JPH05279029A - Rare-earth oxide superconductor and its production - Google Patents

Rare-earth oxide superconductor and its production

Info

Publication number
JPH05279029A
JPH05279029A JP4076552A JP7655292A JPH05279029A JP H05279029 A JPH05279029 A JP H05279029A JP 4076552 A JP4076552 A JP 4076552A JP 7655292 A JP7655292 A JP 7655292A JP H05279029 A JPH05279029 A JP H05279029A
Authority
JP
Japan
Prior art keywords
silver
oxide superconductor
earth oxide
rare earth
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4076552A
Other languages
Japanese (ja)
Inventor
Hideki Shimizu
清水  秀樹
Makoto Tani
信 谷
Kazuyuki Matsuda
和幸 松田
Toru Hayase
徹 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4076552A priority Critical patent/JPH05279029A/en
Priority to CA002092594A priority patent/CA2092594A1/en
Priority to DE69307374T priority patent/DE69307374D1/en
Priority to EP93302556A priority patent/EP0564279B1/en
Publication of JPH05279029A publication Critical patent/JPH05279029A/en
Priority to US08/375,277 priority patent/US5547921A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve superconductivity by mixing a rare-earth oxide superconductor and Ag or an Ag compd. in a specified weight ratio, heating, melting and then cooling the mixture to a solidifying point at a specified rate. CONSTITUTION:A Pt powder is added by 0.01-5wt.% to the raw powders of BaCO3 CuO, etc., and mixed and the mixture is calcined in a gaseous oxygen current and then crushed to obtain the calcined powder of BaCu2O, etc. Meanwhile, the powders of Y2O3, BaCO3, and CuO are mixed in a specified ratio, and further the Ag or Ag compd. grains having <=5mum diameter are admixed with the calcined powder by 5-12% of the Ag plus superconductor. This two kinds of mixed powders are mixed and compacted, and the compact is heated and melted at 1000-1200 deg.C in the atmosphere, then cooled to the solidifying point at a rate of >=100 deg.C/hr and then slowly cooled at a rate of 0.1-1 deg.C/hr to grow the crystal. The compact is then heat-treated at 700-400 deg.C in an oxygen atmosphere to provide a rare-earth oxide superconductor in which the vol.% of the Ag grains is larger at the end of the crystal grain than at the center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類系酸化物超電導
体及びその製造方法に関し、更に詳しくは、結晶粒に銀
粒子又は銀化合物粒子を分散させた、高磁場下でも高い
臨界電流密度を示す、希土類系酸化物超電導体の及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth oxide superconductor and a method for producing the same, and more specifically, it has a high critical current density obtained by dispersing silver particles or silver compound particles in crystal grains even under a high magnetic field. The present invention relates to a rare earth oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物超電導体は、臨界磁場に達すると
磁束が侵入して常電導状態に相転移する第一種超電導体
と異なり、第一臨界磁場で磁束の侵入が始まっても第二
臨界磁場に達するまでは常電導体に相転移をしない第二
種超電導体に属している。しかも超電導特性を有するNb
-Ti等の合金、Nb3Sn等の金属間化合物等と比べて臨界温
度が遥かに高いことから、臨界磁場及び臨界電流値を向
上させることで実用化を図ることができるのではという
目的で活発に研究が行われている。実用時にはこれらの
酸化物超電導体は何らかの電磁場の中で使われる用途が
多いので、高磁場又は高電流が流れる環境でも超電導特
性が発揮する材料が望まれるわけである。
2. Description of the Related Art Oxide superconductors, unlike first-class superconductors in which magnetic flux penetrates when a critical magnetic field is reached and undergoes a phase transition to the normal conducting state, have a second critical value even if the penetration of magnetic flux begins in the first critical magnetic field. It belongs to a type II superconductor that does not undergo a phase transition to a normal conductor until it reaches a critical magnetic field. Moreover, Nb has superconducting properties
-Since the critical temperature is much higher than alloys such as Ti and intermetallic compounds such as Nb 3 Sn, it is possible to improve the critical magnetic field and the critical current value for practical use. Active research is being conducted. In practical use, these oxide superconductors are often used in some kind of electromagnetic field. Therefore, a material that exhibits superconducting properties even in an environment in which a high magnetic field or high current flows is desired.

【0003】そこで磁場の中でも高い超電導電流値を得
るには、超電導体中に第一臨界磁場で磁束の侵入が始ま
ってもローレンツ力による磁束線の移動を妨げることが
できるいわゆるピン中心が大量に存在する必要がある。
格子欠陥もピン中心として作用するが、最近は意図的に
ピン中心として作用する微細粒子を酸化物超電導体中に
分散させる研究も盛んである。例えば、小川、吉田、平
林 ISTEC ジャーナル Vol.4 No.3
1991:p 30には、希土類系酸化物超電導体にお
いて、YBa2Cu3O7-xの仮焼体粉末と白金粉末とを110
0℃まで加熱してY2BaCuO5の固相と液相とが共存する半
溶融状態にした後に徐冷するという白金添加溶融法が発
表されている。すると、結晶粒に未反応のY2BaCuO5の微
粒子が分散し、そしてこの微粒子がピン中心として作用
することで酸化物超電導体が磁場中でも高い臨界電流密
度を示すことが報告されている。
Therefore, in order to obtain a high superconducting current value even in a magnetic field, a large amount of so-called pin centers that can prevent the movement of magnetic flux lines due to Lorentz force even if the magnetic flux begins to enter the superconductor in the first critical magnetic field. Must exist
Lattice defects also act as pin centers, but recently, studies have been actively conducted to intentionally disperse fine particles that act as pin centers in oxide superconductors. For example, Ogawa, Yoshida, and Hirabayashi ISEC Journal Vol. 4 No. Three
1991: p30, in a rare earth oxide superconductor, a calcination powder of YBa 2 Cu 3 O 7-x and a platinum powder were added.
A platinum-added melting method has been announced in which the material is heated to 0 ° C. and brought into a semi-molten state in which a solid phase and a liquid phase of Y 2 BaCuO 5 coexist and then gradually cooled. Then, it has been reported that unreacted Y 2 BaCuO 5 fine particles are dispersed in the crystal grains, and these fine particles act as pin centers, so that the oxide superconductor exhibits a high critical current density even in a magnetic field.

【0004】同様に、出願人は、微量の白金若しくはR
hの単体若しくは化合物を添加してRE2BaCuO5(RE
は、Y,Gd、Dy、Ho、Er及びYbを表す)の微
粒子をREBa2Cu3O7-xからなる結晶粒中に細かく分散する
ことでこれらの微粒子がピン中心として作用する希土類
系酸化物超電導体及びその製造方法を提案した(特願平
2ー412529)。なお、ピン中心として作用するも
のの体積率が一定ならピン中心はできるだけ微細かつ均
一に分散しているのが望ましい。
Similarly, the applicant has found that trace amounts of platinum or R
RE 2 BaCuO 5 (RE
Fine particles of Y, Gd, Dy, Ho, Er, and Yb) are finely dispersed in the crystal grains of REBa 2 Cu 3 O 7-x , and these fine particles act as pin centers for rare-earth oxidation. Proposed a superconductor and a manufacturing method thereof (Japanese Patent Application No. 2-412529). If the volume ratio of the pin centers is constant, it is desirable that the pin centers be dispersed as finely and uniformly as possible.

【0005】マイスナー効果により発生する磁場を大き
くするアプローチとしては、酸化物超電導体中での超電
導電流のループ半径を大きくするというものがある。マ
イスナー効果により発生する磁場は、超電導体の表面を
流れる環状の超電導電流によるものであるから、超電導
電流のループ半径が大きくなる程、マイスナー効果で発
生する磁場が大きくなることが知られているからであ
る。ところが、現実には酸化物超電導体中で超電導電流
が粒界やクラックに遮られることが多く、超電導電流は
結晶粒の回りで環状に流れることが多い。従って、超電
導電流のループ半径を増加するには、結晶粒の大きさを
増大すること及びクラックを減少することが重要にな
る。
One approach to increasing the magnetic field generated by the Meissner effect is to increase the loop radius of the superconducting current in the oxide superconductor. Since the magnetic field generated by the Meissner effect is due to the annular superconducting current flowing on the surface of the superconductor, it is known that the larger the loop radius of the superconducting current, the larger the magnetic field generated by the Meissner effect. Is. However, in reality, in the oxide superconductor, the superconducting current is often blocked by grain boundaries and cracks, and the superconducting current often flows in an annular shape around the crystal grains. Therefore, in order to increase the loop radius of the superconducting current, it is important to increase the grain size and reduce the cracks.

【0006】ところが、希土類系酸化物超電導体の溶融
法等の製造方法では必然的に超電導体の結晶粒や粒界に
クラックを生じ易い。溶融法では1000℃〜1200
℃で半溶融状態の酸化物超電導体を徐々に冷却するが、
700℃前後で高温の正方晶から低温の斜方晶への相転
移がおきる。そしてこの相転移でc軸方向での収縮が伴
うので、結晶粒や粒界にクラックが生じ易い。特に結晶
の劈開面に沿ってクラックが生じて結晶を分割すると、
超電導電流のループ半径は顕著に小さくなり、マイスナ
ー効果による発生磁場が低減する。また製造時又は使用
時の温度変化に伴う熱膨張や耐熱衝撃性等によりクラッ
クが生じることもある。
However, in the manufacturing method such as the melting method of the rare earth oxide superconductor, cracks are inevitably generated in the crystal grains and grain boundaries of the superconductor. 1000-1200 in the melting method
Gradually cool the semi-molten oxide superconductor at ℃,
A phase transition from a high temperature tetragonal crystal to a low temperature orthorhombic crystal occurs around 700 ° C. Since this phase transition causes shrinkage in the c-axis direction, cracks are likely to occur in crystal grains and grain boundaries. In particular, when cracks occur along the cleavage plane of the crystal and the crystal is divided,
The loop radius of the superconducting current is significantly reduced, and the magnetic field generated by the Meissner effect is reduced. In addition, cracks may occur due to thermal expansion, thermal shock resistance, etc. associated with temperature changes during manufacture or use.

