JPH061609A - Oxide superconductor large in magnetic levitation force and production thereof - Google Patents

Oxide superconductor large in magnetic levitation force and production thereof

Info

Publication number
JPH061609A
JPH061609A JP4161371A JP16137192A JPH061609A JP H061609 A JPH061609 A JP H061609A JP 4161371 A JP4161371 A JP 4161371A JP 16137192 A JP16137192 A JP 16137192A JP H061609 A JPH061609 A JP H061609A
Authority
JP
Japan
Prior art keywords
silver
oxide
gold
superconductor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4161371A
Other languages
Japanese (ja)
Other versions
JP2854758B2 (en
Inventor
Akihiro Kondo
藤 章 弘 近
Shoichi Kagitani
谷 昌 一 鍵
Masahito Murakami
上 雅 人 村
Naoki Koshizuka
塚 直 己 腰
Shoji Tanaka
中 昭 二 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Hokuriku Electric Power Co
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co, Kawasaki Heavy Industries Ltd, Nippon Steel Corp filed Critical Hokuriku Electric Power Co
Priority to JP4161371A priority Critical patent/JP2854758B2/en
Priority to DE69318875T priority patent/DE69318875T2/en
Priority to EP93105034A priority patent/EP0562618B1/en
Priority to EP97118391A priority patent/EP0834931B1/en
Priority to DE69330762T priority patent/DE69330762T2/en
Publication of JPH061609A publication Critical patent/JPH061609A/en
Application granted granted Critical
Publication of JP2854758B2 publication Critical patent/JP2854758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a large sized oxide superconductor large in magnetic levitation force and the production method for producing with a simple process. CONSTITUTION:The superconductor is a REBaCuO oxide superconductor composed of a structure made by dispersing cerium oxide and an alloy of silver and gold or the oxide, the alloy and RE2BaCuO5 phase into a REBa2Cu3Od phase (RE is rear earth metal selected from Y, Sm, Eu, Gd, Dy, Ho, Er, Yb) and the superconductor phase is produced and grown by using a material obtained by adding to mix cerium oxide and silver, silver oxide, gold or the alloy of silver and gold as a starting material into a raw material, molding, partially fusing the obtained molded body and cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なREBaCuO系
酸化物超電導体およびその製造方法、特に磁気浮上によ
るフライホイール、磁気軸受、搬送装置等への利用を目
的とした、磁気浮上力の大きい酸化物超電導体およびそ
の製造方法に関するものである。ここにREは、Y、S
m、Eu、Gd、Dy、Ho、Er、Ybのグループよ
り選ばれた希土類元素を示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel REBaCuO-based oxide superconductor and a method for producing the same, and particularly to oxidation with a large magnetic levitation force for use in flywheels, magnetic bearings, conveyors and the like by magnetic levitation. And a method for manufacturing the same. Where RE is Y, S
A rare earth element selected from the group consisting of m, Eu, Gd, Dy, Ho, Er and Yb is shown.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】近年、磁
気浮上によるフライホイール等への利用を目的とし、R
EBaCuO系酸化物超電導体が用いられ始めている。
この超電導体は例えばMPMG(MeltPowder Melt Grow
th )法(例えばH, Fujimoto らProc. of ISS‘89 Spri
nger-Verlag 1990 P285)でつくられている。
2. Description of the Related Art In recent years, with the purpose of use in flywheels and the like by magnetic levitation, R
EBaCuO-based oxide superconductors are beginning to be used.
This superconductor is, for example, MPMG (MeltPowder Melt Grow).
th) method (eg H, Fujimoto et al. Proc. of ISS'89 Spri
nger-Verlag 1990 P285).

【0003】この方法で製造する一例を以下に示す。ま
ず原料粉、例えばY、BaCO、CuOを所定
の割合に混合する。これを仮焼・粉砕してもよい。さら
にこの粉体をRE相と液相が共存する温度、例え
ば1400℃に加熱し、部分溶融(M)させる。さら
に、冷却することにより凝固させる。その後粉砕(P)
・混合し成型する。得られた成型体をREBaCuO
相(以下単に211相と称す)と液相が共存する温
度、例えば1100℃まで加熱し、部分溶融(M)させ
る。その後、超電導相であるREBaCu
(以下単に123相と称す)が生成する温度まで冷却
し、その温度より例えば1℃/hで徐冷することにより
123相を生成・成長(G)させることにより超電導体
を製造する。
An example of manufacturing by this method is shown below. First, raw material powders such as Y 2 O 3 , BaCO 3 , and CuO are mixed in a predetermined ratio. This may be calcined and crushed. Further, the powder is heated to a temperature at which the RE 2 O 3 phase and the liquid phase coexist, for example, 1400 ° C. to partially melt (M). Further, it is solidified by cooling. Then crush (P)
・ Mix and mold. The obtained molded body is made into RE 2 BaCuO
Partial melting (M) is performed by heating to a temperature at which 5 phases (hereinafter simply referred to as 211 phases) and a liquid phase coexist, for example, 1100 ° C. Thereafter, the REBa 2 Cu 3 O d phase (hereinafter simply referred to as 123 phase) which is a superconducting phase is cooled to a temperature at which it is generated, and the 123 phase is generated and grown by gradually cooling from that temperature, for example, at 1 ° C./h ( G) to produce a superconductor.

【0004】この方法を用いて製造させた超電導体の組
織は、非超電導相である211相が123相中に微細に
分散し、超電導結晶も大きいので、大きな磁気浮上力を
示す(M. Murakami ら Japanese Journal of Applied
Physics Vol.29 No.11 1990L1991 )。
The structure of the superconductor produced by this method shows a large magnetic levitation force because the 211 phase, which is a non-superconducting phase, is finely dispersed in the 123 phase and the superconducting crystal is also large (M. Murakami). Et Japanese Journal of Applied
Physics Vol.29 No.11 1990L1991).

【0005】しかし、前記MPMG法は原料をまず加熱
し、部分溶融させ冷却し、その後粉砕・混合し、さらに
成型した後部分溶融させ、徐冷して超電導相を成長させ
て製造している。しかし、この方法は製造工程が長くか
つ複雑であり、工程の簡略化が望まれている。
However, in the MPMG method, the raw material is first heated, partially melted and cooled, then crushed and mixed, further molded and then partially melted, and gradually cooled to grow a superconducting phase. However, this method requires a long and complicated manufacturing process, and simplification of the process is desired.

【0006】このような超電導体は従来、MTG(Melt
Textured Growth)法(S. JinらAppl. Phys. Lett. Vo
l.52 No.207 1988 P2974)等の方法で製造されていた。
MTG法で製造する一例を示す。まず原料粉をREBa
Cu組成になるように調合し、成型する。その
成型体を部分溶融させ、さらに温度勾配下で徐冷し超電
導相を成長させる。その後、超電導相に酸素を付加させ
るために、酸素富化雰囲気中でアニールを行なう。この
ように製造された超電導体は、臨界電流密度が低く、十
分な磁気浮上力を示さなかった。
[0006] Such a superconductor has been conventionally used in the MTG (Melt
Textured Growth) method (S. Jin et al. Appl. Phys. Lett. Vo
L.52 No.207 1988 P2974).
An example of manufacturing by the MTG method will be shown. First, the raw material powder is REBa
2 Cu 3 O d were blended to obtain a composition, molding. The molded body is partially melted and further cooled under a temperature gradient to grow a superconducting phase. Then, annealing is performed in an oxygen-rich atmosphere in order to add oxygen to the superconducting phase. The superconductor manufactured in this manner had a low critical current density and did not exhibit a sufficient magnetic levitation force.

【0007】最近、CeOを添加する溶融法が開発さ
れた。(N. Ogawaら Proc. of ISS‘91 Springer-Verl
ag 1992 P455)前記方法で製造する一例を示す。まず、
原料粉にセリウム酸化物を添加した後、十分に混合す
る。その後、成型し、その成型体を前記MPMG法の後
半のMG部と同様に部分溶融し、徐冷することにより1
23相を成長させる。この方法で製造した超電導体の組
織は前記211相およびセリウムとバリウムの酸化物が
前記123相中に微細分散しており、この超電導体は高
い臨界電流密度を示す。しかし、この方法では超電導体
を製造する時に、割れが生じやすく、超電導結晶が小さ
くなりやすい難点があった。これらの現象が生じると磁
気浮上力が低下してしまう。
Recently, a melting method has been developed in which CeO 2 is added. (N. Ogawa et al. Proc. Of ISS'91 Springer-Verl
ag 1992 P455) An example of production by the above method is shown. First,
After adding cerium oxide to the raw material powder, mix it thoroughly. After that, it is molded, and the molded body is partially melted in the same manner as the MG part in the latter half of the MPMG method, and is gradually cooled to 1
Grow 23 phases. The texture of the superconductor produced by this method is such that the 211 phase and the oxides of cerium and barium are finely dispersed in the 123 phase, and this superconductor exhibits a high critical current density. However, this method has a drawback that cracks are likely to occur when the superconductor is manufactured, and the superconducting crystal tends to be small. When these phenomena occur, the magnetic levitation force decreases.

