial growth is formed on a single crystal semiconductor light emitting device that emits light by injecting a current into a pn junction, a pin junction, or the like, and at least a pn junction is formed inside the film. A polycrystalline semiconductor light emitting device that has a pin junction or a similar type and emits light by current injection is formed, and an independent bias can be applied to the junction of the single crystal semiconductor light emitting device and the polycrystalline semiconductor light emitting device. A semiconductor light emitting element capable of controlling the respective light emission or a light emitting device using the light emitting element. Here, a pn junction of the single crystal semiconductor light emitting device,
The pin junction or a similar junction and the pn junction, the pin junction, or a similar junction of the polycrystalline semiconductor light emitting element have different light emission mechanisms, or the band gap of the semiconductor material forming the junction is different, and both wavelengths are different. It can be configured to emit light.

【0005】本発明では通常の単結晶発光素子上に絶縁
性のアモルファス、セラミック、金属、多結晶あるいは
単結晶の材料で覆い、この上に多結晶半導体発光素子を
形成することを特徴とするものである。多結晶半導体発
光素子は、シリコン電子デバイスの例から検討すると特
性的に単結晶のものには及ばない。ところがLEDの場
合にはそのサイズが数十μmで機能するため、各々のグ
レインが数十μm以上であれば、単結晶発光素子と遜色
ないものを得ることが可能である。もちろんグレインの
サイズがそれ以下であっても、LEDとして作用する。
本発明では、従来の化合物半導体基板よりも安価なアモ
ルファスあるいは多結晶の基板に作製したLEDに関す
るものである。アモルファス基板として代表的なガラス
は、大面積のものが容易に入手できることから、プリン
タやイメージセンサ用の10cm以上の長さの発光素子
アレイを1枚の基板から切り出すことができ、従来必要
であった素子のアライメントが必要でなくなる。
The present invention is characterized in that a normal single crystal light emitting device is covered with an insulating amorphous, ceramic, metal, polycrystal or single crystal material, and a polycrystal semiconductor light emitting device is formed thereon. Is. The polycrystalline semiconductor light emitting element is characteristically inferior to that of a single crystal when examined from the example of a silicon electronic device. However, in the case of an LED, the size thereof functions at several tens of μm, so that if each grain is several tens of μm or more, it is possible to obtain a device comparable to the single crystal light emitting device. Of course, even if the grain size is smaller than that, it functions as an LED.
The present invention relates to an LED manufactured on an amorphous or polycrystalline substrate that is cheaper than a conventional compound semiconductor substrate. Since a large area of a typical glass as an amorphous substrate is easily available, a light emitting element array having a length of 10 cm or more for a printer or an image sensor can be cut out from one substrate, which is conventionally required. It eliminates the need for aligned elements.

【0006】本発明の特徴は単結晶半導体発光素子の上
に形成する多結晶半導体発光素子がエピタキシャル成長
が起こらない材料から成る基板上に発光素子として機能
する多結晶半導体を形成することである。ここで、エピ
タキシャル成長が起こらない材料から成る基板は単結晶
である必要はなく、アモルファス、多結晶の物質を使用
することができる。したがって、ガラス、セラミック等
の材料が使用可能であるので、非常に広範囲のデバイス
材料を利用することができる。本発明を実施するにあた
り、最も大きな問題はアモルファス、セラミック、多結
晶等のエピタキシャル成長が起こらない材料からなる基
板にサイズの大きなグレイン(多結晶膜中の単結晶)か
らなる多結晶膜を作製することにある。サイズの大きな
グレインが形成できれば、半導体発光素子として機能さ
せることができる。
A feature of the present invention is that a polycrystalline semiconductor light emitting element formed on a single crystal semiconductor light emitting element forms a polycrystalline semiconductor functioning as a light emitting element on a substrate made of a material that does not cause epitaxial growth. Here, the substrate made of a material that does not cause epitaxial growth does not need to be a single crystal, and an amorphous or polycrystalline material can be used. Therefore, since a material such as glass or ceramic can be used, a very wide range of device materials can be used. In carrying out the present invention, the biggest problem is to produce a polycrystalline film made of large grains (single crystal in a polycrystalline film) on a substrate made of a material that does not cause epitaxial growth, such as amorphous, ceramic, or polycrystalline. It is in. If a large grain can be formed, it can function as a semiconductor light emitting element.