【0007】[0007]

【発明が解決しようとする課題】このような結晶粒又は
粒界でのクラックの発生を減少させる目的で、希土類系
酸化物超電導体からなる結晶粒内部に粒径20〜50μ
mの銀粒子又は銀化合物粒子を10重量%以上包含する
のが知られていた。すると結晶粒内部の銀粒子又は銀化
合物粒子がその近傍でクラックの成長を阻害する結果、
短く細かなクラックが結晶粒内部に分散するとの効果が
あることが知られている。ところが、従来法では、銀化
合物の添加量を50重量%以上にしなければクラックの
発生を充分に防止することができず、そしてこのような
大量な銀化合物の添加は酸化物超電導体の体積分率を減
少させるので、当然のことながら臨界電流密度が低下す
るという問題があった。
For the purpose of reducing the generation of cracks at such crystal grains or grain boundaries, the grain size of the rare earth oxide superconductor is 20 to 50 .mu.m.
It has been known to include 10% by weight or more of silver particles or silver compound particles of m. Then, the silver particles or silver compound particles inside the crystal grains inhibit the growth of cracks in the vicinity thereof,
It is known that short and fine cracks are dispersed inside crystal grains. However, in the conventional method, the generation of cracks cannot be sufficiently prevented unless the addition amount of the silver compound is 50% by weight or more, and the addition of such a large amount of silver compound causes the volume of the oxide superconductor to increase. Since the rate is decreased, the critical current density naturally lowers.

【0008】そこで発明者は、このような大量な銀の添
加による臨界電流密度の低下がなく、又クラックの発生
による超電導電流のループ半径の低下もない希土類系酸
化物超電導体について鋭意研究した結果、本発明を完成
した。
Therefore, the inventor has conducted earnest research on a rare earth oxide superconductor in which the critical current density is not lowered by the addition of such a large amount of silver and the loop radius of the superconducting current is not lowered by the generation of cracks. The present invention has been completed.

【0009】[0009]

【課題を解決するための手段】即ち、本発明によれば、
結晶粒に粒径5μm以下の銀粒子又は銀化合物粒子を含
有することを特徴とする希土類系酸化物超電導体が提供
される。また、本発明によれば、結晶粒に銀粒子又は銀
化合物粒子を含有し、かつ、結晶粒の中心部より結晶粒
の端部の方が、銀粒子又は銀化合物粒子の粒径が小さい
こと、又は、それらの粒子の体積分率が大きいことを特
徴とする希土類系酸化物超電導体が提供される。
That is, according to the present invention,
There is provided a rare earth oxide superconductor characterized by containing silver particles or silver compound particles having a grain size of 5 μm or less in the crystal grains. Further, according to the present invention, the crystal particles contain silver particles or silver compound particles, and the particle diameter of the silver particles or the silver compound particles is smaller at the end portions of the crystal particles than at the central portion of the crystal particles. Or a rare earth oxide superconductor characterized by having a large volume fraction of those particles.

【0010】また、本発明によれば、希土類系酸化物超
電導体の原料粉末又は仮焼粉末より成形体を作製した
後、成形体を加熱して溶融し、次いで冷却して結晶化す
る希土類系酸化物超電導体の製造方法において、成形体
に銀又は銀化合物に含有する銀元素が希土類系酸化物超
電導体と銀又は銀化合物との和の5〜12重量%となる
ように銀又は銀化合物を含有し、かつ、加熱溶融後で成
形体の溶融温度から凝固点までの冷却速度が1時間あた
り100℃以上であることを特徴とする希土類系酸化物
超電導体の製造方法が提供される。
Further, according to the present invention, after forming a compact from a raw material powder or a calcined powder of a rare earth oxide superconductor, the compact is heated to melt and then cooled to be crystallized. In the method for producing an oxide superconductor, silver or a silver compound is contained such that the silver element contained in the molded body in the silver or silver compound is 5 to 12 wt% of the sum of the rare earth oxide superconductor and the silver or silver compound. And a cooling rate from the melting temperature of the formed body to the freezing point after heating and melting is 100 ° C. or more per hour, and a method for producing a rare earth oxide superconductor is provided.

【0011】[0011]

【作用】本発明によれば、銀、酸化銀又は他の銀化合物
を、これら銀化合物に含有する銀元素が希土類系酸化物
超電導体と銀化合物との和の5〜12重量%となるよう
にこれら銀化合物の粉末を希土類系酸化物超電導体の原
料粉末又は仮焼粉末に添加して成形体を作製し、この成
形体を加熱して溶融した後、成形体の溶融温度又は半溶
融状態の温度から凝固点まで1時間あたり100℃以上
で冷却し、次いで徐冷により希土類系酸化物超電導体を
結晶化することにより、結晶粒内部に粒径が5μm以下
のこれら銀化合物の粒子が分散した希土類系酸化物超電
導体を得ることができる。本明細書で銀化合物とは、銀
単体も含有し、組成式に銀を含む化合物の総称である。
このようにして得られた希土類系酸化物超電導体の微少
構造では、銀化合物粒子の粒径が3〜5μmのものが粒
界に沿った結晶粒端部に分散し、結晶粒中心部では銀化
合物粒子の粒径は10〜20μmであった。
According to the present invention, silver, silver oxide or another silver compound is contained in the silver compound so that the silver element is 5 to 12% by weight of the sum of the rare earth oxide superconductor and the silver compound. Then, the powder of these silver compounds is added to the raw material powder or the calcined powder of the rare earth oxide superconductor to prepare a molded body, and the molded body is heated and melted, and then the melting temperature or the semi-molten state of the molded body is obtained. From the temperature to the freezing point at 100 ° C. or more per hour, and then by slowly cooling to crystallize the rare earth oxide superconductor, particles of these silver compounds having a particle diameter of 5 μm or less were dispersed inside the crystal particles. A rare earth oxide superconductor can be obtained. In the present specification, the term “silver compound” is a general term for compounds containing silver alone and containing silver in the composition formula.
In the microstructure of the rare earth oxide superconductor thus obtained, silver compound particles having a particle size of 3 to 5 μm are dispersed at the crystal grain end portions along the grain boundaries, and silver is present at the crystal grain central portion. The particle size of the compound particles was 10 to 20 μm.

【0012】従来の溶融法でも結晶粒中の銀化合物粒子
自体は知られてはいたが、その粒径は少なくとも10μ
m以上であり通常は20〜50μmであったので、この
ような微細粒子の分散は知られていなかった。また、結
晶粒端部と結晶粒中心部とで、このように銀化合物粒子
の粒径が制御されることも未知であった。
Although the silver compound particles themselves in the crystal grains were known even by the conventional melting method, the particle size is at least 10 μm.
Since it was m or more and usually 20 to 50 μm, such dispersion of fine particles was not known. It was also unknown that the grain size of the silver compound particles was controlled in this way at the crystal grain edge portion and the crystal grain central portion.

【0013】結晶粒中でのこのような微細銀化合物粒子
の分散は、クラック等の成長防止に効果的であることが
本発明で確認され、特に結晶粒端部に微細粒子が分布す
ることが特に好ましいことが判明した。これらの粒子は
クラックが長く成長する前に多数の短く細かいクラック
とする作用があり、微細粒子の方がこの作用が効果的で
ある。また、粒子が分散している部分の局所的な機械強
度は高くなるようである。これらの協調効果のため、超
電導電流がクラックによって分断されずに流れることが
でき、磁場下でも優れた超電導特性を得ることができ
る。特に粒界に沿った結晶粒端部で微細な銀化合物粒子
が分散するのは、結晶粒内部に発生したクラックが粒界
にまで成長するのを防止するので、超電導電流が結晶粒
端部で分断されずに粒界を乗り越えて隣合う結晶粒に流
れ易くするので好ましい。
It has been confirmed in the present invention that the dispersion of such fine silver compound particles in the crystal grains is effective in preventing the growth of cracks and the like, and in particular, the fine particles are distributed at the edges of the crystal grains. It turned out to be particularly preferable. These particles have an effect of forming a large number of short and fine cracks before the cracks grow long, and this effect is more effective for fine particles. Also, the local mechanical strength of the part where the particles are dispersed seems to be high. Due to these cooperative effects, the superconducting current can flow without being divided by cracks, and excellent superconducting characteristics can be obtained even under a magnetic field. In particular, the fine silver compound particles are dispersed at the crystal grain ends along the grain boundaries because cracks generated inside the crystal grains are prevented from growing to the grain boundaries. It is preferable because it can pass through the grain boundaries without being divided and easily flow to the adjacent crystal grains.