【0008】酸化物超電導体はセラミックスなどで基本
的に、靭性が低く、割れが問題となる。前記123相中
に分散した前記211相は割れの発生を抑制する効果を
有しているが、211自身がセラミックスであるため、
割れ防止効果としては、はなはだ不満足であり、機械的
性質の向上が望まれる。
[0008] Oxide superconductors are basically ceramics and the like and have a low toughness, which causes a problem of cracking. The 211 phase dispersed in the 123 phase has an effect of suppressing the occurrence of cracks, but since 211 itself is a ceramic,
As for the effect of preventing cracking, it is extremely unsatisfactory, and improvement of mechanical properties is desired.

【0009】一方、超電導材料では、機械的特性のみな
らず熱的安定性も問題になる。
On the other hand, in a superconducting material, not only mechanical characteristics but also thermal stability becomes a problem.

【0010】熱的安定性が悪い場合、何らかの原因で超
電導体の一部が常電導となり、熱が発生したとき、外部
冷却によって速やかに前記熱が除去されなく、常電導部
が超電導体全体に拡大し、全体的に超電導が破られてし
まうので、これを防止するための熱的安定性の向上が望
まれる。
When the thermal stability is poor, a part of the superconductor becomes the normal conductor for some reason, and when the heat is generated, the heat is not removed promptly by the external cooling, and the normal conductor portion is not entirely covered. Since it expands and the superconductivity is broken as a whole, improvement of thermal stability to prevent this is desired.

【0011】本発明の目的は、大きな磁気浮上力を有す
るREBaCuO系酸化物超電導体を前記MPMG法よ
りも短く、簡単な製造工程で、かかる大きな磁気浮上力
を有する大型の超電導体を製造することができる方法お
よびその超電導体を提供することである。
An object of the present invention is to manufacture a REBaCuO-based oxide superconductor having a large magnetic levitation force, which is shorter than the MPMG method, in a simple manufacturing process to manufacture a large superconductor having such a large magnetic levitation force. And a superconductor therefor.

【0012】本発明者等の研究により、出発原料にセリ
ウム酸化物と銀あるいは酸化銀あるいは金あるいは銀と
金の合金を添加すれば、大きな磁気浮上力を有する超電
導体、すなわち前記123相中に前記211相とセリウ
ムとバリウムの酸化物と銀と金の合金が微細・均一に分
散した組織を有する、大きな結晶を持つ、割れのない磁
気浮上力の大きい超電導体、を短く簡単な工程で製造し
得ることを見いだし、本発明をなすに至ったものであ
る。
According to the research conducted by the present inventors, when a cerium oxide and silver or silver oxide, gold, or an alloy of silver and gold is added to a starting material, a superconductor having a large magnetic levitation force, that is, the above 123 phase is added. Manufacture of a superconductor having large cracks and large magnetic levitation force, which has a structure in which the 211 phase, an oxide of cerium and barium, and an alloy of silver and gold are finely and uniformly dispersed, and has a large magnetic levitation force without cracks. The present invention has been accomplished and the present invention has been completed.

【0013】[0013]

【発明が解決しようとする課題】本発明は、前記123
相中に前記211相とセリウムとバリウムの酸化物と銀
と金の合金が微細分散した組織を有する、割れがなく、
超電導結晶の大きい、磁気浮上力の大きなREBaCu
O系酸化物超電導体を提供するものである。
The present invention is based on the above 123
The phase 211 has a structure in which the 211 phase, an oxide of cerium and barium, and an alloy of silver and gold are finely dispersed, and there is no crack,
REBaCu with large superconducting crystal and large magnetic levitation force
An O-based oxide superconductor is provided.

【0014】本発明はまた、原料にセリウム酸化物と銀
あるいは酸化銀あるいは金あるいは銀と金の合金を添加
し、混合したものを出発物質とし、これをさらに成型
し、得られた成型体を部分溶融した後、徐冷して超電導
相を生成・成長させることを特徴とする磁気浮上力の大
きなREBaCuO系酸化物超電導体の製造方法を提供
するものである。
In the present invention, cerium oxide and silver or silver oxide, gold, or an alloy of silver and gold are added to a raw material, and the mixture is used as a starting material. The present invention provides a method for producing a REBaCuO-based oxide superconductor having a large magnetic levitation force, which is characterized by producing a superconducting phase by gradually cooling after partially melting.

【0015】要するに、REBaCuO系酸化物超電導
体の出発物質に、前記セリウム酸化物と銀あるいは金を
添加物として加え、熱処理することにより、結晶の大き
な超電導相である123相にセリウムとバリウムの酸化
物と銀と金の合金と211相を微細分散させた組織を有
する、割れがない、大きな結晶を持つ、磁気浮上力の大
きい超電導体を製造することができる。
In short, by adding the cerium oxide and silver or gold as an additive to the starting material of the REBaCuO-based oxide superconductor and heat-treating it, oxidation of cerium and barium into 123 phase, which is a superconducting phase with large crystals, is performed. It is possible to manufacture a superconductor having a structure in which an alloy of an object, an alloy of silver and gold, and a 211 phase are finely dispersed, crack-free, large crystals, and high magnetic levitation force.

【0016】本発明は前記超電導体と前記超電導体の製
造方法を提供するものである。以下、本発明について詳
しく説明する。
The present invention provides the superconductor and a method for manufacturing the superconductor. Hereinafter, the present invention will be described in detail.

【0017】本発明で用いる前記添加物は基本的にセリ
ウム酸化物と銀あるいは酸化銀である。セリウム酸化物
としてはCeO、BaCeO等が挙げられる。
The additives used in the present invention are basically cerium oxide and silver or silver oxide. Examples of cerium oxide include CeO 2 and BaCeO 3 .

【0018】本発明者等は超電導体の123相にセリウ
ムとバリウムの酸化物と銀と211相を微細分散させる
と、得られた超電導体に、割れは認められず、その磁気
浮上力は向上することを見いだした。これは、セリウム
には211相を微細にする効果があるからである。すな
わち、添加物としてセリウム酸化物を欠くと、123相
に分散した211相は粗大であるが、前記添加物を用い
ると、211相が微細になる。さらに前記銀を0〜10
0重量%の範囲で金に置換しうることを見いだした。す
なわち銀あるいは酸化銀あるいは金あるいは銀と金の合
金を添加すると、得られた超電導体に割れは認められな
くなったことを見いだした。要するに、MPMG法で製
造された超電導体のように非超電導相が微細に分散した
組織を有する、割れは認められない、大きな超電導結晶
からなる超電導体が本発明によってMPMG法よりも短
い工程の簡単な製造方法で得られることを見いだした。
When the present inventors finely disperse the cerium and barium oxides, silver and 211 phase in the 123 phase of the superconductor, no crack is observed in the obtained superconductor and the magnetic levitation force is improved. I found what to do. This is because cerium has the effect of making the 211 phase fine. That is, when cerium oxide is omitted as an additive, the 211 phase dispersed in the 123 phase is coarse, but when the additive is used, the 211 phase becomes fine. Further, the silver is 0 to 10
It was found that gold could be substituted in the range of 0% by weight. That is, it was found that when silver or silver oxide, gold, or an alloy of silver and gold was added, no crack was observed in the obtained superconductor. In short, a superconductor having a structure in which a non-superconducting phase is finely dispersed like a superconductor manufactured by the MPMG method, cracks are not recognized, and a superconductor made of a large superconducting crystal has a shorter process than the MPMG method according to the present invention. It was found that it can be obtained by various manufacturing methods.