【0007】多結晶基板上に多結晶膜を成膜する際、グ
レインのサイズは基板のグレインサイズに影響される
が、例えばアモルファス基板である石英ガラス基板上に
MOCVD法で多結晶膜を作製する場合、そのグレイン
の大きさは成長条件に依存して変化する。例えば、グレ
イン成長温度、グレイン成長圧力、グレイン成長速度、
原料供給速度、キャリアガス流量を制御することで、グ
レインのサイズをコントロールできる。例えば、成長温
度が高いほど、また成長圧力が低いほど得られるグレイ
ンのサイズは大きくなる。10Torrの圧力のもとで
850℃でGaAsの成長を試みた予備実験では、直径
が30μm以上のグレインからなる多結晶膜が得られ
た。
When forming a polycrystalline film on a polycrystalline substrate, the grain size is influenced by the grain size of the substrate. For example, the polycrystalline film is formed on a quartz glass substrate which is an amorphous substrate by the MOCVD method. In that case, the size of the grain changes depending on the growth conditions. For example, grain growth temperature, grain growth pressure, grain growth rate,
The grain size can be controlled by controlling the raw material supply rate and the carrier gas flow rate. For example, the higher the growth temperature and the lower the growth pressure, the larger the grain size obtained. In a preliminary experiment of growing GaAs at 850 ° C. under a pressure of 10 Torr, a polycrystalline film made of grains having a diameter of 30 μm or more was obtained.

【0008】以上のように、MOCVD法で条件を最適
化することで上記予備実験で得られたものよりもサイズ
の大きなグレインからなる多結晶膜を製造することが可
能となる。この基板上に、p型とn型のAlGaAs膜
を成長すれば、そのp型およびn型の膜も基板である多
結晶の膜と同程度もしくはそれ以上のサイズからなる多
結晶となる。そのサイズがLEDのサイズに相当するも
のであれは、単結晶素子と変わらない特性が得られる。
逆にグレインのサイズが素子のサイズよりも小さいとき
には、素子内に少なからずグレインバウンダリを持つこ
ととなる。グレインバウンダリではキャリアは非発光再
結合が生じる。しかしながら、これはキャリアのすべて
非発光再結合する事を意味するのではなく、グレインの
サイズによっては発光再結合が支配的にもなる。すなわ
ち単結晶LEDに比べて多少性能は劣るもののLEDと
して十分に機能するものが得られる。また、本発明でp
n接合またはpin接合に類した接合とは半導体と金属
が接触したときに生じるショットキ接合のような接合を
言う。
As described above, by optimizing the conditions by the MOCVD method, it becomes possible to manufacture a polycrystalline film made of grains having a size larger than that obtained in the preliminary experiment. When p-type and n-type AlGaAs films are grown on this substrate, the p-type and n-type films become polycrystals having the same size as or larger than the polycrystal film which is the substrate. As long as the size corresponds to the size of the LED, the same characteristics as those of the single crystal element can be obtained.
On the contrary, when the size of the grain is smaller than the size of the element, there is a considerable grain boundary in the element. In the grain boundary, carriers undergo non-radiative recombination. However, this does not mean that all non-radiative recombination of carriers is caused, but the radiative recombination becomes dominant depending on the size of the grains. That is, although the performance is slightly inferior to that of the single crystal LED, an LED that sufficiently functions as an LED can be obtained. In the present invention, p
A junction similar to an n-junction or a pin-junction means a junction such as a Schottky junction that occurs when a semiconductor comes into contact with a metal.