【0014】以下、本発明について更に詳しく説明す
る。本発明に係る希土類系酸化物超電導体は、REは希土
類元素でY、Gd、Dy、Ho、Er及びYbからなる
群のなかの少なくとも一元素からREBa2Cu3O7-xを主成分
とする。ここで、xはこれらの化合物が非化学量論的な
ので0以上1以下という不定比を示し、この値が超電導
特性の発現に直接影響を与える。また、これら化合物の
結晶構造は共通の特徴があり、多層ペロブスカイト構造
を有する。本発明に係る希土類系酸化物超電導体の主成
分の具体例としては、YBa2Cu3O7-xが挙げられる。REと
表す希土類元素は、必ずしも一元素のみに限られるわけ
ではなく、Y、Gd、Dy、Ho、Er及びYbからな
る群より任意の二以上の元素を混在させてもよく、希土
類系酸化物超電導体の好ましい融点を選択する自由度が
増加する。このような例としては、REがYyYb1-y(yは
0以上1以下の実数)と表せる場合等がある。
The present invention will be described in more detail below. In the rare earth oxide superconductor according to the present invention, RE is a rare earth element, and REBa 2 Cu 3 O 7-x is a main component from at least one element in the group consisting of Y, Gd, Dy, Ho, Er and Yb. To do. Here, x represents a non-stoichiometric ratio of 0 or more and 1 or less because these compounds are non-stoichiometric, and this value directly affects the expression of superconducting properties. Further, the crystal structures of these compounds have common characteristics, and have a multi-layer perovskite structure. A specific example of the main component of the rare earth oxide superconductor according to the present invention is YBa 2 Cu 3 O 7-x . The rare earth element represented by RE is not necessarily limited to only one element, and any two or more elements selected from the group consisting of Y, Gd, Dy, Ho, Er, and Yb may be mixed, and a rare earth oxide. The freedom to choose a preferred melting point for the superconductor is increased. As such an example, there is a case where RE can be expressed as Y y Yb 1-y (y is a real number of 0 or more and 1 or less).

【0015】上記のREBa2Cu3O7-xという組成式で表せる
希土類系酸化物超電導体の原料粉末は、RE即ちY、G
d、Dy、Ho、Er若しくはYbの酸化物、Baの炭
酸塩、酸化物若しくは過酸化物、若しくは銅、酸化銅
(II)、酸化銅(I)、その他の銅化合物、又はこれ
ら何れかの化合物を混合した混合粉末、仮焼粉末、若し
くはフリット粉末等を、焼成後REBa2Cu3O7-xとRE2BaCuO
5を構成するように配合されたものであればよく、特に
限定されるものでない。また、原料粉末の粒径も特に制
限されるものでないが、一般的には、1〜10μmの粒
径のものが用いられる。
The raw material powder of the rare earth oxide superconductor represented by the composition formula REBa 2 Cu 3 O 7-x is RE, that is, Y, G
d, Dy, Ho, Er or Yb oxide, Ba carbonate, oxide or peroxide, or copper, copper (II) oxide, copper (I) oxide, other copper compound, or any of these REBa 2 Cu 3 O 7-x and RE 2 BaCuO after firing mixed powder, calcinated powder, or frit powder mixed with compounds
There is no particular limitation as long as it is compounded so as to form 5 . The particle size of the raw material powder is also not particularly limited, but a particle size of 1 to 10 μm is generally used.

【0016】本発明に係る希土類系酸化物超電導体に含
有する銀又は銀化合物は、上記原料粉末に添加混合され
てもよいし、又は希土類系酸化物超電導体の仮焼体に添
加してもよい。ここで、酸化銀の粉末を用いることは好
ましい。また、希土類系酸化物超電導体の原料粉末に添
加する銀化合物は、原料粉末に合わせて粉末とするのが
よく、通常は、粒径が約20μm以下の粉末のものが好
ましい。粒径が約20μmを超える場合は、凝集物とし
て残留し、均質性を低下させるので超電導特性のバラツ
キ原因となるため好ましくない。
The silver or silver compound contained in the rare earth oxide superconductor according to the present invention may be added to and mixed with the above raw material powder, or may be added to the calcined body of the rare earth oxide superconductor. Good. Here, it is preferable to use silver oxide powder. Further, the silver compound added to the raw material powder of the rare earth oxide superconductor is preferably a powder in accordance with the raw material powder, and usually, a powder having a particle size of about 20 μm or less is preferable. If the particle size exceeds about 20 μm, it remains as aggregates and deteriorates the homogeneity, which causes variations in superconducting properties, which is not preferable.

【0017】本発明においては、白金族のRh若しくは
Pt元素又はこれらの酸化物をREBa2Cu3O7-xという組成
式で表せる希土類系酸化物超電導体中に元素を基準とし
て0.01〜5重量%含有させると、RE2BaCuO5からな
る粒子が結晶粒中に細かく均一に分散する効果があり、
するとこれらの微粒子はピン中心として作用するので好
ましい。
In the present invention, the Rh or Pt element of the platinum group or the oxide thereof is represented by REBa 2 Cu 3 O 7-x in the composition formula of REBa 2 Cu 3 O 7-x. When it is contained in an amount of 5% by weight, the particles of RE 2 BaCuO 5 have the effect of being finely and uniformly dispersed in the crystal grains.
Then, these fine particles act as pin centers, which is preferable.

【0018】この場合、REBa2Cu3O7-xという組成式で表
せる希土類系酸化物超電導体中の上記元素成分の含有量
が、元素基準で0.01重量%未満の場合は粒子分散効
果が無く、また、5重量%を超える場合は異相の析出量
が多くなり好ましくない。また、希土類系酸化物超電導
体の原料粉末に添加するRh若しくはPt元素又はこれ
らの酸化物は、原料粉末に合わせて粉末状とするのが好
ましく、通常は、粒径が約5μm以下の微粉末のものが
好ましい。粒径が約5μmを超える場合は、凝集物とし
て残留するため、均質性を低下させるためである。均質
性の低下は、超電導特性のバラツキ原因となるため好ま
しくない。
In this case, if the content of the above-mentioned elemental components in the rare earth oxide superconductor represented by the composition formula REBa 2 Cu 3 O 7-x is less than 0.01% by weight based on the element, the particle dispersion effect is obtained. In addition, if it exceeds 5% by weight, the amount of precipitation of different phases increases, which is not preferable. Further, the Rh or Pt element or these oxides added to the raw material powder of the rare earth oxide superconductor is preferably made into a powder according to the raw material powder, and usually, a fine powder having a particle size of about 5 μm or less. Are preferred. This is because if the particle size exceeds about 5 μm, the particles remain as agglomerates, which deteriorates the homogeneity. A decrease in homogeneity is not preferable because it causes variations in superconducting properties.

【0019】本発明に係る希土類系酸化物超電導体は、
上記原料粉末に銀又は銀化合物を添加し、銀成分が原料
粉末中に均一に分散されるように充分に混合した混合粉
末を用いて所定の形状に成形した後、対応するREBa2Cu3
O7-x酸化物超電導体が半溶融状態になる温度又は溶融す
る温度に加熱する。次いで、成形体の凝固点まで1時間
あたり100℃以上の冷却速度で凝固点まで冷却した
後、凝固点から徐冷して結晶化する。次いで、酸素雰囲
気中で熱処理することにより超電導酸化物中の酸素組成
比を調節して超電導特性を発現し、本発明に係る希土類
系酸化物超電導体を得ることができる。
The rare earth oxide superconductor according to the present invention is
After adding silver or a silver compound to the raw material powder and molding the mixture into a predetermined shape using a mixed powder that is sufficiently mixed so that the silver component is uniformly dispersed in the raw material powder, the corresponding REBa 2 Cu 3
The O 7-x oxide superconductor is heated to a temperature at which it becomes a semi-molten state or a temperature at which it melts. Next, after cooling to the freezing point of the molded body at a cooling rate of 100 ° C. or higher per hour, the solidified point is gradually cooled from the freezing point to crystallize. Then, by performing heat treatment in an oxygen atmosphere, the oxygen composition ratio in the superconducting oxide is adjusted to exhibit superconducting properties, and the rare earth oxide superconductor according to the present invention can be obtained.

【0020】成形方法は、ドクターブレード法、プレス
成形法、鋳込成形法等公知の成形方法を用い希土類系酸
化物超電導体のバルク体として得ることができる。ま
た、金属、セラミックス等の基板上に上記混合粉末によ
りスプレー塗布、パウダー塗布等で成形体層を形成した
成形体として得ることもできる。
As a molding method, a well-known molding method such as a doctor blade method, a press molding method, or a casting molding method can be used to obtain a bulk body of a rare earth oxide superconductor. Further, it can also be obtained as a molded body in which a molded body layer is formed by spray coating, powder coating or the like on the substrate of metal, ceramics or the like with the above-mentioned mixed powder.

【0021】このようにして得られる銀若しくは銀化合
物を含有する成形体の形状は任意であり、必要に応じて
円柱、多角柱、平行六面体、直方体、円錐、多角錐、回
転楕円体、球等の形状を含有するだけではなく、これら
の形状を任意の方向に塑性変形して得られる形状、又は
これらの形状を任意の方向に平面もしくは曲面で切断し
て得られる形状も含有し、更に、前記の何れかの形状に
1以上の穴を開けた形状、例えば、円筒、ドーナツ形状
も含有する。
The shape of the molded product containing silver or a silver compound thus obtained is arbitrary, and if necessary, a cylinder, a polygonal prism, a parallelepiped, a rectangular parallelepiped, a cone, a polygonal pyramid, a spheroid, a sphere, etc. Not only contains the shape of, but also the shape obtained by plastically deforming these shapes in any direction, or the shape obtained by cutting these shapes with a flat surface or a curved surface in any direction, further, A shape in which one or more holes are drilled in any of the above shapes, for example, a cylinder or a donut shape is also included.