【0019】一方、このような組織を有する、すなわち
銀が微細に分散した超電導体は前記熱的安定性、および
前記機械的特性が向上する。すなわち、銀は熱伝導性に
優れているため、熱伝導率を向上させることができる。
熱伝導率が高いと、冷却する時間が短縮できるというメ
リットもある。
On the other hand, a superconductor having such a structure, that is, finely dispersed silver, has improved thermal stability and mechanical properties. That is, since silver has excellent thermal conductivity, the thermal conductivity can be improved.
High thermal conductivity also has the advantage that the cooling time can be shortened.

【0020】また、分散したセラミックスではなく、金
属である銀の変形によって歪を緩和することができるた
め機械的特性を向上させることができる。
Further, since the strain can be alleviated by the deformation of silver, which is a metal, rather than the dispersed ceramics, the mechanical characteristics can be improved.

【0021】本発明に係る超電導体の製造方法の手順の
一例について以下に示す。 (工程 )まずREBaCuO系超電導体製造する最
初の段階として出発物質を製造する。REとしてはY、
Sm、Eu、Gd、Dy、Ho、Er、Ybから少なく
とも1種類が選択される。原料粉に、前記添加物を添加
し、混合することにより出発物質を製造する。
An example of the procedure of the method for producing a superconductor according to the present invention will be shown below. (Process) First, a starting material is manufactured as a first step in manufacturing a REBaCuO-based superconductor. Y as RE,
At least one type is selected from Sm, Eu, Gd, Dy, Ho, Er, and Yb. The starting material is manufactured by adding the above-mentioned additives to the raw material powder and mixing them.

【0022】本発明で用いられる原料は、RE
BaCuO、BaO、CuO、REBaCuO
あるいはREBaCuO等が考えられるが、RE
CuとBa酸化物、Cu酸化物を原料にすると前
記原料を用いて製造されたペレットよりも前記123相
に分散する211相および銀と金の合金の大きさがより
微細になることが見いだされた。
The raw material used in the present invention is RE 2 O 3 ,
BaCuO 2 , BaO 2 , CuO, RE 2 BaCuO 5
Alternatively, REBa 2 CuO d or the like may be considered, but RE 2
When Cu 2 O 5 and Ba oxide or Cu oxide are used as raw materials, the size of the 211 phase and the alloy of silver and gold dispersed in the 123 phase becomes finer than that of the pellets produced by using the raw materials. Was found.

【0023】添加物を別とした原料の組成は、211相
を非超電導相として分散させ、磁気浮上力を向上させる
ために、化学量論である123から211を過剰にした
組成にするのが好ましい。211を過剰にする範囲は5
〜60モル%の範囲が望ましい。
The composition of the raw materials excluding the additives is that the 211 phase is dispersed as a non-superconducting phase and the stoichiometry of 123 to 211 is excessive in order to improve the magnetic levitation force. preferable. The range to make 211 excessive is 5
The range of -60 mol% is desirable.

【0024】本発明で用いる添加物はセリウム酸化物と
銀あるいは酸化銀あるいは金あるいは銀と金の合金であ
り、その望ましい添加範囲は、セリウム酸化物が酸化セ
リウムとして0.1〜2.0重量%である。
The additive used in the present invention is cerium oxide and silver or silver oxide, gold, or an alloy of silver and gold. The desirable addition range is 0.1 to 2.0 weight% of cerium oxide as cerium oxide. %.

【0025】ただし、前記銀と金は基本的には銀である
が、この銀(Ag)を0〜100重量%の範囲で金(A
u)に置換することができる。すなわち、重量組成がA
Ag1-x としてXの範囲が0〜1.0である。これ
らの添加量は、1.0〜25.0重量%である。
However, the above-mentioned silver and gold are basically silver, but this silver (Ag) is added in the range of 0 to 100% by weight.
u) can be substituted. That is, the weight composition is A
The range of X as u x Ag 1-x is 0 to 1.0. The addition amount of these is 1.0 to 25.0% by weight.

【0026】一方、出発物質として、原料に前記添加物
を添加し、混合し、さらに仮焼して粉砕したものを用い
ることができることが見いだされた。
On the other hand, it was found that a starting material which was prepared by adding the above-mentioned additives to the raw material, mixing them, calcining and crushing them could be used.

【0027】さらに、前記MPMG法のように、原料に
前記添加物を添加し、混合する。さらに、部分溶融した
後、冷却することにより凝固させ、それを粉砕し、さら
に混合したものを出発物質として用いることも可能であ
ることも見いだされた。
Further, as in the MPMG method, the additives are added to the raw materials and mixed. Further, it was also found that it is possible to partially melt and then solidify by cooling, grind it, and further use a mixture thereof as a starting material.

【0028】前記部分溶融は950〜1500℃の温度
範囲で1〜60分間保持してRE相と液相(B
a、Cuの酸化物で構成されている)あるいは211相
と前記液相を生成させることであり、前記冷却は炉冷以
上の速度で行えば十分である。 (工程 )さらに、この出発物質を所望の形状に成型
し、成型体を製造する。大型のペレットに成型する場合
は等方加圧成型が望ましい。 (工程 )ここで、超電導結晶生成および成長の制御
を可能にするため、造核粒子を前記成型体の所望の場所
に置くかまたは埋め込むことが可能である。埋め込む場
合には、成型体の任意の表面に埋め込むことが可能であ
る。この操作は、工程の徐冷開始直前までに行えばよ
いが、この操作をここで行う方が、作業が簡単であり、
労力もかからない。
The partial melting is carried out by maintaining the temperature in the range of 950 to 1500 ° C. for 1 to 60 minutes and the RE 2 O 3 phase and the liquid phase (B
a, which is composed of an oxide of Cu) or 211 phase and the liquid phase is generated, and the cooling may be performed at a rate higher than that of the furnace cooling. (Step) Further, the starting material is molded into a desired shape to manufacture a molded body. When molding into large pellets, isotropic pressure molding is desirable. (Step) Here, in order to enable control of superconducting crystal formation and growth, it is possible to place or embed the nucleated particles in a desired place of the molded body. When embedding, it can be embedded on any surface of the molded body. This operation may be performed just before the start of gradual cooling of the process, but it is easier to perform this operation here,
No effort is required.

【0029】造核粒子は粉体あるいは単結晶体のどちら
でもよい。
The nucleated particles may be either powder or single crystal.

【0030】一方、前記造核粒子の量は高々10mg程度
で十分な効果を示す。造核粒子は、希土類元素を含む酸
化物の一部すなわちY、Nd、Sm
、Eu、La、Gd、Dy
、Ho、Er、YBaCuO、S
BaCuO、EuBaCuO、GdBaC
uO、DyBaCuO、HoBaCuO、E
BaCuO、YBaCu、SmBa
、NdBaCu、EuBaCu
、LaBaCu、GdBaCu、D
yBaCu、HoBaCu、ErBa
Cuからなる群から少なくとも1種類が選ばれ
る。 (工程 )この成型体を前記211相が生成する95
0〜1250℃の範囲に加熱し、その温度に30〜12
0分間保持し、その温度から前記211相と前記液相か
ら前記123相が生成し始める温度、例えばREがYで
大気中の場合約1000℃より(ただし、造核粒子を用
いた場合にはそれより若干高い温度)まで10〜100
0℃/hの冷却速度で冷却する。さらに、この温度から
850〜950℃まで0.2〜20℃/hの冷却速度で
徐冷する。
On the other hand, when the amount of the nucleated particles is about 10 mg at most, a sufficient effect is exhibited. The nucleated particles are a part of the oxide containing a rare earth element, that is, Y 2 O 3 , Nd 2 O 3 , and Sm.
2 O 3 , Eu 2 O 3 , La 2 O 3 , Gd 2 O 3 , Dy 2
O 3 , Ho 2 O 3 , Er 2 O 3 , Y 2 BaCuO 5 , S
m 2 BaCuO 5 , Eu 2 BaCuO 5 , Gd 2 BaC
uO 5 , Dy 2 BaCuO 5 , Ho 2 BaCuO 5 , E
r 2 BaCuO 5 , YBa 2 Cu 3 O d , SmBa 2 C
u 3 O d , NdBa 2 Cu 3 O d , EuBa 2 Cu 3 O
d , LaBa 2 Cu 3 O d , GdBa 2 Cu 3 O d , D
yBa 2 Cu 3 O d , HoBa 2 Cu 3 O d , ErBa
At least one type is selected from the group consisting of 2 Cu 3 O d . (Step) The 211 phase produces this molded body 95
It is heated to the range of 0 to 1250 ° C and the temperature is set to 30 to 12
The temperature is maintained for 0 minutes, and the temperature at which the 123 phase starts to form from the 211 phase and the liquid phase from that temperature, for example, when RE is Y and it is in the air, about 1000 ° C. (however, when using nucleation particles 10-100 up to a slightly higher temperature)
Cool at a cooling rate of 0 ° C./h. Further, this temperature is gradually cooled from 850 to 950 ° C at a cooling rate of 0.2 to 20 ° C / h.