【0009】上記説明では多結晶基板として石英ガラス
を用いた場合について述べたが、これに限ることなく、
たとえば金属、多成分系ガラス、結晶化ガラス、セラミ
ック、半導体なども用いることができる。また種々の基
板上にCVD法、スパッタ法あるいは蒸着法などにより
形成したSiO2をはじめとする種々の酸化物、SiN
などの窒化物、SiCなどの炭化物、あるいは金属から
なる膜などのいかなるアモルファスあるいは多結晶材料
を用いても構わない。ただし光を基板側にも取り出す場
合には、出射光に対して基板が透明あるいは半透明でな
ければならない。
In the above description, the case where quartz glass is used as the polycrystalline substrate has been described, but the invention is not limited to this.
For example, metals, multi-component glasses, crystallized glasses, ceramics, semiconductors, etc. can also be used. In addition, various oxides such as SiO 2 and SiN formed on various substrates by the CVD method, the sputtering method, the vapor deposition method, or the like.
Any amorphous or polycrystalline material such as a nitride such as, a carbide such as SiC, or a film made of a metal may be used. However, when the light is also extracted to the substrate side, the substrate must be transparent or semitransparent to the emitted light.

【0010】また、多結晶半導体発光素子としてAlG
aAsの成長について述べたが、これに限ることなくG
aP、InP、InGaAsP、ZnS、ZnSe、C
dTeなど種々の半導体材料に応用できる。さらに、多
結晶膜の形成方法としては前記MOCVD法の他にたと
えばMBE法やVPE法など他の結晶膜成長法も用いる
ことができる。本発明は単結晶発光素子上に多結晶発光
素子を形成した多波長の出力が可能な半導体発光素子で
あるが、この半導体発光素子からデバイスを形成するこ
ともできる。
AlG is used as a polycrystalline semiconductor light emitting device.
I mentioned the growth of aAs, but it is not limited to this.
aP, InP, InGaAsP, ZnS, ZnSe, C
It can be applied to various semiconductor materials such as dTe. Further, as a method for forming a polycrystalline film, other crystalline film growth methods such as MBE method and VPE method can be used in addition to the MOCVD method. The present invention is a semiconductor light emitting device in which a polycrystalline light emitting device is formed on a single crystal light emitting device and which can output multiple wavelengths, but a device can also be formed from this semiconductor light emitting device.

【0011】[0011]

【作用】アモルファス、セラミックあるいは多結晶の基
板、もしくは基板の結晶構造が作製する半導体材料とは
異なる単結晶基板、あるいは結晶構造が同じであっても
格子定数に大きな差がある基板上には、基板全面にわた
る結晶のエピタキシャル成長は起こらない。しかしなが
ら、成長初期に基板上に生じる微結晶が結晶核として作
用し、核が成長して多結晶の膜となる。多結晶膜の各グ
レインのサイズがデバイスサイズよりも大きければ、そ
の多結晶膜上に作製したデバイスは単結晶デバイスと同
程度の特性が得られることになる。こうして、本発明に
よれば、単結晶半導体発光素子の上に多結晶半導体発光
素子を形成することができ、それぞれ異なる波長で発光
させることができる。
[Function] An amorphous, ceramic or polycrystalline substrate, a single crystal substrate whose substrate has a different crystal structure from the semiconductor material to be produced, or a substrate having the same crystal structure but having a large difference in lattice constant, Epitaxial growth of crystals does not occur on the entire surface of the substrate. However, the microcrystals generated on the substrate at the initial stage of growth act as crystal nuclei, and the nuclei grow to form a polycrystalline film. If the size of each grain of the polycrystalline film is larger than the device size, the device fabricated on the polycrystalline film can obtain the same characteristics as the single crystal device. Thus, according to the present invention, the polycrystalline semiconductor light emitting element can be formed on the single crystal semiconductor light emitting element, and light can be emitted at different wavelengths.