【0022】溶融状態にする温度は、RE成分がY、G
d、Dy、Ho、Er、Ybのいずれかにより異なり、
Yであれば約1000〜1200℃、Gdは約1050
〜1250℃、Dyは約1000〜1200℃、Hoは
約1000〜1150℃、Erは約950〜1100
℃、Ybは約900〜1100℃の範囲の温度であり、
各々の希土類元素により上記の温度範囲内で、加熱条件
や成形体の大きさ等に考慮を払い、適宜選択すればよ
い。また、この半溶融状態とする加熱処理はこうして定
められた温度に所定時間保持することにより行う。保持
時間は特に制限されるものでなく、上記の温度範囲と同
様に加熱条件等により適宜選択することができ、通常
は、10分〜2時間である。
The temperature at which the RE component is Y, G
d, Dy, Ho, Er, or Yb,
Y is about 1000 to 1200 ° C, Gd is about 1050
˜1250 ° C., Dy about 1000 to 1200 ° C., Ho about 1000 to 1150 ° C., Er about 950 to 1100.
C, Yb is a temperature in the range of about 900-1100 ℃,
Depending on each rare earth element, the heating conditions, the size of the molded body, and the like may be taken into consideration within the above temperature range, and the selection may be made appropriately. In addition, the heat treatment to bring this into a semi-molten state is performed by holding the temperature thus determined for a predetermined time. The holding time is not particularly limited and can be appropriately selected depending on the heating conditions and the like as in the above temperature range, and is usually 10 minutes to 2 hours.

【0023】次いで、成形体の凝固点以下まで冷却する
が、このときの冷却条件が重要となる。即ち、1時間あ
たり100℃以上の冷却速度で凝固点以下まで急冷する
のである。冷却速度が1時間あたり100℃未満である
と、銀化合物粒子が粗大化し、5μm以下の微細粒子が
得られない。また、急冷する温度の終点は、置換する希
土類元素の種類及び/又は銀化合物の添加量によりREBa
2Cu3O7-xの凝固点が低下する度合いが異なるので、凝固
点にあわせて急冷する温度の終点を調節する。なお、急
冷する温度の終点が高すぎると銀化合物粒子が粗大化
し、低すぎると結晶粒の大きさが小さくなってしまい好
ましくない。
Next, the molded product is cooled to below the freezing point, but the cooling conditions at this time are important. That is, it is rapidly cooled to below the freezing point at a cooling rate of 100 ° C. or higher per hour. If the cooling rate is less than 100 ° C. per hour, the silver compound particles become coarse and fine particles of 5 μm or less cannot be obtained. Also, the end point of the quenching temperature depends on the type of rare earth element to be replaced and / or the addition amount of silver compound.
2 The degree to which the freezing point of Cu 3 O 7-x decreases is different, so adjust the end point of the quenching temperature according to the freezing point. If the end point of the quenching temperature is too high, the silver compound particles become coarse, and if it is too low, the crystal grain size becomes small, which is not preferable.

【0024】そして、温度が凝固点となってから、1時
間あたり0.1〜1℃で30〜100℃程温度が低下す
るまで徐冷するのが好ましい。例えば、YBa2Cu3O7-x
化物超電導体では、970℃から940℃まで1時間あ
たり0.5℃で徐冷するのが好ましい。次いで、酸素雰
囲気中、通常650〜400℃で約10〜50時間保持
して熱処理することによりREBa2Cu3O7-x酸化物超電導体
を得ることができる。
After the temperature reaches the freezing point, it is preferable to gradually cool at 0.1 to 1 ° C. per hour until the temperature drops by about 30 to 100 ° C. For example, in a YBa 2 Cu 3 O 7-x oxide superconductor, it is preferable to gradually cool from 970 ° C. to 940 ° C. at 0.5 ° C. per hour. Next, the REBa 2 Cu 3 O 7-x oxide superconductor can be obtained by holding in an oxygen atmosphere, usually at 650 to 400 ° C. for about 10 to 50 hours and performing heat treatment.

【0025】本発明に係る希土類系酸化物超電導体の製
造方法では、成形体の銀含有量を銀元素として5重量%
以上で12重量%以下とするのが好ましい。銀含有量が
この範囲内であると、結晶粒端部では銀化合物粒子が大
量に5μm以下と微細に分散する一方、結晶粒中心部で
は銀化合物粒子の体積分率は端部より少なく、また粒径
も20μmと大きくなる。従って、結晶粒端部では、ク
ラックが伸展しにくく、一方、中心部での方がクラック
が発生し易い。その結果、熱応力等が加わると、まず結
晶粒中心部にクラックが生じることで応力が緩和される
が、結晶粒端部にまでそのクラックは伸展しずらい。
In the method for producing a rare earth oxide superconductor according to the present invention, the silver content of the compact is 5% by weight as silver element.
It is preferably 12% by weight or less. When the silver content is within this range, the silver compound particles are finely dispersed in a large amount in a fine amount of 5 μm or less at the end portions of the crystal grains, while the volume fraction of the silver compound particles at the center portion of the crystal grains is smaller than that at the end portions. The particle size also increases to 20 μm. Therefore, cracks are less likely to spread at the crystal grain end portions, while cracks are more likely to occur at the central portion. As a result, when thermal stress or the like is applied, the stress is relaxed by first generating a crack in the center portion of the crystal grain, but the crack is hard to extend to the end portion of the crystal grain.

【0026】ところが、銀含有量が5重量%未満の場合
では、銀含有量が5重量%以上12重量%以下の場合と
同様に銀化合物粒子は結晶粒中に分散するが、結晶粒中
に銀化合物粒子の占める体積が小さく、応力を緩衝する
効果が小さいため、結晶端部へのクラックの伸展を防止
できない。逆に、銀含有量が12重量%より大きい場合
では、銀化合物は20μm以上にと大型化するため、緩
衝する効果が小さくなる。また、この場合では、結晶粒
端部と中心部とで銀化合物粒子の粒径や体積分率に差が
生じない。これらの結果、銀含有量が約50重量%以上
でなければ、クラックは結晶粒中心部から結晶粒端部ま
で伸展してしまう。
However, when the silver content is less than 5% by weight, the silver compound particles are dispersed in the crystal grains as in the case where the silver content is 5% by weight or more and 12% by weight or less. Since the volume occupied by the silver compound particles is small and the effect of buffering the stress is small, it is impossible to prevent the extension of cracks to the crystal edges. On the contrary, when the silver content is more than 12% by weight, the silver compound becomes large in size of 20 μm or more, and the buffering effect becomes small. Further, in this case, there is no difference in the particle size and volume fraction of the silver compound particles between the crystal grain end portion and the center portion. As a result, cracks extend from the center of the crystal grain to the end of the crystal grain unless the silver content is about 50% by weight or more.

【0027】本発明に係る希土類系酸化物超電導体の製
造方法によって、結晶粒内部に微細な銀化合物粒子が得
られる機構に付いては明きらかでないが、以下のような
理由によるものと推察される。成形体の銀化合物の含有
量が銀元素として12重量%以下の場合は、成形体が溶
融するときに同時に銀化合物が溶融液に溶解し、凝固点
まで冷却する過程で溶解度が低下するにつれ、銀化合物
の析出が始まるものと考えられる。ここで、凝固点まで
の冷却速度が1時間あたり100℃以上と速いときは、
銀化合物の析出が一斉に起こり、微細な銀化合物粒子が
生じると思われる。一方、冷却速度が1時間あたり10
0℃未満と遅いときは、銀化合物の析出が徐々に起こ
り、粗大な銀化合物粒子を生じると思われる。
The mechanism by which fine silver compound particles are obtained inside the crystal grains by the method for producing a rare earth oxide superconductor according to the present invention is not clear, but it is presumed that the reason is as follows. To be done. When the content of the silver compound in the molded body is 12% by weight or less as the silver element, the silver compound is dissolved in the melt at the same time when the molded body is melted, and the solubility is lowered in the process of cooling to the freezing point. It is considered that precipitation of the compound begins. Here, when the cooling rate to the freezing point is as high as 100 ° C. or more per hour,
Precipitation of silver compounds occurs all at once, and fine silver compound particles are thought to occur. On the other hand, the cooling rate is 10 per hour
When the temperature is lower than 0 ° C., it is considered that precipitation of silver compound gradually occurs and coarse silver compound particles are produced.

【0028】逆に、成形体の銀化合物の含有量が銀元素
として12重量%以上の大量の場合は、成形体が溶融し
たときに銀化合物は溶解しきれず、一部の銀化合物が液
適として存在してしまい、凝固点まで冷却する過程で、
冷却速度に拘らず、液適の銀化合物が析出していき、粗
大な銀粒子が生じているものと推察される。
On the contrary, when the content of the silver compound in the molded product is a large amount of 12% by weight or more as a silver element, the silver compound cannot be completely dissolved when the molded product is melted, and a part of the silver compound is suitable for liquid. Exist in the process of cooling to the freezing point,
Regardless of the cooling rate, it is presumed that a suitable silver compound was deposited and coarse silver particles were generated.

【0029】また、本発明に係る希土類系酸化物超電導
体の製造方法によって、結晶粒の中心部より端部の方
が、銀化合物粒子の体積分率が大きくなる機構に付いて
も明きらかでないが、以下のような理由によるものと推
察される。成形体の銀化合物の含有量が銀元素として1
2重量%以下では、銀化合物含有量が増加するに従い、
成形体の凝固点が降下することから、成形体の溶融液の
凝固は、銀化合物の含有量が小さい部分から開始し、溶
融液中に溶解していた銀化合物を始めに凝固した部分よ
り排除しながら結晶粒が成長するので、この結晶粒の中
心部では銀化合物の体積分率は小さくなる。そして、結
晶粒が成長する過程では、相対的に銀化合物の含有量が
増大するので溶融液の凝固点は降下し、これらの結果と
して、結晶粒の成長末期に凝固した結晶粒の端部に銀粒
子が密集するものと推察される。
It is also clear that the method for producing a rare earth oxide superconductor according to the present invention provides a mechanism in which the volume fraction of silver compound particles is larger at the ends than at the center of the crystal grains. However, it is presumed that it is due to the following reasons. The content of the silver compound in the molded body is 1 as the silver element.
Below 2% by weight, as the silver compound content increases,
Since the freezing point of the molded body is lowered, solidification of the molten liquid of the molded body starts from the portion where the content of silver compound is small, and the silver compound dissolved in the molten liquid is excluded from the portion that solidifies first. However, since the crystal grains grow, the volume fraction of the silver compound becomes small in the central portion of the crystal grains. Then, in the process of growing the crystal grains, the freezing point of the melt is lowered because the content of the silver compound is relatively increased, and as a result of these, silver is added to the ends of the crystal grains solidified at the final stage of the growth of the crystal grains. It is assumed that the particles are dense.