【0031】前記徐冷時に1℃/cm以上の温度勾配下で
徐冷すると結晶成長の制御がより確実にでき、温度勾配
下での徐冷が望ましい。 (工程 )その後、850〜950℃から室温までは
任意の冷却速度で冷却することが可能である。
When the gradual cooling is performed under a temperature gradient of 1 ° C./cm or more, the crystal growth can be controlled more reliably, and gradual cooling under a temperature gradient is desirable. (Step) After that, it is possible to cool from 850 to 950 ° C. to room temperature at an arbitrary cooling rate.

【0032】必要に応じて、製造した超電導体への酸素
を十分に付加させるために酸素富化雰囲気において65
0〜300℃の温度範囲で2〜500時間保持するか、
もしくは最高650℃、最低300℃の温度範囲を2〜
500時間かけて冷却する。その後は任意の冷却速度で
冷却することが可能である。
If necessary, in order to sufficiently add oxygen to the produced superconductor, the oxygen content in the oxygen enriched atmosphere is set to 65.
Hold in the temperature range of 0 to 300 ° C for 2 to 500 hours, or
Or the temperature range of maximum 650 ℃ and minimum 300 ℃ is 2
Cool for 500 hours. After that, it is possible to cool at an arbitrary cooling rate.

【0033】このようにセリウム酸化物と銀あるいは酸
化銀あるいは金あるいは金と銀の合金を添加することに
より、割れがなく、超電導結晶が大きく、磁気浮上力の
大きいREBaCuO系酸化物超電導体を製造すること
ができた。
By adding the cerium oxide and silver or silver oxide or gold or gold and silver alloy as described above, a REBaCuO-based oxide superconductor having no cracks, large superconducting crystals and large magnetic levitation force is manufactured. We were able to.

【0034】本発明により、前記123相中に211相
とともにセリウムとバリウム酸化物と銀ないし金が微細
分散した組織、即ちセリウムとバリウムの酸化物が酸化
セリウムとして0.1〜2.0重量%の範囲で、又銀と
金の合金が1.0〜25.0重量%の範囲でそれぞれ微
細に分散している組織を有し、さらに割れがなく超電導
結晶も大きい、前記MPMGで製造された超電導体と同
様、大きな磁気浮上力を示す超電導体を、MPMG法よ
りも工程が短く簡単な方法で得ることができた。
According to the present invention, a structure in which cerium, barium oxide and silver or gold are finely dispersed in the 123 phase together with the 211 phase, that is, an oxide of cerium and barium is 0.1 to 2.0% by weight as cerium oxide. , And an alloy of silver and gold in the range of 1.0 to 25.0% by weight, each of which has a finely dispersed structure, has no cracks, and has a large superconducting crystal. Similar to the superconductor, it was possible to obtain a superconductor exhibiting a large magnetic levitation force by a simple method with a shorter process than the MPMG method.

【0035】[0035]

【実施例】以下に、比較例と実施例を挙げる。EXAMPLES Comparative examples and examples will be given below.

【0036】比較例 原料粉に酸化セリウムを0.5重量%添加したもの、銀
のみを10重量%添加したもの、酸化セリウム・銀共に
添加しなかったものをそれぞれ製造した。
Comparative Example A raw material powder to which 0.5% by weight of cerium oxide was added, an additive of only 10% by weight of silver, and an additive of neither cerium oxide nor silver were produced.

【0037】すなわち、原料をYBaCu、Y
CuBaOとしてY:Ba:Cuの比が1.8:
2.4:3.4になるように混合する。その後、原料粉
に対し、前記添加物を前記の添加量でそれぞれ添加した
後、よく混合する。
That is, the raw material is YBa 2 Cu 3 O d , Y
2 CuBaO 5 has a Y: Ba: Cu ratio of 1.8:
2.4: Mix until 3.4. Then, the above-mentioned additives are added to the raw material powder in the above-mentioned amounts, respectively, and then mixed well.

【0038】その後成型し、得られた成型体を1100
℃で60分加熱し、前記211相と前記液相にした後、
1000℃まで10分で冷却する。その後、870℃ま
で1℃/hの割合で徐冷し、その後炉冷する。さらに、
1気圧の酸素気流中で600℃で1h加熱後炉冷する酸
素アニールを行うことにより超電導体ペレットを製造し
た。ペレットサイズは直径約35mm、高さ約13mmであ
る。
After that, molding was performed, and the obtained molded body was processed for 1100
After heating at 60 ° C. for 60 minutes to form the 211 phase and the liquid phase,
Cool to 1000 ° C. in 10 minutes. After that, it is gradually cooled to 870 ° C. at a rate of 1 ° C./h, and then furnace cooled. further,
A superconductor pellet was manufactured by performing oxygen annealing in a stream of oxygen at 1 atm at 600 ° C. for 1 hour and then furnace cooling. The pellet size is about 35 mm in diameter and about 13 mm in height.

【0039】酸化セリウムのみを添加したペレットには
割れが認められ、さらに割れにより超電導結晶成長が妨
げられ、その結果結晶が小さくなったのに対し、酸化セ
リウムを添加しなかったペレット、すなわち銀のみを添
加したペレットおよび酸化セリウム・銀共に添加しなか
ったペレットには割れが認められなかった。酸化セリウ
ムのみを添加したペレットのスケッチを図1に示す。こ
の場合かなりの割れが発生し、この割れに遮られて結晶
が大きくならないことがみとめられよう。
Cracks were found in the pellets to which only cerium oxide was added, and the cracks hindered the growth of superconducting crystals. As a result, the crystals became smaller, whereas the pellets to which cerium oxide was not added, that is, only the silver particles, were added. No cracks were observed in the pellets to which was added and the pellets to which neither cerium oxide nor silver was added. A sketch of a pellet to which only cerium oxide is added is shown in FIG. In this case, it can be seen that considerable cracks occur and the crystals are not enlarged by the cracks.

【0040】また、これらの超電導体ペレットを、直径
32mm、表面磁束密度0.4T(テスラ)の永久磁石を
用いて磁気浮上力を測定した。表1に示すように、磁気
浮上力はすべて3kgf 以下と、低い値を示した。比較の
ため図5にも併せて示す(ただし、酸化セリウムのみ添
加した超電導体ペレットの磁気浮上力については図4に
も示す)。
The magnetic levitation force of these superconductor pellets was measured using a permanent magnet having a diameter of 32 mm and a surface magnetic flux density of 0.4 T (tesla). As shown in Table 1, the magnetic levitation force was a low value of 3 kgf or less. For comparison, it is also shown in FIG. 5 (however, the magnetic levitation force of the superconductor pellet containing only cerium oxide is also shown in FIG. 4).

【0041】実施例1 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と銀を原料粉に対し、それぞれ1、5、1
0、15、20、25重量%添加し、さらによく混合す
る。その後成型し、比較例と同様な熱処理、酸素アニー
ルを行うことにより、超電導体ペレットを製造した。ペ
レットサイズは比較例と同じである。
Example 1 The raw materials are mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu is 1.8: 2.4: 3.4. Thereafter, 0.5% by weight of cerium oxide to the raw material powder and 1, 5 and 1 of silver to the raw material powder, respectively.
Add 0,15,20,25 wt% and mix well. After that, the superconductor pellets were manufactured by molding and performing the same heat treatment and oxygen annealing as in the comparative example. The pellet size is the same as the comparative example.

【0042】これらのペレットには割れが認められなか
った。図2に、酸化セリウムを0.5重量%、銀を10
重量%添加して製造したペレットのスケッチを示す。こ
の場合割れがなくて大きな結晶がえられることがみられ
よう。
No cracks were found in these pellets. In FIG. 2, 0.5% by weight of cerium oxide and 10% of silver are added.
The sketch of the pellet manufactured by adding weight% is shown. In this case, it can be seen that there are no cracks and large crystals are obtained.

【0043】図3にこのペレットの組織のスケッチを示
す。ただし、マトリックス相は123相である。この場
合、セリウム‐ハセリウム酸化物と銀と211相が12
3相中に微細に分散していることがみられよう。
FIG. 3 shows a sketch of the structure of this pellet. However, the matrix phase is 123 phases. In this case, the cerium-haserium oxide and the silver and 211 phases are 12
It can be seen that they are finely dispersed in the three phases.