【0012】[0012]

【実施例】本発明の実施例を図面とともに説明する。 実施例1 本発明の第一の実施例で作製した素子の斜視模式図を図
1に示す。単結晶のn−GaP基板1に液相エピタキシ
ャル成長(LPE)法により発光中心となるNをドープ
したn−GaP層2、p−GaP層3を順次成長した。
この際、n型不純物としてTeを、p型不純物としてZ
nを用いた。こうして得られた単結晶半導体上にCVD
法で0.5μmのSiO2膜4を成膜した。ついで、こ
の基板をMOCVDチャンバに導入して850℃まで昇
温し、圧力10Torrで第1回目のZnをドープした
p型多結晶AlGaAs層の成長を行った。ここで3族
原料としてトリメチルガリウム、トリメチルアルミニウ
ム、5族原料としてアルシン(AsH3)を用い、また
キャリアガスとして水素を用いた。(5族原料単位時間
あたりのモル流量)/(3族原料単位時間あたりのモル
流量)で表される5/3比を40とし、1時間原料を供
給した。この結果、SiO2膜4上にはAlGaAs
(x=0.4)から成る直径30μm程度のグレイン
(図示せず)が成長した。多結晶膜の電気的特性を向上
させるために、続いて圧力を常圧として800℃でZn
をドープしたp型多結晶AlGaAs(x=0.4)層
5を1時間成長させた。ついで、常圧800℃でSeを
ドープしたn型多結晶AlGaAs(x=0.4)層6
を30分間成長させた。こうして得られた多結晶AlG
aAs層6の表面にn型電極10、エッチングで露出さ
せたp型多結晶AlGaAs層5上にp型電極9、Si
2膜を除去し、単結晶p型GaP層3を露出させた上
にp型電極8を、そして単結晶GaP基板1の裏面にn
型電極7をそれぞれ蒸着で形成した。
Embodiments of the present invention will be described with reference to the drawings. Example 1 FIG. 1 shows a schematic perspective view of an element manufactured in the first example of the present invention. On a single crystal n-GaP substrate 1, an N-GaP layer 2 and a p-GaP layer 3 each doped with N, which is an emission center, were sequentially grown by a liquid phase epitaxial growth (LPE) method.
At this time, Te is used as the n-type impurity and Z is used as the p-type impurity.
n was used. CVD on the single crystal semiconductor thus obtained
Method was used to form a 0.5 μm SiO 2 film 4. Then, this substrate was introduced into a MOCVD chamber, heated to 850 ° C., and a first Zn-doped p-type polycrystalline AlGaAs layer was grown at a pressure of 10 Torr. Here, trimethylgallium, trimethylaluminum was used as a Group 3 raw material, arsine (AsH 3 ) was used as a Group 5 raw material, and hydrogen was used as a carrier gas. The 5/3 ratio represented by (molar flow rate of group 5 raw material per unit time) / (molar flow rate of group 3 raw material per unit time) was set to 40, and the raw material was supplied for 1 hour. As a result, AlGaAs is formed on the SiO 2 film 4.
Grains (not shown) composed of (x = 0.4) and having a diameter of about 30 μm grew. In order to improve the electrical properties of the polycrystalline film, Zn was continuously formed at 800 ° C. under normal pressure.
A p-type polycrystalline AlGaAs (x = 0.4) layer 5 doped with was grown for 1 hour. Then, Se-doped n-type polycrystalline AlGaAs (x = 0.4) layer 6 at 800 ° C.
Were grown for 30 minutes. Polycrystalline AlG thus obtained
An n-type electrode 10 is formed on the surface of the aAs layer 6, and a p-type electrode 9 and Si are formed on the p-type polycrystalline AlGaAs layer 5 exposed by etching.
The O 2 film is removed, the single crystal p-type GaP layer 3 is exposed, and the p-type electrode 8 is formed on the back surface of the single-crystal GaP substrate 1.
The mold electrodes 7 were formed by vapor deposition.