【0030】結晶粒に粒径5μm以下の銀粒子又は銀化
合物粒子を含有する本発明に係る希土類系酸化物超電導
体は、微細な銀粒子又は銀化合物粒子が結晶粒内部のク
ラックの成長を防止するので、超電導電流が結晶粒内部
の微少なクラックに遮られることなく、超電導電流はよ
り長いパスをとることができて臨界電流密度が向上する
ので、高い超電導特性を有する。
In the rare earth oxide superconductor according to the present invention in which the crystal grains contain silver particles or silver compound particles having a grain size of 5 μm or less, fine silver particles or silver compound particles prevent the growth of cracks inside the crystal grains. Therefore, the superconducting current can take a longer path without being interrupted by minute cracks inside the crystal grains, and the critical current density can be improved, so that the superconducting current has high superconducting properties.

【0031】また、結晶粒に銀粒子又は銀化合物粒子を
含有し、かつ、結晶粒の中心部より結晶粒の端部の方が
銀粒子又は銀化合物粒子の粒径が小さい、または、その
粒子の希土類系酸化物超電導体の結晶粒に対する体積分
率が大きい本発明に係る希土類系酸化物超電導体は、結
晶粒内部に発生したクラックが粒界にまで成長するのを
防止し、超電導電流が結晶粒端部で分断されずに粒界を
乗り越えて隣合う結晶粒に流れ易くするので、超電導電
流はより大きなループ半径をとることができてマイスナ
ー効果により発生する磁場が向上するので、高い超電導
特性を有する。
Further, the crystal grains contain silver particles or silver compound grains, and the grain size of the silver grains or the silver compound grains is smaller at the ends of the crystal grains than at the center of the crystal grains, or the grains thereof. The rare earth oxide superconductor having a large volume fraction with respect to the crystal grains of the rare earth oxide superconductor of the present invention prevents cracks generated inside the crystal grains from growing to grain boundaries, and the superconducting current is Since the superconducting current can have a larger loop radius and the magnetic field generated by the Meissner effect is improved because it can easily flow to the adjacent crystal grains by overcoming the grain boundaries without being divided at the crystal grain ends, the high superconductivity can be improved. Has characteristics.

【0032】また、本発明に係る希土類系酸化物超電導
体の製造方法は、希土類系酸化物超電導体の原料粉末又
は仮焼粉末に、銀化合物に含有する銀元素が希土類系酸
化物超電導体と銀化合物との和の5〜12重量%となる
ように銀化合物の粉末を添加し、また溶融後、凝固温度
まで1時間あたり100℃以上の冷却速度で急冷するこ
とを特徴とし、それ以外は、従来の溶融法と同様にして
1段の溶融操作で上記の優れた超電導特性を有する希土
類系酸化物超電導体を得ることができる。
Further, in the method for producing a rare earth oxide superconductor according to the present invention, the raw material powder or the calcined powder of the rare earth oxide superconductor has the silver element contained in the silver compound as a rare earth oxide superconductor. The powder of the silver compound is added so as to be 5 to 12% by weight of the sum of the silver compound, and after melting, the mixture is rapidly cooled to a solidification temperature at a cooling rate of 100 ° C. or more per hour, and otherwise. In the same manner as in the conventional melting method, the rare earth oxide superconductor having the above-mentioned excellent superconducting properties can be obtained by one-step melting operation.

【0033】[0033]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。
EXAMPLES The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples.

【0034】(実施例1−3)平均粒径が約3μmであ
るBaCO3粉末とこれと等モルのCuO粉末に0.5
4重量%の白金粉末を添加した。次いで、湿式ポットミ
ルでこれらの粉末を3時間混合した後、酸素気流中にあ
る高純度アルミナ板上にこの混合粉末を敷き広げて、1
000℃で10時間仮焼し、BaCuO2の仮焼体を得
た。次いで、この仮焼体をジルコニア玉石を用いた回転
ミルで15時間粉砕して、平均粒径は約5μmであるB
aCuO2の仮焼粉末を得た。
Example 1-3 0.5 to 0.5% of BaCO 3 powder having an average particle size of about 3 μm and CuO powder having an equimolar amount thereto.
4 wt% platinum powder was added. Next, after mixing these powders for 3 hours with a wet pot mill, spread the mixed powder on a high-purity alumina plate in an oxygen stream,
It was calcined at 000 ° C. for 10 hours to obtain a BaCuO 2 calcined body. Next, this calcined body was ground for 15 hours in a rotary mill using zirconia boulders, and the average particle size was about 5 μm.
A calcined powder of aCuO 2 was obtained.

【0035】次いで、Y23 、BaCuO2 、CuO
の各々の粉末を、これら化合物のモル比が0.9:2.
4:1.0(このモル比でCu全体の相対モル比が3.
4となる)となるように添加混合した。実施例1では、
ここに更に重量比で5.5%の酸化銀粉末(銀元素に換
算して5.0重量%)を添加した。実施例2では、ここ
に更に重量比で7.7%の酸化銀粉末(銀元素に換算し
て7.0重量%)を添加した。実施例3では、ここに更
に重量比で11%の酸化銀粉末(銀元素に換算して10
重量%)を添加した。
Next, Y 2 O 3 , BaCuO 2 , CuO
Of each of the powders, the molar ratio of these compounds is 0.9: 2.
4: 1.0 (at this molar ratio, the relative molar ratio of the whole Cu is 3.
4) was added and mixed. In Example 1,
Further, 5.5% by weight of silver oxide powder (5.0% by weight in terms of silver element) was added thereto. In Example 2, 7.7% by weight of silver oxide powder (7.0% by weight in terms of silver element) was further added thereto. In Example 3, here, 11% by weight of silver oxide powder (10% in terms of silver element) was added.
Wt%) was added.

【0036】次いで、この各々の混合物を乾式ポットミ
ルで64時間混合した。この各々の混合粉末120gを
内径50mm.の円筒状金型に投入し、荷重0.1トン/cm
2でプレス成形をした後、0.5トン/cm2で等方加圧成
形を行い、直径約46mm.高さ約20mm.の円柱状成形体
を得た。この円柱状成形体を高純度アルミナ板上に置
き、次いで、大気雰囲気中の電気炉内で、アルミナ板上
の円柱状成形体を1100℃で1時間保持して溶融し
た。
The respective mixtures were then mixed in a dry pot mill for 64 hours. 120 g of each of the mixed powders was put into a cylindrical mold having an inner diameter of 50 mm, and the load was 0.1 ton / cm.
After press-molding at 2 , it was subjected to isotropic pressure molding at 0.5 ton / cm 2 to obtain a cylindrical molded body having a diameter of about 46 mm and a height of about 20 mm. This cylindrical molded body was placed on a high-purity alumina plate, and then the cylindrical molded body on the alumina plate was held at 1100 ° C. for 1 hour in an electric furnace in the air atmosphere to melt.

【0037】そのまま大気雰囲気中で、実施例1では、
1100℃から980℃まで1時間あたり100℃で冷
却し、980℃から920℃まで1時間あたり1.0℃
で徐冷し、アルミナ板上でYBa2Cu3O7-xを結晶成長さ
せ、直径40mm.高さ15mm.の円柱状酸化物を得た。そ
のまま大気雰囲気中で、実施例2では、1100℃から
975℃まで1時間あたり200℃で冷却し、975℃
から920℃まで1時間あたり1.0℃で徐冷し、アル
ミナ板上でYBa2Cu3O7-xを結晶成長させ、直径40mm.高
さ15mm.の円柱状酸化物を得た。そのまま大気雰囲気
中で、実施例3では、1100℃から970℃まで1時
間あたり100℃で冷却し、970℃から920℃まで
1時間あたり1.0℃で徐冷し、アルミナ板上でYBa2Cu
3O7-xを結晶成長させ、直径40mm.高さ15mm.の円柱
状酸化物を得た。その後、更に、各々の円柱状酸化物
を、酸素雰囲気の炉内で700℃〜400℃で50時間
熱処理して円柱形状のYBa2Cu3O7-x酸化物超電導体を得
た。
In the atmosphere as it is, in Example 1,
Cool from 1100 ℃ to 980 ℃ at 100 ℃ per hour, and from 980 ℃ to 920 ℃ at 1.0 ℃ per hour
Then, YBa 2 Cu 3 O 7-x was crystal-grown on an alumina plate to obtain a columnar oxide having a diameter of 40 mm and a height of 15 mm. In the air atmosphere as it is, in Example 2, cooling was performed from 1100 ° C. to 975 ° C. at 200 ° C. per hour, and 975 ° C.
To 920 ° C. at 1.0 ° C. per hour, YBa 2 Cu 3 O 7-x was crystal-grown on an alumina plate to obtain a columnar oxide having a diameter of 40 mm and a height of 15 mm. In the air atmosphere as it is, in Example 3, it was cooled from 1100 ° C. to 970 ° C. at 100 ° C. per hour, gradually cooled from 970 ° C. to 920 ° C. at 1.0 ° C. per hour, and then YBa 2 on the alumina plate. Cu
3 O 7-x was crystal-grown to obtain a columnar oxide having a diameter of 40 mm and a height of 15 mm. Then, each columnar oxide was further heat-treated at 700 ° C. to 400 ° C. for 50 hours in a furnace in an oxygen atmosphere to obtain a cylindrical YBa 2 Cu 3 O 7-x oxide superconductor.