【0044】これらのペレットを、比較例と同様な方法
で磁気浮上力を測定した。図5に示すように、この実施
例で製造したペレットの磁気浮上力は比較例のそれより
も向上した。
The magnetic levitation force of these pellets was measured by the same method as in the comparative example. As shown in FIG. 5, the magnetic levitation force of the pellets manufactured in this example was higher than that of the comparative example.

【0045】実施例2 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対しそ
れぞれ0.1、0.3、0.5、1.0、1.5、2.
0重量%と銀を原料粉に対し10重量%添加し、さらに
よく混合する。その後成型し、比較例と同様な熱処理、
および酸素アニールを行うことにより、超電導体ペレッ
トを製造した。ペレットサイズは比較例と同じである。
Example 2 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. Then, cerium oxide was added to the raw material powders in 0.1, 0.3, 0.5, 1.0, 1.5, 2.
Add 0% by weight and 10% by weight of silver to the raw material powder, and mix them well. Then molded, heat treatment similar to Comparative Example,
Then, oxygen annealing was performed to produce a superconductor pellet. The pellet size is the same as the comparative example.

【0046】これらのペレットを、比較例と同様な方法
で磁気浮上力を測定した。図5に併せて示すように、こ
の実施例で製造したペレットの磁気浮上力は比較例のそ
れよりも向上した。
The magnetic levitation force of these pellets was measured by the same method as in the comparative example. As also shown in FIG. 5, the magnetic levitation force of the pellets manufactured in this example was higher than that of the comparative example.

【0047】実施例3 原料をREBaCu、RECuBaOとし
てRE:Ba:Cuの比が1.8:2.4:3.4にな
るように混合する。その後、酸化セリウムを原料粉に対
し0.5重量%と銀を原料粉に対し10重量%添加し、
さらによく混合する。その後成型し、比較例と同様な熱
処理、酸素アニールを行うことにより、超電導体ペレッ
トを製造した。ペレットサイズは比較例と同じである。
Example 3 The raw materials were mixed as REBa 2 Cu 3 O d and RE 2 CuBaO 5 so that the RE: Ba: Cu ratio was 1.8: 2.4: 3.4. After that, 0.5% by weight of cerium oxide to the raw material powder and 10% by weight of silver to the raw material powder were added,
Mix even more. After that, the superconductor pellets were manufactured by molding and performing the same heat treatment and oxygen annealing as in the comparative example. The pellet size is the same as the comparative example.

【0048】これらのペレットを、比較例と同様な方法
で磁気浮上力を測定した。表2に示すように、すべての
RE系で、比較例よりも磁気浮上力が向上した。
The magnetic levitation force of these pellets was measured by the same method as in the comparative example. As shown in Table 2, in all RE systems, the magnetic levitation force was improved as compared with the comparative example.

【0049】実施例4 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と重量組成がAuAg1-x で表される、
銀と金の合金を原料粉に対し10重量%添加し、よく混
合する。ただし、前記Xの値はそれぞれ0、0.25、
0.5、0.75、1.0である。
Example 4 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. After that, cerium oxide is 0.5% by weight with respect to the raw material powder, and the weight composition is represented by Au x Ag 1-x .
An alloy of silver and gold is added to the raw material powder in an amount of 10% by weight and mixed well. However, the values of X are 0, 0.25,
It is 0.5, 0.75, and 1.0.

【0050】さらに、成型した後、1100℃で60分
加熱し、211相と液相にした後、1010℃まで10
分で冷却する。その後、870℃まで1℃/hの割合で
徐冷し、その後炉冷する。さらに、1気圧の酸素気流中
で600℃で1h加熱後炉冷することにより超電導体ペ
レットを製造した。ペレットサイズは比較例と同様であ
る。
Further, after molding, it is heated at 1100 ° C. for 60 minutes to form a 211 phase and a liquid phase, and then heated to 1010 ° C. for 10 minutes.
Cool in minutes. After that, it is gradually cooled to 870 ° C. at a rate of 1 ° C./h, and then furnace cooled. Further, superconductor pellets were produced by heating in an oxygen stream of 1 atm at 600 ° C. for 1 hour and then cooling in a furnace. The pellet size is the same as that of the comparative example.

【0051】このペレットを、比較例と同様な方法で磁
気浮上力を測定した。その結果、図6に示すようにこれ
らのペレットの磁気浮上力は、すべて比較例よりも向上
した。
The magnetic levitation force of this pellet was measured by the same method as in the comparative example. As a result, as shown in FIG. 6, the magnetic levitation forces of these pellets were all improved as compared with the comparative example.

【0052】実施例5 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と酸化銀を原料粉に対し10重量%添加
し、よく混合する。さらに、成型した後、成型体の下面
中央にNd、Sm、Euの造核粒子
を約10mg置く。その後1100℃で60分加熱し、2
11相と液相にした後、1010℃まで10分で冷却す
る。その後、870℃まで1℃/hの割合で徐冷し、そ
の後炉冷する。さらに、1気圧の酸素気流中で600℃
で1h加熱後炉冷することにより超電導体ペレットを製
造した。ペレットサイズは比較例と同様である。
Example 5 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide and 10% by weight of silver oxide are added to the raw material powder and mixed well. Further, after molding, about 10 mg of nucleated particles of Nd 2 O 3 , Sm 2 O 3 and Eu 2 O 3 are placed in the center of the lower surface of the molded body. Then, heat at 1100 ° C for 60 minutes, and
After being made into the 11th phase and the liquid phase, it is cooled to 1010 ° C. in 10 minutes. After that, it is gradually cooled to 870 ° C. at a rate of 1 ° C./h, and then furnace cooled. Furthermore, 600 ° C in an oxygen stream of 1 atm
After heating for 1 h at room temperature, the furnace was cooled to produce superconductor pellets. The pellet size is the same as that of the comparative example.

【0053】このペレットを、比較例と同様な方法で磁
気浮上力を測定した。その結果、表3に示すように造核
粒子を置いたペレットの磁気浮上力は、すべて比較例よ
りも向上した。
The magnetic levitation force of this pellet was measured by the same method as in the comparative example. As a result, as shown in Table 3, the magnetic levitation force of the pellets on which the nucleating particles were placed was all improved as compared with the comparative example.

【0054】実施例6 原料をY、BaCuO、CuOとしてY:B
a:Cuの比が1.8:2.4:3.4になるように混
合する。その後、酸化セリウムを原料粉に対し0.5重
量%と銀を原料粉に対し10重量%添加し、よく混合す
る。さらに成型する。得られた成型体の1側面中央に造
核粒子としてNd粉約10mg埋め込む。さらに、
1100℃で30分加熱し、211相と液相にした後、
1040℃まで10分で冷却する。その後、粉を埋めた
面が最も温度が低くなるように2℃/cm、6℃/cmおよ
び10℃/cmそれぞれの温度勾配下で850℃まで1℃
/hの割合で徐冷し、その後炉冷する。さらに、1気圧
の酸素気流中で600℃で1h加熱後炉冷することによ
り超電導体ペレットを製造した。ペレットサイズは比較
例と同様である。これらのペレットを比較例と同様な方
法で磁気浮上力を測定した。その結果、表4に示すよう
に、各温度勾配下の徐冷で超電導体を製造した場合、N
粉を埋め込んだ効果が認められた。
Example 6 Y: B was used as a raw material with Y 2 O 3 , BaCuO 2 , and CuO as the raw materials.
Mix so that the ratio of a: Cu is 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide to the raw material powder and 10% by weight of silver to the raw material powder are added and mixed well. Further mold. About 10 mg of Nd 2 O 3 powder was embedded as nucleating particles in the center of one side surface of the obtained molded body. further,
After heating at 1100 ° C for 30 minutes to form 211 phase and liquid phase,
Cool to 1040 ° C. in 10 minutes. After that, the temperature of the surface filled with the powder becomes the lowest, 2 ℃ / cm, 6 ℃ / cm and 10 ℃ / cm.
/ H is gradually cooled, and then the furnace is cooled. Further, superconductor pellets were produced by heating in an oxygen stream of 1 atm at 600 ° C. for 1 hour and then cooling in a furnace. The pellet size is the same as that of the comparative example. The magnetic levitation force of these pellets was measured by the same method as in the comparative example. As a result, as shown in Table 4, when the superconductor was manufactured by slow cooling under each temperature gradient, N
The effect of embedding d 2 O 3 powder was recognized.