【0013】本実施例で得られた単結晶のGaP半導体
(層1〜3)のpn接合は通常の発光ダイオードで見ら
れる電流電圧特性が得られるが、多結晶AlGaAs半
導体(層5〜6)のpn接合も図2に示すように良好な
整流特性を示した。電極7−8間に順方向バイアスを印
加したところ、領域11から約550nmをピークとす
る緑色の発光が観測され、また電極9−10間に順方向
バイアスを印加したところ領域12から赤色の発光が観
測された。この発光のスペクトルは図3に示すように、
640nm付近と730nm付近に2つのピークをもっ
ており、前者はバンド端に基づく発光、後者は深い準位
に基づく発光である。上記実施例では単結晶半導体発光
素子の片面に多結晶半導体発光素子を形成させた例を示
したが、本発明はこれに限らず、単結晶半導体発光素子
の両面で発光層の組成を変える、あるいは発光メカニズ
ムが異なった材料を用いることで異なった波長で発振さ
せることも可能である。
The pn junction of the single-crystal GaP semiconductor (layers 1 to 3) obtained in this example has the current-voltage characteristics found in a normal light emitting diode, but the polycrystalline AlGaAs semiconductor (layers 5 to 6). The pn-junction also showed good rectifying characteristics as shown in FIG. When a forward bias was applied between the electrodes 7 and 8, green light emission with a peak of about 550 nm was observed from the region 11, and when a forward bias was applied between the electrodes 9 and 10, red light was emitted from the region 12. Was observed. The spectrum of this emission is, as shown in FIG.
It has two peaks near 640 nm and around 730 nm. The former is light emission based on the band edge, and the latter is light emission based on the deep level. In the above embodiment, an example was shown in which a polycrystalline semiconductor light emitting element was formed on one side of a single crystal semiconductor light emitting element, but the present invention is not limited to this, and the composition of the light emitting layer is changed on both sides of the single crystal semiconductor light emitting element. Alternatively, it is possible to oscillate at different wavelengths by using materials having different light emission mechanisms.

【0014】実施例2 本発明の第2の実施例として、MOCVD法によりGa
P発光ダイオード上に多結晶AlGaAsを材料とした
pin接合型の発光ダイオードを作製した例について、
図4を用いて説明する。基板としては実施例1で示した
LPE法により作製したNをドープしたpn接合を有す
る単結晶GaP半導体(層1〜3)を用いた。この単結
晶GaP半導体上にCVD法で0.5μmのSiO2
14を成膜した。ついで、この基板をMOCVDチャン
バに導入して850℃まで昇温し、圧力10Torrで
第1回目のZnをドープしたp型多結晶AlGaAs層
の成長を行った。ここで3族原料としてトリメチルガリ
ウム、トリメチルアルミニウム、5族原料としてアルシ
ン(AsH3)を用い、またキャリアガスとして水素を
用いた。(5族原料単位時間あたりのモル流量)/(3
族原料単位時間あたりのモル流量)で表される5/3比
を40とし、1時間原料を供給した。この結果、SiO
2膜14上にはAlGaAs(x=0.4)から成る直
径30μm程度のグレイン(図示せず)が成長した。多
結晶膜の電気的特性を向上させるために、続いて圧力を
常圧として800℃でZnをドープしたp型多結晶Al
GaAs(x=0.4)層15を1時間成長させた。つ
いでノンドープのAlGaAs(x=0.4)層16を
0.1μm程度成長させた。ついで、常圧800℃でS
eをドープしたn型多結晶AlGaAs(x=0.4)
層17を30分間成長させた。こうして得られた多結晶
AlGaAs層17の表面にn型電極21、エッチング
で露出させたp型多結晶AlGaAs層15上にp型電
極20、SiO2膜を除去し、単結晶p型GaP3を露
出させた上にp型電極19を、そして単結晶GaP基板
1の裏面にn型電極18をそれぞれ蒸着で形成した。
Example 2 As a second example of the present invention, Ga is formed by MOCVD.
Regarding an example in which a pin junction type light emitting diode made of polycrystalline AlGaAs is manufactured on the P light emitting diode,
This will be described with reference to FIG. As the substrate, the single crystal GaP semiconductor (layers 1 to 3) having the N-doped pn junction manufactured by the LPE method shown in Example 1 was used. A 0.5 μm SiO 2 film 14 was formed on this single crystal GaP semiconductor by the CVD method. Then, this substrate was introduced into a MOCVD chamber, heated to 850 ° C., and a first Zn-doped p-type polycrystalline AlGaAs layer was grown at a pressure of 10 Torr. Here, trimethylgallium, trimethylaluminum was used as a Group 3 raw material, arsine (AsH 3 ) was used as a Group 5 raw material, and hydrogen was used as a carrier gas. (Mole flow rate of Group 5 raw material per unit time) / (3
The 5/3 ratio represented by the group raw material (molar flow rate per unit time) was set to 40, and the raw material was supplied for 1 hour. As a result, SiO
A grain (not shown) of AlGaAs (x = 0.4) having a diameter of about 30 μm was grown on the 2 film 14. In order to improve the electrical characteristics of the polycrystalline film, p-type polycrystalline Al doped with Zn at 800 ° C. is then used under normal pressure.
The GaAs (x = 0.4) layer 15 was grown for 1 hour. Then, a non-doped AlGaAs (x = 0.4) layer 16 was grown to a thickness of about 0.1 μm. Then, S at normal pressure 800 ℃
n-type polycrystalline AlGaAs doped with e (x = 0.4)
Layer 17 was grown for 30 minutes. The n-type electrode 21 is formed on the surface of the polycrystalline AlGaAs layer 17 thus obtained, and the p-type electrode 20 and the SiO 2 film are removed on the p-type polycrystalline AlGaAs layer 15 exposed by etching to expose the single crystal p-type GaP3. Then, a p-type electrode 19 was formed thereon, and an n-type electrode 18 was formed on the back surface of the single crystal GaP substrate 1 by vapor deposition.