【0038】得られた酸化物超電導体の断面を光学研磨
し、光学顕微鏡で結晶粒の中心部及び端部のクラックの
進展状況を観察した。実施例1−3の何れでも結晶粒の
中心部にはクラックが観察されたが、結晶粒の端部には
クラックは観察されなかった。これらの結果を実験条件
と共に表1にまとめる。
The cross section of the obtained oxide superconductor was optically polished, and the progress of cracks at the central portion and the end portion of the crystal grains was observed with an optical microscope. In any of Examples 1-3, cracks were observed at the center of crystal grains, but no cracks were observed at the ends of crystal grains. These results are summarized in Table 1 together with the experimental conditions.

【0039】また、結晶粒の中心部及び端部の300μ
mx200μmの領域の顕微鏡写真から画像解析によ
り、銀化合物粒子の50%粒径とその粒子のYBa2Cu3O
7-x酸化物超電導体に対する体積分率とを測定した。結
晶粒の端部での銀化合物の50%粒径は、実施例1で2
μm、実施例2で3μm、実施例3で5μmであり、何
れの場合でも結晶粒の中心部での銀化合物の50%粒径
より一桁小さい値であった。この結果を表1にまとめ
る。
Further, the central portion and the end portion of the crystal grain are 300 μm.
By image analysis from a micrograph of a region of mx200 μm, 50% particle size of silver compound particles and YBa 2 Cu 3 O of the particles were obtained.
The volume fraction of the 7-x oxide superconductor was measured. The 50% grain size of the silver compound at the edge of the crystal grain is 2 in Example 1.
μm, 3 μm in Example 2, and 5 μm in Example 3, which were one digit smaller than the 50% grain size of the silver compound in the center of the crystal grain. The results are summarized in Table 1.

【0040】また、得られたYBa2Cu3O7-x酸化物超電導
体の円柱体端部よりランダムに約100mgの試料を切り
出し、この酸化物超電導体の結晶のab面内の温度77
K、磁場1Tにおける臨界電流密度Jc(A/cm2)を交流
磁化率測定法で測定した。実施例1で29500A/c
m2、実施例2で30300A/cm2、実施例3で2890
0A/cm2であった。この結果を表1にまとめる。
A sample of about 100 mg was randomly cut out from the end of the cylindrical body of the obtained YBa 2 Cu 3 O 7-x oxide superconductor, and the temperature in the ab plane of the crystal of the oxide superconductor was 77.
The critical current density Jc (A / cm 2 ) at K and a magnetic field of 1 T was measured by an AC magnetic susceptibility measuring method. 29500 A / c in Example 1
m 2 , 30300 A / cm 2 in Example 2 , 2890 in Example 3
It was 0 A / cm 2 . The results are summarized in Table 1.

【0041】直径40mm.で高さ15mm.である円柱形状
のYBa2Cu3O7-x酸化物超電導体を試料として、永久磁石
との反発力の測定を行った。そして、酸化物超電導体試
料を液体窒素に浸して超電導特性を発現させた後に、こ
の円柱形状の試料の円形である面上に、直径20mm.高
さ10mm.の円柱形状を有し、表面磁束密度が3500
GであるSm−Co永久磁石の円形である一面を下面と
して押さえつけ、この両面の間隙が0.1mm.のときの
反発力をロードセルで測定した。5個の試料を測定した
平均値は、実施例1で15kgf、実施例2で20kgf、実
施例3で18kgfであった。これを浮上力測定という。
Using a cylindrical YBa 2 Cu 3 O 7-x oxide superconductor having a diameter of 40 mm and a height of 15 mm as a sample, the repulsive force with the permanent magnet was measured. After immersing the oxide superconductor sample in liquid nitrogen to develop superconducting properties, the circular surface of this cylindrical sample has a cylindrical shape with a diameter of 20 mm and a height of 10 mm. Density is 3500
The circular one surface of the Sm-Co permanent magnet of G was pressed as the lower surface, and the repulsive force when the gap between the both surfaces was 0.1 mm was measured by the load cell. The average values measured for five samples were 15 kgf in Example 1, 20 kgf in Example 2, and 18 kgf in Example 3. This is called levitation force measurement.

【0042】(比較例1、2)実施例1−3と同様に、
23 、BaCuO2 、CuOの各々の粉末を添加混
合した後、ここに更に重量比で55%の酸化銀粉末(銀
元素に換算して50重量%)を添加した。次いで、実施
例1−3と同様に、この各々の混合物を乾式ポットミル
で混合し、プレス成形、等方加圧成形を行い、直径約4
6mm.高さ約20mm.の円柱状成形体を得た。実施例1−
3と同様に、この円柱状成形体を高純度アルミナ板上で
大気雰囲気中1100℃で1時間保持して溶融した。
(Comparative Examples 1 and 2) As in Examples 1-3,
After each powder of Y 2 O 3 , BaCuO 2 , and CuO was added and mixed, 55% by weight of silver oxide powder (50% by weight in terms of silver element) was further added thereto. Then, in the same manner as in Example 1-3, the respective mixtures were mixed in a dry pot mill, and press molding and isotropic pressure molding were performed to obtain a diameter of about 4
A cylindrical molded body having a height of 6 mm and a height of about 20 mm was obtained. Example 1-
In the same manner as in No. 3, this cylindrical molded body was melted by holding it on a high-purity alumina plate at 1100 ° C. for 1 hour in the air atmosphere.

【0043】そのまま大気雰囲気中で、比較例1では、
1100℃から1000℃まで1時間あたり100℃で
冷却し、比較例2では、1100℃から970℃まで1
時間あたり100℃で冷却し、以下実施例1ー3と同様
にして、円柱形状のYBa2Cu3O7-x酸化物超電導体を得
た。
In the atmosphere as it is, in Comparative Example 1,
From 100 ° C. to 1000 ° C., cooling is performed at 100 ° C. per hour, and in Comparative Example 2, 1100 ° C. to 970 ° C.
After cooling at 100 ° C. per hour, a cylindrical YBa 2 Cu 3 O 7-x oxide superconductor was obtained in the same manner as in Examples 1-3 below.

【0044】得られた酸化物超電導体の断面を光学研磨
し、光学顕微鏡で結晶粒の中心部及び端部のクラックの
進展状況を観察した。比較例1、2の何れでも結晶粒の
中心部にも、結晶粒の端部にもクラックは観察されなか
った。また、結晶粒の中心部及び端部の顕微鏡写真の画
像解析では、銀化合物粒子の50%粒径は、結晶粒の中
心部でも端部でもほぼ同じ値であり、約30〜40μm
であった。温度77K、磁場1Tにおける臨界電流密度
Jc(A/cm2)は、比較例1で19800A/cm2、比較例2
で21000A/cm2であった。浮上力測定は比較例1で
も2でも8kgfであった。
The cross section of the obtained oxide superconductor was optically polished, and the progress of cracks at the center and the end of the crystal grains was observed with an optical microscope. In each of Comparative Examples 1 and 2, no crack was observed at the center of the crystal grain or at the end of the crystal grain. Further, in the image analysis of the micrographs of the central part and the end part of the crystal grain, the 50% particle size of the silver compound particle is almost the same value in the central part and the end part of the crystal grain, and is about 30 to 40 μm.
Met. Critical current density at temperature 77K and magnetic field 1T
Jc (A / cm 2) is, 19800A / cm 2 in Comparative Example 1, Comparative Example 2
Was 21000 A / cm 2 . The floating force measurement was 8 kgf in both Comparative Examples 1 and 2.

【0045】(比較例3、4)実施例1−3と同様に、
23 、BaCuO2 、CuOの各々の粉末を添加混
合した後、ここに更に重量比で3.3%の酸化銀粉末
(銀元素に換算して3重量%)を添加した。次いで、実
施例1−3と同様に、この各々の混合物を乾式ポットミ
ルで混合し、プレス成形、等方加圧成形を行い、直径4
6mm.高さ20mm.の円柱状成形体を得た。
(Comparative Examples 3 and 4) As in Examples 1-3,
After each powder of Y 2 O 3 , BaCuO 2 and CuO was added and mixed, 3.3% by weight of silver oxide powder (3% by weight in terms of silver element) was further added thereto. Then, in the same manner as in Example 1-3, the respective mixtures were mixed in a dry pot mill, and press molding and isotropic pressure molding were performed to obtain a diameter of 4 mm.
A cylindrical molded body having a height of 6 mm and a height of 20 mm was obtained.

【0046】実施例1−3と同様に、この円柱状成形体
を高純度アルミナ板上で大気雰囲気中1100℃で1時
間保持して溶融した。
In the same manner as in Example 1-3, this cylindrical molded body was melted by holding it on a high-purity alumina plate in the atmosphere at 1100 ° C. for 1 hour.

【0047】そのまま大気雰囲気中で、比較例3では、
1100℃から990℃まで1時間あたり100℃で冷
却し、比較例4では、1100℃から980℃まで1時
間あたり100℃で冷却し、以下実施例1ー3と同様に
して、円柱形状のYBa2Cu3O7- x酸化物超電導体を得た。
In the atmosphere as it is, in Comparative Example 3,
Cooled from 1100 ° C. to 990 ° C. at 100 ° C. per hour, in Comparative Example 4, cooled from 1100 ° C. to 980 ° C. at 100 ° C. per hour, and in the same manner as in Examples 1-3 below, a cylindrical YBa was used. A 2 Cu 3 O 7- x oxide superconductor was obtained.