【0055】実施例7 原料をY、BaO、CuOとしてY:Ba:C
uの比が1.8:2.4:3.4になるように混合す
る。その後、酸化セリウムを原料粉に対し0.5重量%
と酸化銀を原料粉に対し10重量%添加し、よく混合す
る。さらに成型する。得られた成型体の下面中央に造核
粒子としてNd粉を約10mg埋め込む。さらに、
1100℃で30分加熱し、211相と液相にした後、
1020℃まで10分で冷却する。その後、粉を埋めた
面が最も温度が低くなるような1℃/cmの温度勾配下で
1℃/hの割合で徐冷し、その後炉冷する。さらに、1
気圧の酸素気流中で600℃で1h加熱後、炉冷するこ
とにより超電導体ペレットを製造した。ペレットサイズ
は比較例と同様である。これらのペレットを比較例と同
様で磁気浮上力を測定した。その結果、磁気浮上力は
8.5kgf を示した。
Example 7 Y: Ba: C as the raw material with Y 2 O 3 , BaO 2 and CuO
Mix so that the ratio of u is 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide to the raw material powder
And 10% by weight of silver oxide with respect to the raw material powder, and mixed well. Further mold. About 10 mg of Nd 2 O 3 powder is embedded as nucleating particles in the center of the lower surface of the obtained molded body. further,
After heating at 1100 ° C for 30 minutes to form 211 phase and liquid phase,
Cool to 1020 ° C. in 10 minutes. After that, the powder-filled surface is gradually cooled at a rate of 1 ° C./h under a temperature gradient of 1 ° C./cm so that the temperature becomes the lowest, and then the furnace is cooled. Furthermore, 1
After heating in an oxygen gas stream at atmospheric pressure at 600 ° C. for 1 hour, furnace cooling was performed to produce superconductor pellets. The pellet size is the same as that of the comparative example. The magnetic levitation force of these pellets was measured in the same manner as in the comparative example. As a result, the magnetic levitation force was 8.5 kgf.

【0056】実施例8 原料をYCu、BaO、CuOとしてY:B
a:Cuの比が1.8:2.4:3.4になるように混
合する。その後、酸化セリウムを原料粉に対し0.5重
量%と銀を原料粉に対し10重量%添加し、よく混合す
る。その後成型し、比較例と同様な熱処理、酸素アニー
ルを行うことにより、超電導体ペレットを製造した。ペ
レットサイズは比較例と同じである。
Example 8 Y: B as raw materials Y 2 Cu 2 O 5 , BaO 2 and CuO
Mix so that the ratio of a: Cu is 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide to the raw material powder and 10% by weight of silver to the raw material powder are added and mixed well. After that, the superconductor pellets were manufactured by molding and performing the same heat treatment and oxygen annealing as in the comparative example. The pellet size is the same as the comparative example.

【0057】これらのペレットを、比較例と同様な方法
で磁気浮上力を測定した。その結果、磁気浮上力は5.
8kgf を示した。
The magnetic levitation force of these pellets was measured by the same method as in the comparative example. As a result, the magnetic levitation force is 5.
It showed 8 kgf.

【0058】実施例9 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と銀を原料粉に対し10重量%添加し、よ
く混合する。さらに、成型した後、1100℃で30分
加熱し部分溶融させた後、炉冷することにより、凝固さ
せる。さらに、粉砕・混合した後、生成する。得られた
成型体を1100℃で60分加熱し、211相と液相に
部分溶融させた後、1000℃間で10分で冷却する。
その後、870℃まで1℃/hの割合で徐冷し、その後
炉冷する。さらに、1気圧の酸素気流中で600℃で1
h加熱後炉冷することにより超電導体ペレットを製造し
た。ペレットサイズは比較例と同様である。
Example 9 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide to the raw material powder and 10% by weight of silver to the raw material powder are added and mixed well. Further, after molding, it is heated at 1100 ° C. for 30 minutes to partially melt, and then cooled in a furnace to solidify. Further, it is generated after being crushed and mixed. The obtained molded body is heated at 1100 ° C. for 60 minutes to partially melt the 211 phase and the liquid phase, and then cooled at 1000 ° C. for 10 minutes.
After that, it is gradually cooled to 870 ° C. at a rate of 1 ° C./h, and then furnace cooled. Furthermore, 1 at 600 ° C in an oxygen stream of 1 atm
After heating for h, it was cooled in a furnace to produce superconductor pellets. The pellet size is the same as that of the comparative example.

【0059】このペレットを、比較例と同様な方法で磁
気浮上力を測定した。その結果、磁気浮上力は6.0kg
f と大きな値を示した。
The magnetic levitation force of this pellet was measured by the same method as in the comparative example. As a result, the magnetic levitation force is 6.0 kg.
It showed a large value with f.

【0060】実施例10 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と銀を原料粉に対し10重量%添加し、よ
く混合する。さらに、920℃で24時間仮焼し、さら
に、粉砕・混合した後、成型する。得られた成型体を1
100℃で60分加熱し、211相と液相に部分溶融さ
せた後、1000℃まで10分冷却する。その後、87
0℃まで1℃/hの割合で徐冷し、その後炉冷する、さ
らに、1気圧の酸素気流中で600℃で1h加熱後炉冷
することにより超電導体ペレットを製造した。ペレット
サイズは比較例と同様である。
Example 10 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. Then, 0.5% by weight of cerium oxide to the raw material powder and 10% by weight of silver to the raw material powder are added and mixed well. Further, it is calcined at 920 ° C. for 24 hours, further crushed and mixed, and then molded. The obtained molded body is 1
After heating at 100 ° C. for 60 minutes to partially melt the 211 phase and the liquid phase, it is cooled to 1000 ° C. for 10 minutes. Then 87
A superconductor pellet was manufactured by gradually cooling to 0 ° C. at a rate of 1 ° C./h, then furnace cooling, and further heating in an oxygen stream at 1 atm at 600 ° C. for 1 h and then furnace cooling. The pellet size is the same as that of the comparative example.

【0061】このペレットを、比較例と同様な方法で磁
気浮上力を測定した。その結果、磁気浮上力は5.8kg
f と大きな値を示した。
The magnetic levitation force of this pellet was measured by the same method as in the comparative example. As a result, the magnetic levitation force is 5.8 kg.
It showed a large value with f.

【0062】実施例11 原料をYCu、BaO、CuOとしてY:B
a:Cuの比が1.8:2.4:3.4になるように混
合する。その後、酸化セリウムを原料粉に対し0.5重
量%と銀を原料粉に対し10重量%添加し、さらによく
混合する。その後成型し、比較例と同様な熱処理、酸素
アニールを行うことにより、超電導体ペレットを製造し
た。ペレットサイズは比較例と同じである。
Example 11 Y: B as raw materials Y 2 Cu 2 O 5 , BaO 2 and CuO
Mix so that the ratio of a: Cu is 1.8: 2.4: 3.4. After that, 0.5% by weight of cerium oxide is added to the raw material powder and 10% by weight of silver is added to the raw material powder, and they are further mixed. After that, the superconductor pellets were manufactured by molding and performing the same heat treatment and oxygen annealing as in the comparative example. The pellet size is the same as the comparative example.

【0063】このペレットを、比較例と同様な方法で磁
気浮上力を測定した。その結果、磁気浮上力は6.1kg
f と大きな値を示した。
The magnetic levitation force of this pellet was measured by the same method as in the comparative example. As a result, the magnetic levitation force is 6.1 kg.
It showed a large value with f.

【0064】実施例12 原料をYBaCu、YCuBaOとして
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。その後、酸化セリウムを原料粉に対し
0.5重量%と銀を原料粉に対し10重量%添加し、さ
らによく混合する。その後成型し、比較例と同様な熱処
理、酸素アニールを行うことにより、超電導体ペレット
を製造した。ペレットサイズは比較例と同じである。
Example 12 The raw materials were mixed as YBa 2 Cu 3 O d and Y 2 CuBaO 5 so that the ratio of Y: Ba: Cu was 1.8: 2.4: 3.4. After that, 0.5% by weight of cerium oxide is added to the raw material powder and 10% by weight of silver is added to the raw material powder, and they are further mixed. After that, the superconductor pellets were manufactured by molding and performing the same heat treatment and oxygen annealing as in the comparative example. The pellet size is the same as the comparative example.