【0015】本実施例で作製した単結晶のGaP半導体
(層1〜3)のpin接合は、通常の発光ダイオードで
みられる電流電圧特性が得られた。また多結晶AlGa
As半導体(層15〜17)も図2と同様な整流性を有
する電流電圧特性が得られた。電極18−19間に順方
向バイアスを印加したところ、領域22から約550n
mをピークとする緑色の発,光が観測され、また電極2
0−21間に順方向バイアスを印加したところ領域23
から赤色の発光が観測された。この発光のスペクトルは
図3に示すように、640nm付近と730nm付近に
2つのピークをもっており、前者はバンド端に基づく発
光、後者は深い準位に基づく発光である。上記実施例で
は単結晶半導体発光素子の片面に多結晶半導体発光素子
を形成させた例を示したが、本発明はこれに限らず、単
結晶半導体発光素子の両面で発光層の組成を変える、あ
るいは発光メカニズムの異なった材料を用いることで異
なった波長で発光させることも可能である。
The pin junction of the single-crystal GaP semiconductor (layers 1 to 3) produced in this example provided the current-voltage characteristics found in ordinary light emitting diodes. In addition, polycrystalline AlGa
With the As semiconductor (layers 15 to 17), the current-voltage characteristic having the same rectifying property as in FIG. 2 was obtained. When a forward bias was applied between the electrodes 18 and 19, the area 22 was exposed to about 550n.
Green emission and light with a peak of m is observed, and electrode 2
When a forward bias was applied between 0 and 21, the region 23
From this, red emission was observed. As shown in FIG. 3, the spectrum of this emission has two peaks near 640 nm and around 730 nm. The former is emission based on the band edge, and the latter is emission based on a deep level. In the above embodiment, an example was shown in which a polycrystalline semiconductor light emitting element was formed on one side of a single crystal semiconductor light emitting element, but the present invention is not limited to this, and the composition of the light emitting layer is changed on both sides of the single crystal semiconductor light emitting element. Alternatively, it is possible to emit light at different wavelengths by using materials having different light emission mechanisms.