【0048】得られた酸化物超電導体の断面を光学研磨
し、光学顕微鏡で結晶粒の中心部及び端部のクラックの
進展状況を観察した。比較例3、4の何れでも結晶粒の
中心部のクラックは結晶粒の端部にまで延びていること
が観察された。また、結晶粒の中心部及び端部の顕微鏡
写真の画像解析より、比較例3、4の何れでも銀化合物
粒子の50%粒径は、結晶粒の端部では、2μmであ
り、結晶粒の中心部で約20μmであった。
The cross section of the obtained oxide superconductor was optically polished, and the progress of cracks at the center and the end of the crystal grains was observed with an optical microscope. In each of Comparative Examples 3 and 4, it was observed that the crack at the center of the crystal grain extended to the end of the crystal grain. Further, from the image analysis of the micrographs of the central portion and the end portion of the crystal grain, in any of Comparative Examples 3 and 4, the 50% particle diameter of the silver compound particle was 2 μm at the end portion of the crystal grain. It was about 20 μm at the center.

【0049】温度77K、磁場1Tにおける臨界電流密
度Jc(A/cm2)は、比較例3で29800A/cm2、比較例
4で31700A/cm2と満足すべき値を示した。しか
し、浮上力測定は比較例3で1kgfであり、比較例4で
2kgfであり、満足すべき値でなかった。
[0049] Temperature 77K, critical in the magnetic field 1T current density Jc (A / cm 2) is, 29800A / cm 2 in Comparative Example 3 showed a value satisfactory and 31700A / cm 2 in Comparative Example 4. However, the levitation force measurement was 1 kgf in Comparative Example 3 and 2 kgf in Comparative Example 4, which was not a satisfactory value.

【0050】(比較例5)実施例1−3と同様に、Y2
3 、BaCuO2 、CuOの各々の粉末を添加混合し
た後、ここに更に重量比で7.7%の酸化銀粉末(銀元
素に換算して7重量%)を添加した。次いで、実施例1
−3と同様に、この各々の混合物を乾式ポットミルで混
合し、プレス成形、等方加圧成形を行い、直径約46m
m.高さ約20mm.の円柱状成形体を得た。
(Comparative Example 5) As in Example 1-3, Y 2
After powders of O 3 , BaCuO 2 and CuO were added and mixed, 7.7% by weight of silver oxide powder (7% by weight in terms of silver element) was further added thereto. Then, Example 1
Similar to -3, mix each of these mixtures with a dry pot mill, press-mold and isostatically press-mold it to a diameter of about 46 m.
A cylindrical molded body having a height of about 20 mm was obtained.

【0051】実施例1−3と同様に、この円柱状成形体
を高純度アルミナ板上で大気雰囲気中1100℃で1時
間保持して溶融した。
In the same manner as in Example 1-3, this cylindrical molded body was melted by holding it on a high-purity alumina plate in the air atmosphere at 1100 ° C. for 1 hour.

【0052】そのまま大気雰囲気中で、1100℃から
975℃まで1時間あたり20℃で冷却し、以下、実施
例1ー3と同様にして、円柱形状のYBa2Cu3O7-x酸化物
超電導体を得た。
In an air atmosphere as it is, it was cooled from 1100 ° C. to 975 ° C. at 20 ° C. per hour, and thereafter, in the same manner as in Example 1-3, a cylindrical YBa 2 Cu 3 O 7-x oxide superconducting material was obtained. Got the body

【0053】得られた酸化物超電導体の断面を光学研磨
し、光学顕微鏡で結晶粒の中心部及び端部のクラックの
進展状況を観察した。比較例3、4の何れでも結晶粒の
中心部のクラックの一部は結晶粒の端部にまで延びてい
た。また、結晶粒の中心部及び端部の顕微鏡写真の画像
解析より、銀化合物粒子の50%粒径は、結晶粒の端部
では、14μmであり、結晶粒の中心部で31μmであ
った。温度77K、磁場1Tにおける臨界電流密度Jc
(A/cm2)は、24400A/cm2であり、浮上力測定は5
kgfであった。
The cross section of the obtained oxide superconductor was optically polished, and the progress of cracks at the central portion and the end portion of the crystal grains was observed with an optical microscope. In each of Comparative Examples 3 and 4, a part of the crack at the center of the crystal grain extended to the end of the crystal grain. In addition, from the image analysis of the micrographs of the central part and the end part of the crystal grain, the 50% particle diameter of the silver compound particle was 14 μm at the end part of the crystal grain and 31 μm at the center part of the crystal grain. Critical current density Jc at temperature 77K and magnetic field 1T
(A / cm 2 ) is 24400 A / cm 2 , and the levitation force measurement is 5
It was kgf.

【0054】(比較例6−8)実施例1−3と同様に、
23 、BaCuO2 、CuOの各々の粉末を添加混
合した。ここに実施例6では、更に重量比で11%の酸
化銀粉末(銀元素に換算して10重量%)を添加した。
ここに実施例7では、更に重量比で16.5%の酸化銀
粉末(銀元素に換算して15重量%)を添加した。ここ
に実施例8では、更に重量比で22%の酸化銀粉末(銀
元素に換算して20重量%)を添加した。
(Comparative Example 6-8) As in Example 1-3,
Powders of Y 2 O 3 , BaCuO 2 , and CuO were added and mixed. In Example 6, 11% by weight of silver oxide powder (10% by weight in terms of silver element) was further added.
In Example 7, 16.5% by weight of silver oxide powder (15% by weight in terms of silver element) was further added. In Example 8, 22% by weight of silver oxide powder (20% by weight in terms of silver element) was further added.

【0055】次いで、実施例1−3と同様に、この各々
の混合物を乾式ポットミルで混合し、プレス成形、等方
加圧成形を行い、直径約46mm.高さ約20mm.の円柱状
成形体を得た。そして、実施例1−3と同様に、この円
柱状成形体を高純度アルミナ板上で大気雰囲気中110
0℃で1時間保持して溶融した。
Then, in the same manner as in Example 1-3, the respective mixtures were mixed in a dry pot mill, press-molded and isotropically pressure-molded to give a cylindrical molded body having a diameter of about 46 mm and a height of about 20 mm. Got Then, in the same manner as in Example 1-3, this cylindrical molded body was placed on a high-purity alumina plate in the atmosphere at 110
It was held at 0 ° C. for 1 hour to melt.

【0056】そのまま大気雰囲気中で、比較例6及び7
では、1100℃から1000℃まで1時間あたり10
0℃で冷却し、比較例8では、1100℃から970℃
まで1時間あたり100℃で冷却し、以下実施例1ー3
と同様にして、円柱形状のYBa2Cu3O7-x酸化物超電導体
を得た。
Comparative Examples 6 and 7 in the air atmosphere as they are
Then, from 1100 ° C to 1000 ° C, 10 per hour
Cooled at 0 ° C., and in Comparative Example 8, 1100 ° C. to 970 ° C.
And cooled at 100 ° C. per hour until the following Examples 1-3.
In the same manner as described above, a cylindrical YBa 2 Cu 3 O 7-x oxide superconductor was obtained.

【0057】得られた酸化物超電導体の断面を光学研磨
し、光学顕微鏡で結晶粒の中心部及び端部のクラックの
進展状況を観察した。比較例6−8の何れでも結晶粒の
中心部のクラックの一部は結晶粒の端部にまで延びてい
ることが観察された。また、結晶粒の中心部及び端部の
顕微鏡写真の画像解析より、比較例6及び7での銀化合
物粒子の50%粒径は、結晶粒の端部では、約20μm
であり、比較例8では35μmであった。
The cross section of the obtained oxide superconductor was optically polished, and the progress of cracks at the center and the end of the crystal grains was observed with an optical microscope. In each of Comparative Examples 6-8, it was observed that a part of the crack at the center of the crystal grain extended to the end of the crystal grain. Further, from the image analysis of the micrographs of the central part and the end part of the crystal grain, the 50% particle size of the silver compound particles in Comparative Examples 6 and 7 was about 20 μm at the end part of the crystal grain.
And in Comparative Example 8, it was 35 μm.

【0058】比較例5−7の何れでも、温度77K、磁
場1Tにおける臨界電流密度Jc(A/cm2)が約2000
0A/cm2であり、浮上力測定が3kgfであった。何れの値
も満足する値でなかった。
In any of Comparative Examples 5-7, the critical current density Jc (A / cm 2 ) at a temperature of 77 K and a magnetic field of 1 T was about 2000.
It was 0 A / cm 2 , and the levitation force measurement was 3 kgf. None of the values was satisfactory.

【0059】実施例1−3での結晶粒の端部の銀化合物
粒子の50%粒径が2〜5μmであり、また、実施例1
−3の浮上力は、比較例1−8の何れの場合の浮上力よ
りも顕著に優れていた。比較例3及び4でも結晶粒の端
部の銀化合物粒子の50%粒径は2μmと小さな値をと
るが、銀化合物粒子の体積分率が小さいので、結晶粒中
心部から結晶粒の端部までクラックが成長することを阻
止することができなかったから、超電導特性が満足する
ものでなかったのであろう。
The 50% particle size of the silver compound particles at the edges of the crystal grains in Example 1-3 is 2 to 5 μm, and Example 1
The levitation force of -3 was significantly superior to the levitation force of any of Comparative Examples 1-8. In Comparative Examples 3 and 4 as well, the 50% particle size of the silver compound particles at the edges of the crystal grains takes a small value of 2 μm, but since the volume fraction of the silver compound particles is small, the central portion of the crystal grains to the edges of the crystal grains are small. Since it was not possible to prevent the cracks from growing, it seems that the superconducting properties were not satisfactory.