【0065】同時に、比較例で製造した、酸化セリウム
・銀共に添加しなかったペレットと共に、液体窒素中に
浸漬して、熱伝導性を測定した。液体窒素に超電導体を
浸漬すると窒素がバブリングを起こし、超電導体が液体
窒素温度まで冷却されるとバブリングがなくなる。した
がって、窒素がバブリングしている時間を測定すること
により、熱伝導性の相対比較が可能である。酸化セリウ
ム・銀を添加しなかった超電導体の前記窒素バブリング
時間は125秒に対し、酸化セリウム・銀を添加した超
電導体のそれは93秒であった。したがって、酸化セリ
ウム・銀を添加することにより、熱伝導性の向上が認め
られた。
At the same time, the thermal conductivity was measured by immersing the pellets prepared in Comparative Example in which neither cerium oxide nor silver was added in liquid nitrogen. When the superconductor is immersed in liquid nitrogen, nitrogen causes bubbling, and when the superconductor is cooled to the liquid nitrogen temperature, bubbling disappears. Therefore, a relative comparison of thermal conductivity is possible by measuring the time during which nitrogen is bubbled. The nitrogen bubbling time of the superconductor to which cerium oxide / silver was not added was 125 seconds, while that of the superconductor to which cerium oxide / silver was added was 93 seconds. Therefore, it was confirmed that the thermal conductivity was improved by adding cerium oxide / silver.

【0066】実施例13 実施例12で酸化セリウムと銀を添加して得られた超電
導体を煉瓦上へ1m自然落下させたところ破損が認めら
れなかった。しかし、酸化セリウム・銀を添加しなかっ
た超電導体には破損が認められた。したがって、銀を添
加することにより、機械的性質の向上が認められた。
Example 13 When the superconductor obtained by adding cerium oxide and silver in Example 12 was naturally dropped onto a brick for 1 m, no damage was observed. However, damage was observed in the superconductor to which cerium oxide / silver was not added. Therefore, it was confirmed that the mechanical properties were improved by adding silver.

【0067】 表1 添加物種類別磁気浮上力 添 加 物 磁気浮上力(kgf ) なし 2.60 0.5重量%CeO 3.68 10重量%銀 2.71 表2 置換物質の磁気浮上力(kgf ) Yと置換する物質 磁気浮上力(kgf ) Eu 5.28 Gd 5.35 Dy 5.47 Ho 5.36 Er 5.80 Yb 5.14 表3 造核粒子を置いたときの磁気浮上力(kgf ) 造核粒子種類 磁気浮上力(kgf ) なし 5.65 Nd 7.30 Sm 7.05 Eu 6.92 表4 温度勾配下で結晶成長させたときの磁気浮上力(kgf ) 温度勾配 磁気浮上力(kgf ) なし 5.18 2℃/cm 8.16 6℃/cm 8.00 10℃/cm 7.85Table 1 Magnetic levitation force by additive type additive Magnetic levitation force (kgf) None 2.60 0.5 wt% CeO 2 3.68 10 wt% silver 2.71 Table 2 Magnetic levitation force of substituted substances ( kgf) Substances to replace with Y Magnetic levitation force (kgf) Eu 5.28 Gd 5.35 Dy 5.47 Ho 5.36 Er 5.80 Yb 5.14 Table 3 Magnetic levitation force when nucleating particles are placed (Kgf) Nucleation particle type Magnetic levitation force (kgf) None 5.65 Nd 2 O 3 7.30 Sm 2 O 3 7.05 Eu 2 O 3 6.92 Table 4 Crystal growth under temperature gradient Magnetic levitation force (kgf) Temperature gradient Magnetic levitation force (kgf) None 5.18 2 ℃ / cm 8.16 6 ℃ / cm 8.00 10 ℃ / cm 7.85

【0068】[0068]

【発明の効果】本発明によれば、大きな結晶を持ち、マ
クロ的な割れがない、磁気浮上力の大きい酸化物超電導
体を短く簡単な工程で製造することができる。
According to the present invention, an oxide superconductor having a large crystal, no macroscopic cracks, and a large magnetic levitation force can be manufactured in a short and simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較例で酸化セリウムのみ0.5重量%添加し
て得られた超電導体のペレットのスケッチ。
FIG. 1 is a sketch of a pellet of a superconductor obtained by adding only 0.5% by weight of cerium oxide in a comparative example.

【図2】実施例1で得られた超電導体のペレットのスケ
ッチ。
FIG. 2 is a sketch of a superconductor pellet obtained in Example 1.

【図3】実施例1で得られた超電導体のペレットの組織
を示すスケッチ。
FIG. 3 is a sketch showing the structure of pellets of the superconductor obtained in Example 1.

【図4】実施例1で、0.5%の酸化セリウムと種々の
量の銀を添加して得られた超電導体の銀添加量と磁気浮
上力との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of silver added and the magnetic levitation force of the superconductor obtained in Example 1 by adding 0.5% cerium oxide and various amounts of silver.

【図5】実施例2で10%の銀と種々の量の酸化セリウ
ムを添加して得られた超電導体の酸化セリウムの添加量
と磁気浮上力との関係を示すグラフ。
5 is a graph showing the relationship between the magnetic levitation force and the amount of cerium oxide added to a superconductor obtained by adding 10% silver and various amounts of cerium oxide in Example 2. FIG.

【図6】実施例4で酸化セリウム0.5%とAuAg
1-x の組成を有する合金10%を添加して得られた超電
導体の上記Xの値と磁気浮上力との関係を示すグラフ。
FIG. 6 is a graph of Example 4, in which cerium oxide 0.5% and Au x Ag are used.
6 is a graph showing the relationship between the value of X and the magnetic levitation force of a superconductor obtained by adding 10% of an alloy having a composition of 1-x .

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000006655 新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号 (72)発明者 近 藤 章 弘 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 鍵 谷 昌 一 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 村 上 雅 人 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 腰 塚 直 己 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 田 中 昭 二 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000006655 Nippon Steel Corporation 2-3-6 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Akihiro Kondo 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Research Institute (72) Inventor Shoichi Kagaya 1-14-3 Shinonome, Koto Ward, Tokyo Metropolitan Superconductivity Industrial Research Center Superconductivity Research Institute (72) Inventor Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Research Institute (72) Inventor Naoki Koshizuka 1-14-3 Shinonome, Koto-ku, Tokyo Foundation Corporation International Superconductivity Research Institute of Technology Superconductivity Research Institute (72) Inventor Shoji Tanaka 1-14-3 Shinonome Foundation, Koto-ku, Tokyo When people Country Superconductivity Technology Center superconducting Engineering Institute in