【0016】[0016]

【発明の効果】本発明による発光素子は単一の半導体発
光素子で2以上の異なる波長の光を発光させることがで
きるので、たとえばこれをマルチカラーディスプレイに
応用した場合、素子数を1/2以上に低減することが可
能となる。また光プリンタに応用した場合、一方の波長
の光を感光ドラムの消去用、他方を書き込み用とする事
で、従来必要であった消去用光源を別途準備する必要が
なくなる。さらに光通信への応用では、波長多重通信用
の光源の提供が可能となる。
Since the light emitting device according to the present invention can emit light of two or more different wavelengths with a single semiconductor light emitting device, when it is applied to a multi-color display, for example, the number of devices is halved. It is possible to reduce the above. Further, when applied to an optical printer, by using the light of one wavelength for erasing the photosensitive drum and the other for writing, it is not necessary to separately prepare an erasing light source which has been conventionally required. Further, in the application to optical communication, it becomes possible to provide a light source for wavelength division multiplexing communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例になるGaP単結晶発光素
子上に作製したAlGaAs(pn接合)多結晶発光素
子の模式図である。
FIG. 1 is a schematic view of an AlGaAs (pn junction) polycrystalline light emitting device formed on a GaP single crystal light emitting device according to an embodiment of the present invention.

【図2】 図1の発光素子の電流電圧特性図である。FIG. 2 is a current-voltage characteristic diagram of the light emitting device of FIG.

【図3】 図1の発光素子の発光スペクトルを示す図で
ある。
FIG. 3 is a diagram showing an emission spectrum of the light emitting device of FIG.

【図4】 本発明の一実施例になるGaP単結晶発光素
子上に作製したAlGaAs(pin接合)多結晶発光
素子の模式図である。
FIG. 4 is a schematic view of an AlGaAs (pin junction) polycrystalline light emitting device formed on a GaP single crystal light emitting device according to an embodiment of the present invention.

【図5】 従来のLEDディスプレイのレイアウトを示
す図である。
FIG. 5 is a diagram showing a layout of a conventional LED display.

【図6】 図5のLEDディスプレイの配線図である。6 is a wiring diagram of the LED display of FIG.

【符号の説明】[Explanation of symbols]

1…n型単結晶GaP基板、2…n−GaP層、3…p
−GaP層、4、14…SiO2膜、5、15…p型多
結晶AlGaAs層、6、17…n型多結晶AlGaA
s層、7、10、18、21…n型電極、8、9、1
9、20…p型電極、16…ノンドープAlGaAs
層、50…アルミナ多層配線基板、51…赤色発光ダイ
オード、52…緑色発光ダイオード、53…X配線、5
4…YR配線、55…YG配線
1 ... n-type single crystal GaP substrate, 2 ... n-GaP layer, 3 ... p
-GaP layer, 4, 14 ... SiO 2 film, 5, 15 ... p-type polycrystalline AlGaAs layer, 6, 17 ... n-type polycrystalline AlGaA
s layer, 7, 10, 18, 21 ... N-type electrode, 8, 9, 1
9, 20 ... P-type electrode, 16 ... Non-doped AlGaAs
Layers, 50 ... Alumina multilayer wiring board, 51 ... Red light emitting diode, 52 ... Green light emitting diode, 53 ... X wiring, 5
4 ... YR wiring, 55 ... YG wiring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 pn接合、pin接合またはこれに類す
る接合に電流を注入して発光させる単結晶半導体発光素
子上にエピタキシャル成長が起こらない材料からなる膜
を形成し、さらにこの膜上に内部に少なくともpn接
合、pin接合あるいはこれに類する接合を有し、電流
注入により発光する多結晶半導体発光素子を形成し、前
記単結晶半導体発光素子および前記多結晶半導体発光素
子の接合に独立したバイアスを印加できる構造を有し、
それぞれの発光の制御が可能であることを特徴とする半
導体発光素子。
1. A film made of a material in which epitaxial growth does not occur is formed on a single crystal semiconductor light emitting device that emits light by injecting a current into a pn junction, a pin junction, or the like, and at least an inside of the film is formed on the film. It is possible to form a polycrystalline semiconductor light emitting element which has a pn junction, a pin junction or a similar junction and emits light by current injection, and to apply an independent bias to the junction of the single crystal semiconductor light emitting element and the polycrystalline semiconductor light emitting element. Have a structure,
A semiconductor light emitting device characterized in that each light emission can be controlled.
【請求項2】 前記単結晶半導体発光素子のpn接合、
pin接合またはこれに類する接合と多結晶半導体発光
素子のpn接合、pin接合またはこれに類する接合と
で、発光メカニズムが異なり、あるいは接合を形成する
半導体材料のバンドギャップが異なり、両者で異なった
波長で発光する構成を持つことを特徴とする請求項1の
半導体発光素子。
2. A pn junction of the single crystal semiconductor light emitting device,
The pin junction or a similar junction and the pn junction, the pin junction, or a similar junction of the polycrystalline semiconductor light emitting element have different light emission mechanisms, or the band gap of the semiconductor material forming the junction is different, and both wavelengths are different. 2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has a structure for emitting light.
【請求項3】 請求項1または2記載の半導体発光素子
を用いた発光デバイス。
3. A light emitting device using the semiconductor light emitting element according to claim 1.
JP31802992A 1992-11-27 1992-11-27 Semiconductor light-emitting element and light-emitting device Pending JPH06163989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31802992A JPH06163989A (en) 1992-11-27 1992-11-27 Semiconductor light-emitting element and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31802992A JPH06163989A (en) 1992-11-27 1992-11-27 Semiconductor light-emitting element and light-emitting device