【0060】比較例1、2、6−8は、銀化合物の添加
量が多くなりすぎると結晶粒の端部の銀化合物粒子の粒
径が増大し、超電導特性が悪化することを示している。
実施例2と比較例5とを比べると、たとえ銀化合物の添
加量が銀元素に換算して12重量%以下であっても、焼
成時の冷却速度が遅いと、結晶粒端部の銀化合物の粒子
の粒径が大きくなることがわかる。
Comparative Examples 1, 2 and 6-8 show that if the amount of silver compound added is too large, the grain size of the silver compound particles at the edges of the crystal grains increases and the superconducting properties deteriorate. ..
Comparing Example 2 with Comparative Example 5, even if the addition amount of the silver compound is 12% by weight or less in terms of silver element, if the cooling rate during firing is slow, the silver compound at the end of the crystal grain is It can be seen that the particle size of the particles becomes large.

【0061】これらの結果から、結晶粒端部の銀化合物
粒子の粒径を小さくすることで、結晶粒内部のクラック
の成長を阻止することができ、超電導特性が顕著に向上
することがわかる。
From these results, it can be seen that the growth of cracks inside the crystal grains can be prevented and the superconducting characteristics are remarkably improved by reducing the grain size of the silver compound particles at the ends of the crystal grains.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】結晶粒に粒径5μm以下の銀粒子又は銀
化合物粒子を含有する本発明に係る希土類系酸化物超電
導体は、微細な銀粒子又は銀化合物粒子が結晶粒内部の
クラックの成長を防止することから超電導特性の向上に
つながる。また、結晶粒に銀粒子又は銀化合物粒子を含
有し、かつ、結晶粒の中心部より結晶粒の端部の方が銀
粒子又は銀化合物粒子の粒径が小さい、または、その粒
子の体積分率が大きい本発明に係る希土類系酸化物超電
導体は、結晶粒内部に発生したクラックが粒界にまで成
長するのを防止することから超電導特性の向上につなが
る。
INDUSTRIAL APPLICABILITY The rare earth oxide superconductor according to the present invention in which the crystal grains contain silver particles or silver compound particles having a particle size of 5 μm or less, the fine silver particles or silver compound particles grow cracks inside the crystal grains. It is possible to improve the superconducting property by preventing the above. Further, the crystal grains contain silver particles or silver compound particles, and the particle size of the silver particles or silver compound particles is smaller at the ends of the crystal grains than at the center of the crystal grains, or the volume of the particles is The rare earth-based oxide superconductor according to the present invention having a high rate prevents cracks generated inside the crystal grains from growing to grain boundaries, and thus improves superconducting properties.

【0064】また、本発明に係る希土類系酸化物超電導
体の製造方法は、希土類系酸化物超電導体の原料粉末又
は仮焼粉末に、銀化合物に含有する銀元素が希土類系酸
化物超電導体と銀化合物との和の5〜12重量%となる
ように銀化合物の粉末を添加し、成形体の溶融温度から
凝固点まで1時間あたり100℃以上の冷却速度で冷却
することを特徴とし、それ以外は、従来の溶融法と同様
にして上記の優れた超電導特性を有する希土類系酸化物
超電導体を得ることができる。以上説明するように、本
発明に係る希土類系酸化物超電導体は、超電導特性が向
上するので、希土類系酸化物超電導体の実用化に向けて
一歩、近ずくことになり、本発明は産業の発達に貢献す
ることができる。
Further, in the method for producing a rare earth oxide superconductor according to the present invention, the raw material powder or the calcined powder of the rare earth oxide superconductor has the silver element contained in the silver compound as a rare earth oxide superconductor. The powder of the silver compound is added so as to be 5 to 12% by weight of the sum of the silver compound, and is cooled at a cooling rate of 100 ° C. or more per hour from the melting temperature of the molded body to the freezing point. Can obtain a rare earth oxide superconductor having the above-mentioned excellent superconducting properties in the same manner as the conventional melting method. As described above, since the rare earth oxide superconductor according to the present invention has improved superconducting properties, it is one step toward practical application of the rare earth oxide superconductor, and the present invention is industrial. Can contribute to development.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結晶粒に粒径5μm以下の銀粒子又は銀
化合物粒子を含有することを特徴とする希土類系酸化物
超電導体。
1. A rare earth oxide superconductor characterized in that the crystal grains contain silver particles or silver compound particles having a particle size of 5 μm or less.
【請求項2】 結晶粒に銀粒子又は銀化合物粒子を含有
し、かつ、該結晶粒の中心部より該結晶粒の端部の方
が、該銀粒子又は該銀化合物粒子の粒径が小さいことを
特徴とする希土類系酸化物超電導体。
2. The crystal grains contain silver particles or silver compound particles, and the particle size of the silver particles or the silver compound particles is smaller at the ends of the crystal grains than at the center of the crystal grains. A rare earth oxide superconductor characterized by the following.
【請求項3】 結晶粒に銀粒子又は銀化合物粒子を含有
し、かつ、該結晶粒の中心部より該結晶粒の端部の方
が、該銀粒子又は該銀化合物粒子の体積分率が大きいこ
とを特徴とする希土類系酸化物超電導体。
3. The crystal grains contain silver particles or silver compound particles, and the volume fraction of the silver particles or the silver compound particles is closer to the end portions of the crystal grains than to the central portions of the crystal grains. A rare earth oxide superconductor characterized by being large.
【請求項4】 REはY、Gd、Dy、Ho、Er及びY
bからなる群のなかの少なくとも一元素からなり、xが
0以上1以下であるREBa2Cu3O7-xという組成式で該希土
類系酸化物超電導体の主成分が表せることを特徴とする
請求項1、2又は3に記載の希土類系酸化物超電導体。
4. RE is Y, Gd, Dy, Ho, Er and Y.
The main component of the rare earth oxide superconductor is represented by a composition formula of REBa 2 Cu 3 O 7-x in which at least one element in the group consisting of b is included and x is 0 or more and 1 or less. The rare earth oxide superconductor according to claim 1, 2 or 3.
【請求項5】 希土類系酸化物超電導体の原料粉末又は
仮焼粉末より成形体を作製した後、該成形体を加熱して
溶融し、次いで冷却して結晶化する希土類系酸化物超電
導体の製造方法において、銀又は銀化合物に含有する銀
元素が希土類系酸化物超電導体と該銀又は該銀化合物と
の和の5〜12重量%となるように銀又は銀化合物を成
形体に含有し、かつ、加熱溶融後で該成形体の溶融温度
から凝固点までの冷却速度が1時間あたり100℃以上
であることを特徴とする希土類系酸化物超電導体の製造
方法。
5. A rare earth oxide superconductor prepared by preparing a molded body from a raw material powder or a calcined powder of a rare earth oxide superconductor, heating the molded body to melt, and then cooling to crystallize the molded body. In the production method, the silver or the silver compound is contained in the molded body such that the silver element contained in the silver or the silver compound is 5 to 12% by weight of the sum of the rare earth oxide superconductor and the silver or the silver compound. A method for producing a rare earth oxide superconductor, wherein the cooling rate from the melting temperature of the molded body to the freezing point after heating and melting is 100 ° C. or more per hour.
JP4076552A 1992-03-31 1992-03-31 Rare-earth oxide superconductor and its production Withdrawn JPH05279029A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4076552A JPH05279029A (en) 1992-03-31 1992-03-31 Rare-earth oxide superconductor and its production
CA002092594A CA2092594A1 (en) 1992-03-31 1993-03-26 Rare earth superconducting composition and process for production thereof
DE69307374T DE69307374D1 (en) 1992-03-31 1993-03-31 Superconducting body based on rare earths and process for its production
EP93302556A EP0564279B1 (en) 1992-03-31 1993-03-31 Rare earth superconducting body and process for production thereof
US08/375,277 US5547921A (en) 1992-03-31 1995-01-19 Rare earth superconducting composition and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076552A JPH05279029A (en) 1992-03-31 1992-03-31 Rare-earth oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH05279029A true JPH05279029A (en) 1993-10-26

Family

ID=13608427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076552A Withdrawn JPH05279029A (en) 1992-03-31 1992-03-31 Rare-earth oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH05279029A (en)

Similar Documents

Publication Publication Date Title
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
JP2839415B2 (en) Method for producing rare earth superconducting composition
US5474976A (en) Production of oxide superconductors having large magnetic levitation force
US5395820A (en) Oxide superconductor and process for producing the same
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
US5430010A (en) Process for preparing oxide superconductor
US5547921A (en) Rare earth superconducting composition and process for production thereof
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
JPH05279029A (en) Rare-earth oxide superconductor and its production
JP2967154B2 (en) Oxide superconductor containing Ag and having uniform crystal orientation and method for producing the same
US20070128735A1 (en) Method of fabrication of re-ba-cu-o-based oxide superconductor
JP2874278B2 (en) Oxide superconductor and manufacturing method thereof
JP4109363B2 (en) Oxide superconducting material and manufacturing method thereof
JP3115915B2 (en) Method for producing rare earth oxide superconductor
WO2015146993A1 (en) Bulk oxide superconductor and production method for bulk oxide superconductor
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH0791057B2 (en) Rare earth oxide superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JPH05279031A (en) Rare earth oxide superconductor and its production
JP2004203727A (en) Oxide superconductor having high critical current density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608