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】REBaCu相(REはY、S
m、Eu、Gd、Dy、Ho、Er、Ybのグループよ
り選ばれた希土類元素)中に、セリウムとバリウムの酸
化物および銀と金との合金およびREBaCuO
を微細に分散させた組織からなるREBaCuO系酸化
物超電導体。
1. A REBa 2 Cu 3 O d phase (RE is Y, S
m, Eu, Gd, Dy, Ho, Er, and Yb), an oxide of cerium and barium, an alloy of silver and gold, and a RE 2 BaCuO 5 phase are finely dispersed in a rare earth element). REBaCuO-based oxide superconductor consisting of a tissue.
【請求項2】前記銀と金の合金の重量組成がAuAg
1-x としてXの範囲が0〜1.0である請求項1記載の
超電導体。
2. The weight composition of the alloy of silver and gold is Au x Ag.
The superconductor according to claim 1, wherein the range of X as 1-x is 0 to 1.0.
【請求項3】前記REBaCuO相が5〜60モル
%の範囲で微細に分散している請求項1記載の超電導
体。
3. The superconductor according to claim 1, wherein the RE 2 BaCuO 5 phase is finely dispersed in a range of 5 to 60 mol%.
【請求項4】前記セリウムとバリウムの酸化物が酸化セ
リウムとして0.1〜2.0重量%の範囲で微細に分散
している請求項1記載の超電導体。
4. The superconductor according to claim 1, wherein the oxide of cerium and barium is finely dispersed in the range of 0.1 to 2.0% by weight as cerium oxide.
【請求項5】前記銀と金の合金が1.0〜25.0重量
%の範囲で微細に分散している請求項1記載の超電導
体。
5. The superconductor according to claim 1, wherein the alloy of silver and gold is finely dispersed in the range of 1.0 to 25.0% by weight.
【請求項6】前記REBaCuO相、セリウムとバ
リウムの酸化物および銀と金の合金の粒径がそれぞれ5
0μm以下である請求項1記載の超電導体。
6. The grain size of the RE 2 BaCuO 5 phase, the oxide of cerium and barium, and the alloy of silver and gold are 5 respectively.
The superconductor according to claim 1, which has a thickness of 0 μm or less.
【請求項7】原料にセリウム酸化物および銀あるいは酸
化銀あるいは金あるいは銀と金の合金を添加した後、混
合したものを出発物質とし、これを成型し、得られた成
型体を部分溶融した後、徐冷して超電導相を生成・成長
させることを特徴とするREBaCuO系酸化物超電導
体の製造方法。
7. A cerium oxide and silver or silver oxide or gold or a mixture of gold and a silver and gold alloy is added to the raw materials and the mixture is used as a starting material, which is molded, and the resulting molded body is partially melted. After that, the REBaCuO-based oxide superconductor is produced by slowly cooling the superconducting phase.
【請求項8】前記成型体の部分溶融温度が950〜12
50℃の範囲である請求項7記載の方法。
8. The partial melting temperature of the molded body is 950-12.
The method according to claim 7, which is in the range of 50 ° C.
【請求項9】前記徐冷速度が0.2〜20℃/hである
請求項7記載の方法。
9. The method according to claim 7, wherein the slow cooling rate is 0.2 to 20 ° C./h.
【請求項10】前記出発物質として、セリウム酸化物お
よび銀あるいは酸化銀あるいは金あるいは銀と金の合金
を添加した後、混合し、さらに部分溶融した後、冷却す
ることにより凝固させ、それを粉砕したものを用いる請
求項7記載の方法。
10. A cerium oxide and silver or silver oxide or gold or an alloy of silver and gold is added as the starting material, mixed, further partially melted and then solidified by cooling, which is then ground. 8. The method according to claim 7, wherein the prepared one is used.
【請求項11】前記出発物質として、前記原料にセリウ
ム酸化物および銀あるいは酸化銀あるいは金あるいは銀
と金の合金を添加した後、仮焼し、さらに粉砕したもの
を用いる請求項7記載の方法。
11. The method according to claim 7, wherein as the starting material, a material obtained by adding cerium oxide and silver or silver oxide, gold or an alloy of silver and gold to the raw material, calcined and further pulverized is used. .
【請求項12】前記原料にセリウム酸化物および銀ある
いは酸化銀あるいは金あるいは銀と金の合金を添加した
後、混合し、さらに部分溶融するときの温度が950〜
1500℃の範囲である請求項7記載の方法。
12. A cerium oxide and silver or silver oxide, gold, or an alloy of silver and gold are added to the raw material, mixed, and further partially melted at a temperature of 950 to 950.
The method according to claim 7, which is in the range of 1500 ° C.
【請求項13】前記冷却を炉冷以上の速度で実施する請
求項10記載の方法。
13. The method according to claim 10, wherein the cooling is performed at a rate higher than that of the furnace cooling.
【請求項14】1℃/cm以上の温度勾配下で、前記徐冷
を実施する請求項7記載の方法。
14. The method according to claim 7, wherein the slow cooling is performed under a temperature gradient of 1 ° C./cm or more.
【請求項15】超電導結晶成長させる徐冷前までに前記
成型体の表面に造核粒子を置くか埋め込み、そこから超
電導相を優先的に生成・成長させる請求項7記載の方
法。
15. The method according to claim 7, wherein the nucleated particles are placed or embedded on the surface of the molded body before the slow cooling for growing the superconducting crystal, and the superconducting phase is preferentially generated and grown from there.
【請求項16】前記造核粒子は、Y、Nd
、Sm、La、Eu、Gd
、Dy、Ho、Er、YBa
CuO、SmBaCuO、EuBaCuO
GdBaCuO、DyBaCuO、HoBa
CuO、ErBaCuO、YBaCu
NdBaCu、SmBaCu、LaB
Cu、EuBaCu、GdBa
、DyBaCu、HoBaCu
、ErBaCuからなる群から選ばれる希土
類元素を含む酸化物である請求項15記載の方法。
16. The nucleated particles are Y 2 O 3 or Nd.
2 O 3 , Sm 2 O 3 , La 2 O 3 , Eu 2 O 3 , Gd 2
O 3, Dy 2 O 3, Ho 2 O 3, Er 2 O 3, Y 2 Ba
CuO 5 , Sm 2 BaCuO 5 , Eu 2 BaCuO 5 ,
Gd 2 BaCuO 5 , Dy 2 BaCuO 5 , Ho 2 Ba
CuO 5 , Er 2 BaCuO 5 , YBa 2 Cu 3 O d ,
NdBa 2 Cu 3 O d, SmBa 2 Cu 3 O d, LaB
a 2 Cu 3 O d , EuBa 2 Cu 3 O d , GdBa 2 C
u 3 O d, DyBa 2 Cu 3 O d, HoBa 2 Cu 3 O
d, ErBa method of claim 15, wherein an oxide containing a rare earth element selected from 2 Cu 3 the group consisting of O d.
【請求項17】前記原料はRECu酸化物およ
びBa酸化物およびCu酸化物である請求項7記載の方
法。
17. The method according to claim 7, wherein the raw materials are RE 2 Cu 2 O 5 oxide and Ba oxide and Cu oxide.
【請求項18】前記成型は等方加圧成型である請求項7
記載の方法。
18. The method according to claim 7, wherein the molding is isotropic pressure molding.
The method described.
【請求項19】前記徐冷により超電導相を成長させた
後、酸素富化雰囲気において650〜300℃の温度範
囲で2〜500時間保持するか、もしくは最高650
℃、最低300℃の温度範囲を2〜500時間かけて冷
却することにより、超電導相に酸素を付加する請求項7
記載の方法。
19. After the superconducting phase is grown by the slow cooling, the superconducting phase is maintained in an oxygen-enriched atmosphere at a temperature range of 650 to 300 ° C. for 2 to 500 hours or at most 650.
8. Oxygen is added to the superconducting phase by cooling in a temperature range of 300C and at least 300C for 2 to 500 hours.
The method described.
JP4161371A 1992-03-27 1992-06-19 Oxide superconductor with large magnetic levitation force Expired - Lifetime JP2854758B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4161371A JP2854758B2 (en) 1992-06-19 1992-06-19 Oxide superconductor with large magnetic levitation force
DE69318875T DE69318875T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture
EP93105034A EP0562618B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method
EP97118391A EP0834931B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method
DE69330762T DE69330762T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161371A JP2854758B2 (en) 1992-06-19 1992-06-19 Oxide superconductor with large magnetic levitation force

Publications (2)

Publication Number Publication Date
JPH061609A true JPH061609A (en) 1994-01-11
JP2854758B2 JP2854758B2 (en) 1999-02-03

Family

ID=15733820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161371A Expired - Lifetime JP2854758B2 (en) 1992-03-27 1992-06-19 Oxide superconductor with large magnetic levitation force

Country Status (1)

Country Link
JP (1) JP2854758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255255B1 (en) 1998-11-30 2001-07-03 Nippon Steel Corporation Oxide superconducting material and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255255B1 (en) 1998-11-30 2001-07-03 Nippon Steel Corporation Oxide superconducting material and method of producing the same

Also Published As

Publication number Publication date
JP2854758B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US5474976A (en) Production of oxide superconductors having large magnetic levitation force
JP2839415B2 (en) Method for producing rare earth superconducting composition
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
US5430010A (en) Process for preparing oxide superconductor
JPH1121126A (en) Production of oxide superconducting bulk
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP3115696B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
EP0562618B1 (en) Oxide superconductor having large magnetic levitation force and its production method
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
JP3155334B2 (en) Oxide superconductor having high magnetic levitation force and method of manufacturing the same
JP4794145B2 (en) Method for producing RE-Ba-Cu-O oxide superconductor
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP2006062896A (en) Superconducting oxide material and its manufacturing method
JP2801811B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JPH0751463B2 (en) Method for manufacturing oxide superconductor
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
US5200387A (en) Superconducting materials of high density and crystalline structure produced from a mixture of YBa2 Cu3 O7-x and CuO
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
JPH08325013A (en) Neodymium based oxide superconducting formed body and its manufacture
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JPH05279029A (en) Rare-earth oxide superconductor and its production
JP2001342020A (en) Method of preparing rare earth oxide super-conductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981110

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14