Publications (1)

Publication Number Publication Date
JPH06163989A true JPH06163989A (en) 1994-06-10

Family

ID=18094706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31802992A Pending JPH06163989A (en) 1992-11-27 1992-11-27 Semiconductor light-emitting element and light-emitting device

Country Status (1)

Country Link
JP (1) JPH06163989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260111A (en) * 2003-02-27 2004-09-16 Sharp Corp Semiconductor light-emitting element and semiconductor light-emitting device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260111A (en) * 2003-02-27 2004-09-16 Sharp Corp Semiconductor light-emitting element and semiconductor light-emitting device using the same

Similar Documents

Publication Publication Date Title
RU2315135C2 (en) Method of growing nonpolar epitaxial heterostructures based on group iii element nitrides
US6110277A (en) Process for the fabrication of epitaxial layers of a compound semiconductor on monocrystal silicon and light-emitting diode fabricated therefrom
US6927426B2 (en) Semiconductor light-emitting device for optical communications
US7071015B2 (en) Semiconductor light emitting device and method for producing the same
US5237182A (en) Electroluminescent device of compound semiconductor with buffer layer
Denbaars Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices
JPH0821730B2 (en) Blue light emitting diode formed in silicon carbide
KR20070053670A (en) Mbe growth of a semiconductor laser diode
JP4174913B2 (en) Group III nitride semiconductor light emitting device
JP4300004B2 (en) Semiconductor light emitting device
JPH08255929A (en) Fabrication of semiconductor light emitting element
US5418395A (en) Semiconductor light emitting device
JPH06163989A (en) Semiconductor light-emitting element and light-emitting device
GB2250635A (en) Light emitting semiconductor device
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JP2000516768A (en) Method for manufacturing light emitting diode emitting infrared light
JPH06268251A (en) Semiconductor light-emitting element and light-emitting device
JP3491373B2 (en) Light emitting element, light emitting diode and laser diode
JPH09260290A (en) Iii group nitride semiconductor and manufacture of p-n junction diode
JPH07249831A (en) Method for growing crystal
JP3140121B2 (en) Semiconductor light emitting device
JPH06326348A (en) Photocoupler
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
JP2002314201A (en) Semiconductor light emitting element and its manufacturing method
JPH05299690A (en) Semiconductor light emitting element